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Abstract: The COVID-19 pandemic has caused lifestyle changes for many people, and signs of those 13 

changes are present in sewage sludge. We analyzed primary sludge from a wastewater treatment plant in 14 

Connecticut, USA collected March 19 to June 30, 2020. This time period encompassed the first wave of 15 

the pandemic, initial statewide stay at home order, and first phase of reopening. We used liquid 16 

chromatography high resolution mass spectrometry and targeted and suspect screening strategies to identify 17 

contaminants. We found evidence of increasing opioid, cocaine, and antidepressant use, and upward trends 18 

in chemicals used in disinfectants and sunscreens. Benzotriazole, an anti-corrosion chemical associated 19 

with traffic pollution, decreased through the stay-at-home period, and increased during reopening. 20 

Hydroxychloroquine, a drug publicized for its potential to treat COVID-19, had elevated concentrations in 21 

the week following the implementation of the United States Emergency Use Authorization. Our results 22 

relate to nationwide reports of increased demand for fentanyl, antidepressants, and other medications, as 23 

well as increased drug overdose deaths during the pandemic. Though wastewater surveillance during the 24 

pandemic has largely focused on measuring SARS-CoV-2 RNA concentrations, chemical analysis can also 25 

show trends that are important for revealing the public and environmental health effects of the pandemic. 26 
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Synopsis: Sewage sludge provides evidence of changes in illicit drug, pharmaceutical, and 31 

household chemical use during the COVID-19 pandemic. 32 
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Introduction 37 

The COVID-19 pandemic has dramatically increased the practice of wastewater-based 38 

epidemiology, with scientists and public health practitioners worldwide monitoring levels of SARS-CoV-39 

2 RNA in untreated wastewater (1). Measurements of SARS-CoV-2 in wastewater and sludge are associated 40 

with daily case rates from testing and COVID-19 related hospitalizations, and can provide early information 41 

about potential clusters and outbreaks of COVID-19 (2, 3). Historically, wastewater-based epidemiology 42 

has focused primarily on chemical contaminants, which can provide information about the habits of the 43 

population within the catchment area of a treatment plant. Chemical analysis of wastewater has been used 44 

to track use of licit and illicit drugs and pharmaceuticals such as antidepressants, benzodiazepines, opioids 45 

and asthma medications, as well as exposure to pesticides and plasticizers (4–6). Wastewater analysis can 46 

be a highly efficient way to gather information about topics such as use of illegal drugs and psychoactive 47 

medications, without identification of individual persons. Additionally, wastewater analysis has been used 48 

to track antiviral and antibiotic use during influenza pandemics throughout the world (7–9). 49 

The COVID-19 pandemic has affected many aspects of daily life beyond the direct effects of the 50 

virus, and we hypothesized that these changes would be visible in the organic chemical signature of 51 

wastewater. Our objectives were to characterize temporal variation of chemical contaminants in sewage 52 

sludge during the COVID-19 outbreak and associated lockdown and to relate our findings to the health and 53 

activities of local residents as well as broader global trends. We used both targeted and suspect screening 54 

methods to cover a broad range of contaminants including common analytes such as pharmaceuticals and 55 

illicit drugs (4), but also more unusual compounds for wastewater epidemiology studies such as 56 

disinfectants, UV-filters, and pesticides. Previous studies evaluating chemical concentrations in wastewater 57 

during the COVID-19 pandemic have focused on limited numbers of analytes – primarily licit and illicit 58 

drugs (10–14). Additionally, to our knowledge, this study is the first to report trends in wastewater 59 

concentrations for chemicals with direct significance to the COVID-19 pandemic including 60 

hydroxychloroquine and disinfectants. Samples were taken at the East Shore Water Pollution Abatement 61 
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Facility, New Haven, CT USA, where SARS-CoV-2 concentrations and cased data have already been 62 

measured and published (2). Daily collection of primary sludge samples and analysis for SARS-CoV-2 63 

RNA began March 19, 2020 and has continued through 2020 (2). 64 

Materials and Methods 65 

Primary sludge samples were collected daily from March 19 to June 30, 2020 between 8 and 10 am 66 

at the East Shore Water Pollution Abatement Facility, New Haven, CT USA, as described in Peccia et al., 67 

2020 (2). This treatment plant serves an estimated population of 200,000 in New Haven, Hamden, East 68 

Haven, and Woodbridge, CT, USA, and part of the service area contains combined sewers. Samples 69 

included both liquid and solid fractions (2 to 5% solids wt/wt) of sludge and were stored at -80°C until 70 

analysis. We analyzed daily samples from March 19 to April 15, and weekly composite samples from 71 

March 19 to June 30. Weekly sample extracts were further combined into 5-week composite samples, which 72 

were used for compound identification analysis only. Figure 1 shows the sampling timeline relative to key 73 

dates for the pandemic and related shut down. 74 

  75 

Our analytical approach was based on long-term in-house methods used on food samples and other 76 

matrices. Our goal was to detect a broad range of contaminants. As we did not know what chemicals were 77 

present prior to sample analysis, we opted for minimal sample processing to avoid removing any unknowns.  78 

Figure 1. Timeline showing key pandemic related events and 

the timing of sample collection. We analyzed daily samples for 

four weeks during the initial increase in local COVID-19 cases. 

