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Abstract 
Long-time excited state dynamics of triplet states and subsequent emission via 
phosphorescence are commonly utilized for applications including light-emitting diodes 
and photovoltaics.  Machine learning (ML) approaches trained using ab initio datasets 
may expedite the discovery of phosphorescent compounds.  However, we show that 
standard ML approaches for modeling potential energy surfaces that succeed on small 
molecules do not generalize to molecules of larger sizes, due to the failure to account for 
spatial localities in spin transitions.  To solve this, we introduce localization layers in a 
neural network model that weight atomic contributions to the transition energy.  Trained 
on phosphorescent transition energies of organic molecules, the model achieves 
prediction accuracies of ~4 kcal/mol on the held-out test set and ~13 kcal/mol on an out-
of-sample test set of large phosphorescent molecules.  These localization weights have 
a strong relationship with the ab initio spin density of the triplet to singlet state transition, 
and thus infer localities of the molecule that determine the spin transition, despite that no 
direct electronic information was provided during training. 
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Introduction 
 

Molecules that are electronically excited by light or charge injection typically relax 
non-radiatively to their lowest-energy singlet or triplet excited states.1 Transitions between 
these singlet and triplet states  (intersystem crossing) can be enabled by spin-orbit 
interactions.  Subsequent radiative relaxation from excited-singlet to ground-singlet states 
leads to fluorescence, which occurs over nanosecond timescales. In contrast, radiative 
transitions from excited-triplet to ground-singlet states are forbidden on account of the 
difference in spin multiplicity. This radiative process, known as phosphorescence, occurs 
over much longer timescales, generally on the order of 10-3-100 s.2  The dynamics of low-
energy singlet and triplet states form the basis for applications including light-emitting 
electrochemical cells,3 chemical sensors,4 organic light-emitting diodes (OLEDs),5,6 and 
photovoltaics.7  For instance, a carefully designed thermally activated delayed 
fluorescence (TADF) process can be used to harvest energy from triplet to singlet states, 
raising the efficiency of an OLED to nearly 100%.8 As another example, simultaneous 
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emission from triplet and singlet states in metal-organic polymers can be used to make 
white light LEDs.9  These examples illustrate the importance of a reliable prediction of 
triplet state emission energies across a large diversity of molecules capable of guiding 
experimental efforts toward future optoelectronic technologies.10–12 Computational 
screening using accurate ab initio calculations, such as density functional theory (DFT), 
can aid in molecular design.13 However, the computational costs of fully quantum 
mechanical approaches may restrict both the number and size of molecules that can be 
sampled efficiently.  Machine learning (ML) has newfound relevance in quantum 
chemistry for accelerating simulations and providing predictions of ab initio quality.14–16 
Here, we leverage ML techniques and build an accurate and extensible ML model for 
phosphorescence energy that is enabled by its ability to account for electron localization 
associated with the spin transition. 

ML research has led to predictive models of various molecular properties,17–19 
among which are general interatomic potentials of ground state energies.20–23  Such 
models can be trained to large datasets (e.g., ~105-106 molecules) containing both 
equilibrium and off-equilibrium structures.  This approach enables the construction of 
machine learned potential energy surfaces (PESs)24,25 for purposes such as dynamics26 
and geometry optimization.27,28  Data curation and model training are computationally 
demanding tasks,29,30 but once trained, such models not only generate high-fidelity ab 
initio-quality predictions at low computational costs but also infer relationships within high-
dimensional data31 and are transferable to molecules outside of the training dataset.24,31,32  
ML for ground state chemistry has been explored at an appreciable depth, achieving 
models of high-accuracy theories33–35 and extremely large systems.36 However, its use for 
excited state processes37–39 such as phosphorescence is a new area of research. 

The physics involved in describing an excited state transition is fundamentally 
different however from that of a ground state. For ground states, ML potentials incorporate 
the extensivity principle which defines the total energy of a molecule as a sum over 
individual atomic contributions.40  This assumption is physically motivated and has been 
tested over a large chemical space, and provides the means for attaining transferable 
and extensible models.24,31,41  However, it breaks down in the case of electronic excitation 
energies, for which atoms may contribute to the transition energy in a disproportionate 
way. This disproportionality is evidenced by localized versus delocalized electronic 
transitions that are prevalent in chemical physics.42–45 In turn, the energy of an excitation 
does not scale strictly with the size of the molecule.  Rather than using extensive 
predictions, it is reasonable to seek a method that can associate the energy of an 
excitation with specific regions of the molecule.  Such an approach would have wide-
ranging applicability since the notion of localization generalizes to many molecular 
phenomena and systems such as charged species and radicals.  