We analyzed weekly composite samples for a total of 15 weeks 

which covered the early stages of the pandemic and shut down 

as well as the initial stages of re-opening. All dates are within 

the year 2020. 
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Briefly, liquid and solid fractions were separated via centrifugation. Solids were extracted with acetonitrile, 79 

and equal amounts of the liquid fraction and acetonitrile extract were combined and filtered (method and 80 

materials details and recovery information available in sections S.1.1, S.1.2, and S.2.1). This type of method 81 

leads to complex sample matrix that requires high analytical sensitivity and selectivity, which are provided 82 

by the chosen instrumentation. 83 

Samples were analyzed using an Ultimate 3000 liquid chromatograph coupled with a Q-Exactive 84 

mass spectrometer (Thermo Scientific) and positive electrospray ionization. Mobile phases were 0.1% 85 

formic acid in water (A) and 0.1% formic acid in acetonitrile. We used an Agilent SB-C18 RRHD 1.8 µm, 86 

2.1 x 150 mm column and a 55-minute method with a gradient of 5% B to 95%B. Calibration points, blanks, 87 

and daily, weekly, and 5-week composite samples were analyzed using an alternating full MS and all ion 88 

fragmentation (AIF) method. Additionally, the 5-week composite samples were analyzed using data 89 

dependent MS2 (ddMS2) analysis with an iterative inclusion approach, which has similar advantages to 90 

previously reported intelligent acquisition methods (15, 16). Briefly, we used the full scan data to generate 91 

inclusion lists including all features after blank filtering to ensure ddMS2 spectra were collected for each 92 

peak in the three 5-week composite samples. Each 5-week composite was injected 10 or 11 times, each run 93 

with a separate inclusion list for ddMS2 data collection. Additional instrument method and iterative 94 

inclusion information is in sections S.1.2-3 and S.2.3. 95 

We used three separate data processing methods to identify and (semi-)quantify compounds in the 96 

samples. Full method descriptions, confidence levels for compound identification, and information on 97 

accuracy and variability are provided in sections S.1.4-7, S.2.1, and S.2.4. First, we used a targeted approach 98 

with TraceFinder software version 4.1 (Thermo Scientific) to conduct quantitative analysis based on 99 

standards for 62 compounds (listed in Table S1). Analytes included a variety of toxins, pharmaceuticals 100 

and illicit drugs known to be found in wastewater and/or sludge, and several compounds chosen for their 101 

relevance to COVID-19 treatment and prevention. Concentrations in the sludge extracts were determined 102 

based on a calibration curve that ranged from 0.1 ng/mL to 100 ng/mL. We used a separate method in 103 
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TraceFinder to screen our data using an in-house database of approximately 1800 compounds. The database 104 

contains exact MS1 and MS2 masses and retention times for many compounds that have previously been 105 

measured in house or by collaborators with the same (or very similar) instrument methods used in this 106 

project. The database also contains MS1 and MS2 masses that are provided in the Thermo Scientific 107 

EFS_HRAM database in TraceFinder (without retention times). Compound identifications using the 108 

screening method were based on exact mass matches for MS1 and MS2 masses, isotope pattern matching, 109 

and retention time matching where available. Only the Full MS/AIF data was used in the TraceFinder 110 

methods. The third method used Compound Discoverer version 3.1 software (Thermo Scientific), and 111 

identified compounds based on the ddMS2 data for the 5-week composite samples and spectral matches 112 

with the mzCloud database. The full MS data for the daily and weekly samples was then screened for the 113 

identified compounds. Peak areas were used for semi-quantitative trend analysis for the compounds 114 

identified with Compound Discoverer and TraceFinder screening methods. Each identification was 115 

assigned a confidence level based on available evidence. In the main text, identifications based on analytical 116 

standards are referred to as “confirmed” while confident screening results (from TraceFinder and 117 

Compound Discoverer) are “probable” and screening results where more ambiguity remains are listed as 118 

“tentative” (17). More information, including detailed, software specific confidence levels for each 119 

identification, is available in sections S.1.4-7, and section S.2.2. 120 

Trends over time for each identified compound in daily and weekly samples were determined using 121 

two types of analysis: linear regression and multigroup analysis. Multigroup statistical tests used were 122 

determined based on the normality and homoscedasticity of each dataset. Trends listed as “increase” in 123 

Table 1 indicate a statistically significant positive linear regression (p ≤ 0.05) or a multigroup analysis 124 

where there were statistically significant differences between groups (p ≤ 0.05) and an increase in average 125 

compound levels in the sludge. Trends listed as “decrease” in Table 1 indicate a statistically significant 126 

negative linear regression (p ≤ 0.05) or a multigroup analysis where there were statistically significant 127 

differences between groups (p ≤ 0.05) and a decrease in average compound levels in the sludge. 128 
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Concentrations based on an external calibration curve were used for trend analysis where available (for a 129 

portion of the “confirmed” compounds); peak area was used for all other trend analyses (for all other 130 

compounds). Detailed statistical methods and results for trend determination are available in sections S.1.8 131 

and S.2.2. Table 1 also includes the relative standard deviation (RSD) of each compound concentration or 132 

peak area (from replicate unspiked samples, n ≥ 3) as an estimate of measurement error. 133 

Ten additional standards were purchased and analyzed after data analysis took place in an effort to 134 

improve annotation confidence for interesting results. We found that 9 of 10 compounds were correctly 135 

identified (amitriptyline, citalopram, diphenhydramine, triclocarban, didecyldimethylammonium, 136 

acetaminophen, benzotriazole, sertraline, and oxybenzone). Results for these compounds are reported as 137 

“confirmed”, but trend analysis is based on peak area due to lack of quantitative standards run alongside 138 

the samples. The misidentified compound is not included in our results. Detailed quality control and 139 

methodological results are available in sections S.2.1, S.2.3, and S.2.4. 140 

Results and Discussion 141 

 We identified chemicals in wastewater primary sludge and analysed their trends over time in daily 142 

samples from March 19 to April 15, 2020, and weekly composite samples from March 19 to June 30, 2020. 143 

Compound identifications were performed using both targeted and non-targeted strategies, and each 144 

compound was assigned a confidence level. Table 1 shows the full list of identified compounds, their uses, 145 

their detection information, and the observed trends over time. Trends in identified compounds are 146 

discussed categorically below. 147 

 148 
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Table 1: Compounds identified in daily and weekly sludge samples 

  Compound Use 
Confidence 

Level 

Trends   

m/z 

measureda 

Δ mass 

(ppm)a,b 

Retention 

Time 

(min)a 

RSDc 
Daily 

Samples 

(3/19/20-

4/15/20) 

Weekly  

Samples 

(3/19/20-

6/30/20) 

C
O

V
ID

-1
9

 d
ru

g
s 

an
d

 d
is

in
fe

ct
an

ts
 

Hydroxychloroquine antiviral Confirmed increased    336.1835 -0.72 6.17 9 

Azithromycin antibiotic Confirmed   decrease 749.5152 -0.74 12.58 5 

Acetaminophen analgesic Confirmed   increase 152.0706  -0.28 5.22 7 

Triclocarban disinfectant Confirmed increase  314.9849 -1.34 32.98 35 

Didecyldimethylammonium disinfectant Confirmed     326.3778 -0.86 40.98 60 

Cetrimonium disinfectant Probable     284.3308 -1.18 38.56 46 

Dioctyldimethylammonium  disinfectant Probable   increase 270.3154 -0.64 37.8 73 

Dodecyltrimethylammonium 

(A) 
disinfectant Tentative     228.2685 0.11 30.88 45 

Dodecyltrimethylammonium 

(B) 
disinfectant Tentative   increase 228.2686 0.15 27.32 15 

O
p

io
id

s 
an

d
 D

ru
g

s 
o

f 
A

b
u

se
 

Fentanyl opioid Confirmed   increase 337.2273 -0.45 16.06 25 

Levorphanol opioid Confirmed decrease decrease 258.1853 0.03 10.2 19 

Methadone opioid Confirmed   increase 310.2164 -0.45 20.3 17 

Codeine opioid Confirmed     300.1594 -0.17 6.18 2 

Hydromorphone opioid Confirmed   --e increase 286.1439 0.53 4.05 9 

Oxycodone opioid Confirmed  --e   316.1543 -0.22 7.07 5 

Tilidine opioid Probable     274.1791 -3.71 41.26 24 

Tramadol opioid Probable     264.1957 -0.32 10.18 11 

Cocaine cocaine Confirmed   increase 304.1542 -0.35 12.16 6 

Benzoylecgonine cocaine Probable   increase  290.1386  -0.43  9.54 10 

Ecgonine methyl ester cocaine Probable   increase  200.1278  -1.38  2.30 28 

Anhydroecgonine cocaine Probable   decrease 168.1019 -0.25 7.08 20 
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THC cannabis Probable   decrease  315.2315  -1.20  40.67 31 