 In this work, we develop a model based on the Hierarchical Interacting Particle 
Neural Network (HIPNN)46 that accurately predicts phosphorescence energies in a 
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diverse chemical space of organic compounds.  HIPNN has shown excellent performance 
for ground state energies,46 partial atomic charges,47 and molecular dipole moments.48 
We present new atomistic localization layers that compute a weight for each atom 
corresponding to the atomic contribution to the molecule’s transition energy. The 
mathematics of these new layers can be likened to the statistical mechanics of a chemical 
potential, or to the technology of attention mechanisms in the neural network 
literature.49,50 The localization layers improve phosphorescence energy predictions on an 
out-of-sample test set of molecules that are larger than those found in the training set 
while qualitatively inferring the changes to the electron density due to the transition as 
shown by direct comparison to reference quantum mechanical spin density calculations.  
This result is remarkable given that DFT spin density was not provided as a target during 
training and highlights the added benefit that electronic information could have toward ML 
models of localized, non-extensive molecular phenomena. 

 
Methods 

 
  We start with a brief review of how energy is computed with ML interatomic 
potentials, including the extensive HIPNN model,46 and describe the new methods in this 
work.  The input descriptors of the molecules are atomic coordinates (𝑅!) and atomic 
numbers (𝑍!), which together define the molecular geometry (𝑅).  In extensive HIPNN and 
several other atomistic neural networks,24,40,46 target energy for geometry 𝑅 is computed 
as a sum over atomic energy contributions, 
 

𝐸 = 	&𝜀!

"

!#$

(1) 

 
where 𝐸 is the energy of the molecule, 𝜀! is the energy contribution of the 𝑖-th atom, and 
𝑖 spans over the total number of atoms in the molecule 𝑁. This model can be applied in 
either the singlet ground state (S0) or first triplet excited state (T1).  In addition to being 
trained to energy, our models are also trained to atomic forces.  The inclusion of atomic 
forces as targets has been shown to improve energy predictions.51,52  Throughout the 
paper, we refer to the extensive HIPNN model that solely employs Eq. 1 to compute 
energy as HIPNN (Scheme 1a, left).   
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Scheme 1: (a) Traditional workflows for potentials with atomistic deep neural networks (DNNs) 
are based on an extensivity assumption (left) that predictions should be summed over all atoms 
in the system. With localization layers (right), atomistic neural networks can predict physical 
properties that are weighted by location and do not scale with the size of the molecule. This allows 
training to physical effects such as triplet excitations (which generally do not scale with molecule 
size), and identification of molecular regions that contribute to the investigated effect from a data-
driven perspective. (b) Schematic of the S0 and T1 PESs depicted for reference DFT (black, solid 
lines) and HIPNN-based ML predictions (red, dashed lines).  Transition energy relevant to 
phosphorescence !𝛥𝐸	 = 	𝐸!"#$& is approximated as a difference between T1 and S0 energies 
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with the ΔSCF approach. This work introduces a localized variant of HIPNN, HIP-loc, to model 
𝛥𝐸. 
 

In HIPNN, singlet (𝐸%) and triplet (𝐸&) energies are determined from independent 
Self-Consistent Field (SCF) calculations, and their difference, 
 

∆𝐸 = 	𝐸& −	𝐸% (2) 

 

is the singlet-triplet energy gap within the ΔSCF method (Scheme 1b). For instance, near 
triplet state equilibrium, ∆𝐸 = 	𝐸'()*	represents the phosphorescence energy as 
calculated with ΔSCF.  We write the difference in Eq. 2 as a general ∆𝐸 to reflect that our 
method may be applicable to other localized, non-extensive properties, such as energies 
of anions, cations, or other excited states.  The central motivation of our work is that Eq. 
1, which is a sum over atom-centered energies, is inadequate in predicting ∆𝐸 (Eq. 2) for 
systems in which the electron density is spatially localized only on certain atoms. In other 
words, the extensivity approximation breaks down due to the absence of a well-defined 
scaling of ∆𝐸 with the number atoms (Fig. S1).  The main contribution of our work is to 
develop a new approach to predict ∆𝐸 while accounting for this localization. This 
accomplishes two purposes: 1) The predicted ∆𝐸 will not scale intrinsically with the size 
of the system and 2) it gives rise to interpretable predictions regarding where in the 
molecule the singlet and triplet wave functions differ.  The localized HIPNN model will be 
referred to as HIP-loc (Scheme 1a, right).  We emphasize that the method developed 
here could also be applied to other atomistic neural networks that are trained using 
gradient methods.24,53,54   