Cannabidiolf cannabis Probable      315.2315 -1.2  36.81 27 

11-Hydroxy-δ(9)-THC cannabis Probable     331.2264 -1.11 33.25 13 

Nor-9-carboxy-9-THC cannabis Probable     345.2059 -0.45 33.53 22 

THC-A cannabis Tentative  increase increase  359.2211  -1.70  42.66 27 

Methamphetamine amphetamine Confirmed     150.1277 -0.08 7.49 13 

TFMPP party drug Tentative    decrease  231.1106  1.01  2.00 46 

A
n

ti
d

ep
re

ss
an

t 
an

d
 A

n
ti

se
iz

u
re

 D
ru

g
s 

Doxepin antidepressant Confirmed   increase 280.1696 -0.16 17.04 25 

Amitriptyline antidepressant Confirmed   increase 278.1903 -0.1 20.49 19 

Citalopram antidepressant Confirmed   increase 325.171 -0.31 17.4 17 

desmethyl-citalopram antidepressant Probable   increase 311.1553 -0.47 17 10 

Sertraline antidepressant Confirmed increase   306.081 -0.3 21.47 10 

Trazadone antidepressant Probable     372.1584 -0.44 14.87 19 

Venlafaxine antidepressant Probable     278.2114 -0.15 14.28 18 

Clozapine antipsycotic Probable   increase 327.137 -0.26 14.3 22 

Carbamazepine anticovulsant Probable     237.1022 -0.8 18.93 11 

Gabapentin anticonvulsant Probable     172.1331 -0.5 6.89 4 

Pregabalin anticonvulsant Tentative      160.133  -1.11  1.99 5 

P
h

ar
m

ac
eu

ti
ca

ls
 -

 o
th

er
 

Propafenone antiarrythmic Probable    342.2061 -0.8 34.23 23 

Trimethoprim antibiotic Probable     291.1450  -.63  8.02 8 

Diphenhydramine antihistamine Confirmed   increase 256.1695 -0.43 17.04 19 

Fexofenadine antihistamine Probable     502.295 -0.36 20.53 12 

Raltegravir antiviral Probable     445.1629 -0.32 20.87 12 

Darunavir antiviral Probable     548.2424 -0.13 24.21 5 

Zalcitabine antiviral Tentative   decrease  212.1027  -.130  2.02 8 

Losartan ARB inhibitor Confirmed  decrease decrease 423.1693 -0.4 20.47 7 

Valsartan ARB inhibitor Probable     436.2341 -0.42 25.38 18 
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Atenolol acid beta-blocker Probable     268.1542 0.6 7.79 5 

Carvedilol beta-blocker Probable     407.1963 -0.5 19.19 17 

Labetalol beta-blocker Probable     329.1858 -0.4 14.33 23 

Metoprolol beta-blocker Probable     268.1906 -0.33 11.55 50 

Propranolol beta-blocker Probable     260.1645 -0.08 15.69 44 

Verapramil blood pressure Probable     455.2902 -0.48 20.6 22 

Warfarin blood thinner Probable      309.1120  -0.42  24.72 22 

Metformin diabetes Tentative      130.1086  -0.76  1.83 7 

Raloxifine estrogen regulator Probable     474.1733 -0.1 17.41 51 

Cinchophen gout Probable   increase 250.086 -0.89 42.24 18 

Cyclobenzaprine muscle relaxant Probable     276.1746 -0.16 19.76 22 

Tolycaine pain - injection Probable   decrease 279.1702 -0.52 13.02 28 

Pramocaine pain - topical Probable   increase 294.2063 -0.2 18.77 18 

Edaravone stroke and ALS Probable decrease decrease 175.0865 -0.25 10.59 40 

Berberine supplement Confirmed     336.1229 -0.44 16.17 20 

Piracetam supplement Tentative      143.0814  -1.03  1.90 12 

Betanechol urinary retention Tentative  decrease decrease  161.1283  -0.72  1.71 7 

P
er

so
n

al
 C

ar
e 

P
ro

d
u

ct
s Oxybenzone UV-filter Confirmed decrease increase 229.0859 0.06 29.96 16 

Avobenzone UV-filter Probable   increase 311.1636 -1.92 41.52 28 

Octocrylene UV-filter Probable   increase 362.2111 -1.01 42.25 18 

Galaxolidone fragrance Tentative    273.1847 -0.79 35.95 15 

Nicotine tobacco Probable     163.1228  -1.36  2.16 11 

Caffeine stimulant Probable   increase  195.0876  0.16  7.81 5 

O
th

er
 

ch
em

ic
al

s Benzotriazole anti-corrosion Confirmed decrease increase 120.0559 2.08 9.51 5 

Levamisole veterinary drug Probable     205.0793 -0.66 7.48 44 

Ipronidazole veterinary drug Tentative decrease decrease  170.0922  -1.08  1.71 4 

Imazalil pesticide Probable increase decrease  297.0555  -0.26  18.67 10 
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Piperonyl-butoxide pesticide Probable  decrease    356.2427  -1.35  35.60 24 

Dinotefuran-metabolite-UF pesticide Tentative  --e    159.1126  -1.33  1.83 10 

Nithiazine pesticide Tentative    decrease  161.0377  -1.28  1.90 22 

a Detailed description provided in section S.2.1 

b Difference from theoretical m/z  

c Relative standard deviation of concentration or peak area for replicate extractions of an unspiked sample (n=3 or n=6)  

d Elevated in week 3 only 

e Multidirectional changes in multivariate analysis 

f In daily (but not weekly) solvent blanks at high levels 

 149 
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COVID-19 drugs and disinfectants. 150 

In the early days of the pandemic the drug combination of hydroxychloroquine and azithromycin 151 

received consideration as a potential treatment for COVID-19. The US FDA issued an emergency use 152 

authorization (EUA) on March 28, 2020 (week 2 of our data), which remained in effect until June 15, 2020 153 

(week 13) (18). As shown in Figure 2a, hydroxychloroquine concentrations increased in daily sludge 154 

samples in the third week of our study. While an overall hydroxychloroquine trend was not observed during 155 

the time that weekly samples were collected, a clear increase in concentration occurs in week 3 (Figure 156 

2b). Hydroxychloroquine has an elimination half-life in the human body of approximately 22 days for oral 157 

doses and over 40 days for intravenous doses (19, 20), thus the increase in sludge concentrations is not as 158 

immediate or drastic as it would be for a drug with a shorter half-life. Our data indicates that the EUA and 159 

the large amount of publicity generated around hydroxychloroquine had significant impact on the amount 160 

used in the New Haven area, which includes two major hospitals. Hydroxychloroquine is normally used to 161 

treat malaria, lupus and rheumatoid arthritis (20), which are unlikely to have changed during the pandemic. 162 

Azithromycin concentrations decreased over the study period (weekly samples, Figure 2b). Azithromycin 163 

is only sometimes used in combination with hydroxychloroquine (21) and is more frequently used to treat 164 

bacterial respiratory infections which typically decline in the spring (22). Acetaminophen, which can be 165 

used to treat COVID-19 symptoms such as fever and headache, had limited availability during the 166 

pandemic, likely due to increased demand (23). Correspondingly, acetaminophen sludge concentrations 167 

increased in our weekly sample analysis (Table 1, Table S8). 168 

Disinfectant use for cleaning both hands and surfaces has grown during the pandemic (24). Previous 169 

studies have shown pandemic related increases in concentrations of quaternary ammonium disinfectants in 170 

household dust (25), and higher risk of health effects due to increased exposure (26). Levels of two 171 

quaternary ammonium disinfectant chemicals increased in sludge during the overall study period (weekly 172 

samples, Figure 1d, Table S8). Triclocarban, an antibacterial compound used in consumer and medical 173 

grade handwashes increased in concentration in our daily sampling period (Figure 1c). Triclocarban was 174 
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previously banned in medical grade hand washes (2017) and rubs and consumer hand washes (2016) for its 175 

endocrine disruption potential and other negative health effects (27–29). However, the most recent ruling 176 

against triclocarban (regarding consumer antiseptic rubs) took place in 2019, with an effective date of April 177 

13, 2020 (30). Thus, it is likely that triclocarban products use had not yet been fully phased out during our 178 

study period. Additionally, the pandemic is likely to have prompted increased use of soaps and hand 179 

sanitizers that were previously stored.  We identified an additional 3 disinfectant compounds for which 180 

there were no trends detected during the study period (Table 1). 181 

 182 

Figure 2. Trends for COVID-19 related drugs and disinfectants detected in daily and weekly primary sewage 

sludge samples. (A) boxplot showing a significant increase in hydroxychloroquine concentrations in week 3 

samples based on daily sample concentrations (ANOVA with Tukey’s HSD post-hoc analysis). (B) Scatter plot 

showing hydroxychloroquine and azithromycin concentrations in weekly composite samples. (C) Scatter plot 

showing increasing triclocarban levels in daily sludge samples. (D) Scatterplot showing data for two quaternary 

ammonium disinfectants in weekly composite sludge samples. Though p > 0.05 for dodecyltrimethylammonium-