We described how one could learn 𝐸% and 𝐸& and compute ∆𝐸 following their 
predictions (Eq. 2).  This approach was carried out for the HIPNN model.  Alternatively, 
one could learn 𝐸% and 𝐸& with 𝐸& defined as 𝐸& 	= 	𝐸% 	+ 	𝛥𝐸.  This definition represents 
𝐸& as a sum of an extensive (𝐸%) and non-extensive (∆𝐸) property, the latter of which 
motivates the new HIP-loc model.  Atomic forces on the singlet state are the same as 
those used in the HIPNN model, − ,-!

,."
=	𝐹%,! whereas the forces associated with ∆𝐸 are 

calculated as − ,0-
,."

=	− ,-#
,."

+ ,-!
,."

=	𝛥𝐹! 	= 	𝐹&,! 	–	𝐹%,!.  We now introduce the principal 

difference between HIPNN and HIP-loc (Scheme 1a).  Instead of modeling ∆𝐸 as a simple 
sum over atom-centered energies (Eq. 1), we model it as a non-extensive quantity by 
weighting atomic energies by normalized weights 𝑤!  

 

∆𝐸 = 	&𝑤!∆𝜀!

"

!#$

	 (3) 
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This is physically motivated by the fact that the electron density may be localized on 
certain atoms. We show that the inclusion of these weights is instrumental in accurately 
predicting ∆𝐸, as opposed to Eq. 1, which assumes equal atomic contributions. We use 
a softmax function for 𝑤!, 
 

𝑤! =	
𝑒1"

∑ 𝑒1""
!#$

	 (4) 

 
where 𝑎!, which we term the excitation propensity on the 𝑖-th atom, is a quantity learned 
in the training process with linear layers in the same way as 𝜀! or 𝛥𝜀!, or charges 𝑞!.47,48  
Eq. 4 ensures normalization of the weights, ∑ 𝑤!"

!#$ = 1. 
The form of Eqs. 3 and 4 are similar to those of attention models49,50 and 

elementary statistical mechanical models. In a statistical mechanical analogy, the 
propensity 𝑎! plays the role of a (negative) chemical potential, whereas the weights 𝑤! 
are interpreted as a probability derived from the propensity using a Boltzmann weighting, 
and the excitation corresponds to an observable of the system. Such an analogy gives 
rise to intuition about the relationship between the propensity and the weights: if the 
propensities are narrowly distributed, the weights will be roughly evenly distributed across 
the molecule. If a few propensities are larger than the rest, the weights will be 
concentrated on those few atoms.  In our results, we show that these localization weights 
effectively infer the region of the triplet excitation, as determined by ab initio spin density 
calculations.  Details regarding the datasets and model training can be found in the 
Supporting Information under sections labeled Training and Testing Datasets and Neural 
Network Architecture and Training Procedure, respectively. 

 
Results and Discussion 

 
Figure 1 presents the energy gaps that correspond to molecular geometries near 

the equilibrium of T1.  These geometries are relevant for phosphorescence and will be the 
focus of our discussion. HIPNN and HIP-loc achieve comparable prediction accuracies 
on the held-out test set (Figs. 1a and 1b).  Both models exhibit root-mean-square errors 
(RMSEs) of ~4 kcal/mol and mean-absolute errors (MAEs) of ~2 kcal/mol (or ~0.1 eV), 
which are within the error of the DFT method when compared to experimental transition 
energies.55  These predictions correspond to a median percent error of ~5% (Fig. S2).  
Thus, both HIPNN and HIP-loc attain experimentally informative predictions of 𝐸'()* on 
the held-out test set.  Training and testing results for all geometries sampled near the 
equilibria of S0 and T1 are shown in Figs. S3 and S4. 
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Figure 1: Parity plots of predicted versus true ΔE energy on the held-out test set using (a) HIPNN 
and (b) HIP-loc.  (c) and (d) depict the same correlation as (a) and (b) but for the extensibility set.  
Results are for molecules sampled around the equilibrium of T1.  HIPNN and HIP-loc achieve 
comparable results on the held-out test set, but HIP-loc significantly outperforms HIPNN on the 
extensibility set compromising molecules that are on average ~2x larger than those found in the 
training set, highlighting the advantage that HIP-loc has for extended systems.  Prediction errors 
are expressed in root-mean-square error (RMSE) and mean-absolute error (MAE). 
 