B, our multi group analysis showed a significant trend (Table S8). All scatterplot error bars show the RSD for each 

compound, calculated from one set of replicate samples.  
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Opioids and drugs of abuse 183 

The ongoing epidemic of opioid abuse across the US has included the State of Connecticut (31). 184 

Additionally, there are pandemic-related increases in legal use of opioids; in April of 2020, the U.S. Drug 185 

Enforcement Agency authorized increased production quotas for fentanyl, morphine, hydromorphone, 186 

codeine to meet COVID-19 treatment needs, as well as for methadone, to ensure addiction treatment 187 

centers are adequately supplied (32). Sludge concentrations of fentanyl, methadone, and hydromorphone 188 

increased during our study period (weekly samples, Figure 3a). Fentanyl and methadone are commonly 189 

used both legally and illegally. Hydromorphone is itself a drug, but it is also a metabolite of morphine, 190 

codeine, and other opioids, thus its increasing levels are an indication of overall increase in opioid 191 

concentrations (33). Levorphanol, an opioid used for pain management and as a preoperative drug (34), 192 

decreased in both daily and weekly sludge samples (Figure 3a, Table 1). This decrease is potentially due 193 

to the reduction in elective procedures during the study period (35). We did not observe trends over time 194 

for an additional four opioids (Table 1). We note that our method was not capable of measuring heroin at 195 

these low concentrations (section S.2.1).  196 

Concentrations of cocaine and two of its metabolites (ecgonine methyl ester and benzoylecgonine) 197 

also increased in the weekly samples (Figure 3b, Table S8).  Anhydroecgonine, a metabolite specific for 198 

crack cocaine (36), decreased in the weekly samples, suggesting the possibility of a shift in local cocaine 199 

use patterns (Figure 3b). We saw no trends for methamphetamine, though the party drug TFMPP decreased 200 

during the study period (Table 1, Table S8). Cannabis related compounds did not show a consistent trend. 201 

Interestingly THC-A, the non-psychoactive precursor to THC found in raw plant material increased, 202 

whereas THC (transformed from THC-A by decarboxylation during heating above 105⁰C for example in 203 

cooking or smoking) decreased across the study period (Table 1, Table S8).  204 

 The pandemic has increased risk factors for the development of substance abuse disorders and 205 

overdoses, such as isolation and economic distress. High COVID-19 related worry has been shown as a 206 

predictor of beginning substance use during the pandemic (37), and increasing numbers of overdoses have 207 
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been reported nationwide (38). An increase in the amount of emergency responses necessary for opioid 208 

overdoses has occurred in some locations (39). Locally, there were 36 fatal overdoses during the study 209 

period in the towns/cities served by the East Shore Water Pollution Abatement Facility in New Haven (New 210 

Haven, East Haven, Woodbridge, and Hamden) (40). Thirty-two of these overdoses involved opioids, 211 

including 28 where fentanyl was detected. Cocaine was involved in 17 of the overdose deaths. Most cases 212 

included multiple drugs (40). Additionally, the COVID-19 pandemic has caused many changes in 213 

treatments for both pain and substance abuse disorders, which usually depend heavily on in-person 214 

interactions and carefully controlled access to medications. New systems for opioid distribution and 215 

telemedicine appointments have been developed but there is continued concern over their effectiveness 216 

(41–43). 217 

 218 

Antidepressants and other medications 219 

 Many people have struggled with mental health challenges during the COVID-19 pandemic and 220 

incidence of depression has increased in the US during the pandemic (44). Additionally, there is evidence 221 

Figure 3. Trends for opioids and cocaine related 

compounds detected in weekly composite primary 

sewage sludge samples. (A) Scatter plot showing opioid 

concentrations. (B) Scatter plot showing levels of 

cocaine and cocaine metabolites. All scatterplot error 

bars show the RSD for each compound, calculated from 

one set of replicate samples.  
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that people with psychiatric disorders are at increased risk for COVID-19 infection (45), and that COVID-222 

19 infection is associated with new diagnoses of psychiatric illnesses (46). Increased demand for the 223 

antidepressant drug sertraline has caused shortages throughout the U.S. (47, 48). Sertraline levels increased 224 

in our analysis of daily sludge samples (Figure 4a). In our weekly sample analysis, the levels of three 225 

additional antidepressants (citalopram, amitriptyline, and doxepin), one antidepressant metabolite 226 

(desmethylcitalopram), and the antipsychotic drug clozapine increased (Figure 4b, Table 1, Table S8). No 227 

trend was observed for an additional 3 antidepressants and 3 anticonvulsant drugs (Table 1, Table S8). 228 

 229 

 We also observed various trends for other pharmaceuticals identified in our analysis (Table 1, 230 

Table S8, Figures S3-S5). Some of these trends are likely related to pandemic-induced changes in 231 

behaviour, while others are not. For example, tolycaine, a local anaesthetic used in dental injections (49), 232 

decreased in the sludge samples, which corresponds to a decrease in dental appointments during the 233 

Figure 4. Trends for antidepressants detected in daily and 

weekly primary sewage sludge samples. (A) Boxplot 

showing a significant increase in sertraline during the 4 

weeks of daily sampling (ANOVA with Tukey’s HSD 

post-hoc analysis). (B) Scatter plot showing doxepin, 

citalopram, and amitriptyline levels in weekly composite 

samples. Scatterplot error bars show the RSD for each 

compound, calculated from one set of replicate samples. 
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shutdown (50). Pramocaine, a mild anaesthetic used in over-the-counter creams (51), had increasing levels 234 

in sludge which is more likely due to seasonal changes in exposure to insect bites and poison ivy than to 235 

pandemic related changes. Diphenhydramine, an allergy medication, also increased during the study period 236 

(Table 1, Table S8).  237 

Personal care product ingredients and other chemicals 238 

We found that benzotriazole, a corrosion inhibitor frequently used on cars and a known contaminant 239 

in road dust (52), had trends in sludge that corresponded to the shut down and phase one reopening that 240 

occurred during our study period (Figure 5a). There was a decrease in the daily and weekly composite 241 

sample concentrations at the beginning of the study period, and then an increase in weekly composite 242 

sample levels starting in the weeks before Phase 1 reopening. We hypothesize that the benzotriazole trends 243 

are due to changes in the amount of traffic. Doucette et al., found that traffic in Connecticut decreased 43% 244 

during the stay-at-home order that began in the first week of our study period (53), and air pollutants related 245 

to traffic decreased during stay-at-home orders in other locations (54, 55). With fewer cars on the road, less 246 

benzotriazole washes off cars onto the road, and thus less is dissolved the in the runoff water that enters the 247 

combined sewer system. Benzotriazole is also used on aircrafts as a de-icer and corrosion inhibitor (56). 248 

There is one small airport in the study area that, like many other airports, experienced decreased traffic 249 

during the stay-at-home order. Benzotriazole is also used in household dishwasher detergents, which is 250 

likely a smaller source to combined sewer wastewater systems. 251 

All the UV-filter compounds detected increased in the weekly composite samples (Figure 5b). 252 

This trend is likely due to the increase in sunscreen use that corresponds to the seasonal change that occurs 253 

in Connecticut between March and June. A slight decrease in oxybenzone levels was observed in the daily 254 

samples and the first weekly samples which may be reflective of decreased cosmetic usage during the stay 255 

at home order while there was still wintery weather. We suspect that the other trends we found in this 256 

category were not affected by the pandemic or stay at home order (Table 1, Table S8). 257 
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 258 

Broader relevance, limitations, and future directions 259 

Though our results are specific to the New Haven, CT area, many of the trends that we found are 260 

more broadly relevant. We observed increased concentrations for medications whose demand increased 261 

during the pandemic (47) and increasing trends for illegal drugs that align with the increasing number of 262 

overdoses nationwide (38). Wastewater monitoring can be a way to monitor drug usage during this time 263 

when other monitoring strategies have been disrupted by the pandemic (57, 58). Moreover, if wastewater 264 

trends can be associated with public heath monitoring data, wastewater-based information can play an 265 

important role in providing real-time estimates or early warnings of a variety of infectious and non-266 

infectious disease. We note that our results on drugs of abuse differ from those reported by wastewater 267 

monitoring programs in Europe, where there has been an overall decrease in illicit drug use (10). 268 

Specifically, a study in Austria found decreased use of cocaine, amphetamine, and MDMA during the initial 269 

COVID-19 lockdown, which were partially compensated for by increased methamphetamine use  (13). 270 

They saw no changes in cannabis or methadone related compounds relative to other years (13). 271 

Additionally, wastewater monitoring and drug use surveys in Australia have revealed record low levels of 272 

Figure 5. Trends for additional chemicals detected in 

daily and weekly primary sewage sludge samples. (A) 

Scatterplot showing benzotriazole levels in daily and 

weekly samples.  (B) Scatter plot showing UV-filter 

levels in weekly composite samples. Scatterplot error 

bars show the RSD for each compound, calculated 

from one set of replicate samples (n = 6). 
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fentanyl and oxycodone, but regional increases in cocaine, heroin, methamphetamine, and cannabis (11). 273 

The differing trends may be related to differences in pandemic severity and local political responses, but 274 

are also reflective of existing trends from before COVID-19; the opioid crisis that is prominent throughout 275 

the US has not affected Australia nor Europe to the same extent (10, 11). Trends we observed for 276 

pharmaceuticals are more similar to those reported by the Austrian study; though there is some variation 277 

individual compound results, both studies show consistent levels of long term medications such as beta-278 

blockers and anticonvulsants and lowered levels of short term medications such as analgesics and 279 

pharmaceuticals (13). 280 

In addition to human health related trends, our results also reveal trends in chemical releases that 281 

may affect the environment. Though our samples did not undergo the complete wastewater treatment 282 

process, many of the compounds we detected are not fully removed by standard treatment trains (59–61) 283 

and are released with the effluent water or sewage sludge. We detected endocrine disrupting compounds 284 

including triclocarban, oxybenzone, and sertraline that can have negative impacts on marine organisms and 285 

cycle back to humans via consumption of local seafood  (62, 63). Much concern has been expressed about 286 

the potential ecological impacts of increased pharmaceutical loads in wastewater, particularly in developing 287 

areas where wastewater treatment is limited and access to antibiotic and antiviral medications is not 288 

controlled by prescriptions (64–67). Spread of resistance to antibiotic and antiviral medications is also a 289 

potential concern (64, 67).   290 

While our analytical method was designed to include a wide range of chemicals, the scope of any 291 

analysis is inherently limited. We intentionally included both liquid and solid portions of primary sludge to 292 

measure both hydrophilic and hydrophobic chemicals. However, this prohibited the exact quantification of 293 

chemicals in either phase. We therefore are not able to use our data to back calculate per capita consumption 294 

as has been done in other wastewater studies (4, 12, 13). Additionally, we designed our sample preparation 295 

method for the relatively small volume of sample available from corresponding research on levels of SARS-296 

CoV-2 RNA in primary sludge; we could not use solid phase extraction to preconcentrate the liquid portion 297 
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of our samples, as is common in wastewater studies (59, 60). This likely caused a decrease in the number 298 

of liquid phase contaminants we detected. Additionally, our unique method makes our quantitative results 299 

difficult to relate to other studies, though trends over time can still be compared. We note that our analytical 300 

methods were highly effective, and our sample collection and preparation method was simple, fast, and did 301 

not require specialized supplies. Sewage sludge is a well-mixed, concentrated source that does not require 302 

complex sampling equipment. Though we collected data over a relatively long period of time in 2020, our 303 

sampling campaign did not begin until the pandemic was underway; therefore, we cannot directly compare 304 

our results to those from previous years. The data presented in this manuscript represents only a small 305 

fraction of what was collected using our high-resolution mass spectrometry methods. We plan to conduct 306 

further investigation of chemicals in the sludge that were not easily identifiable using our databases and 307 

investigate chemical correlations with measured levels of SARS-CoV-2, as in Wang et al., 2020 who 308 

reported statistical relationships between a variety of chemical features and virus RNA levels (12).  309 

 Overall, the first wave of the COVID-19 pandemic and the related shut down had a significant 310 

influence on the chemical fingerprint of primary sludge in New Haven, CT. We found upwards trends in 311 

hydroxychloroquine and disinfectant concentrations in sludge, reflecting increased use during the initial 312 

wave of the COVID-19 pandemic. We also saw increases in drugs of abuse and antidepressants, and 313 

seasonal changes for chemicals such as UV-filters that are used in sunscreens. Importantly, we found that 314 

benzotriazole concentrations showed different trends during and after the local stay at home order, a key 315 

indication that benzotriazole can be used as a marker for the influence of traffic on wastewater and sludge 316 

in combined sewer systems. Overall, our findings relate strongly to trends in public and environmental 317 

health worldwide and show specific trends that may not have been picked up in other types of analysis. 318 

Sewage sludge surveillance is a promising strategy to monitor a variety human behavioural changes during 319 

the pandemic that have public health consequences.  320 
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Supporting Information 321 

Supporting information is available for this manuscript that includes: information on materials and 322 

analytical standards; detailed sample preparation, instrumental analysis, data analysis, and statistical 323 

methods; QA/QC results for method performance; detailed confidence annotations and statistical results; 324 

results specific to iterative inclusion functionality and compound annotation accuracy. 325 

Data sharing plans  326 

This manuscript and associated SI has been uploaded to the pre-print server ChemRxiv 327 

(https://doi.org/10.26434/chemrxiv.13562525.v1). The .RAW instrument data files used in this study 328 

are available as a dataset on MassIVE (ftp://MSV000086676@massive.ucsd.edu) along with the full peak 329 

list produced in our Compound Discoverer analysis and the filtered peak list that includes only the 330 

compounds listed in this manuscript. Additional files including all TraceFinder data, the internal database 331 

used for suspect screening, and the R scripts used for statistical analysis are available from the authors upon 332 

request. 333 
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