Despite HIPNN’s success of predicting ΔE for molecules with sizes comparable to 
those found in the training set, its performance substantially worsens for phosphorescent 
molecules of the extensibility set that consist of on average ~2x the number of atoms (Fig. 
S5).  Yet we show that HIP-loc remedies this issue.  HIPNN erroneously predicts negative 
∆𝐸 energies (i.e., T1 is lower in energy than S0) for many molecules, contradicting 
reference results (Fig. 1c).  This result is particularly troublesome given that the these are 
phosphorescent molecules for which DFT correctly predicts T1 to be higher in energy than 
S0.  Altogether, HIPNN’s performance on the extensibility set is quite poor with a RMSE 
of ~53 kcal/mol or ~2.3 eV, which is well outside the error commonly expected between 
ab initio and experimental values.55  HIPNN’s predictions are especially poor for 
molecules composed of more than 35 atoms (Figs. S6 and S7).   In contrast, Fig. 1d 
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shows HIP-loc significantly outperforming HIPNN on the extensibility set.  The RMSE of 
HIP-loc results on the extensibility set is ~13 kcal/mol, amounting to an ~4x improvement 
and median percent error of ~13% (Fig. S2).  The erroneous negative ΔE energies, 
predicted by HIPNN (Fig. 1c), are all but eliminated with HIP-loc (Fig. 1d and Fig. S8).  

HIP-loc strongly outperforms HIPNN, and the only difference between the two 
models is the usage of localization layers to model the non-extensive part of 𝐸& (i.e., ΔE) 
by weighting local atomic environments. The extensibility of the model is substantially 
improved, but relatively large disagreement between HIP-loc and DFT is observed for the 
largest molecules in the extensibility set comprising several bonded aromatic fragments 
(Fig. S9). Nevertheless, HIP-loc’s stronger performance demonstrates the importance of 
model engineering to account for the localized nature of spin transitions. Parity plots for 
all molecules of the extensibility set, categorized by chemical similarity, are shown in Figs. 
S9 through S14. 

Additionally, we investigated whether the learned localization weights in HIP-loc 
have some physical significance. We compared the localization weights to DFT spin 
density differences between the T1 and S0 states.  In order to compare the two methods, 
DFT spin density was approximated as an atom-centered quantity, which we obtained 
using the Hirshfeld charge partitioning scheme.56  Fig. 2a visualizes this comparison for 
a subset of representative molecules selected from a random sample of the held-out test 
set.  Remarkably, there is qualitative agreement between HIP-loc and DFT for most 
molecules, suggesting that the HIP-loc localization weights provide physical insight.  
Moreover, the correspondence between the quantum mechanical and inferred 
localizations is somewhat correlated with the accuracy in predicted energies; the absolute 
error in ΔE for the last molecule shown in Fig. 2a is relatively high and, correspondingly, 
the atom-centered DFT spin density does not as strongly resemble the HIP-loc weights 
as compared to the other molecules shown. We also find a rough, yet highly significant 
correlation observed between these learned weights and the DFT spin densities (Fig. 2b).  
It is important to note that the results of Figs. 2a and 2b are not meant to assert that 
learned weights are intrinsically related to spin densities in a rigorous way, especially 
since they are atom-centered quantities and charge partitioning is ambiguous, but rather 
that inferring localization through the use of energies and forces across a large dataset 
leads to similar assignments of localization.  

We also analyzed the agreement between the ab initio and inferred localization 
over a large sample of the held-out test set.  For this analysis, we made use of a 
localization metric 𝜂,	defined as the ratio of the distance between the centers of 
localization computed using HIP-loc weights (𝑟23456)7) and DFT spin density (𝑟89:) to the 
radius of gyration (𝑅;), which quantifies the spatial size of the molecule: 𝜂 =	
|𝑟23456)7 −	𝑟89:|/𝑅;.  For 𝜂 ≪ 1,  the centers of localizations are in close proximity to one 
another, whereas 𝜂~1 signifies that the centers of localization differ by approximately the 
radius of the molecule and therefore there is very little or no agreement in the predicted 
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localization. See Supporting Information under Localization Metric for more details.  Fig. 
2c shows a histogram of η computed for our sample set. The distribution is concentrated 
at low η (mean = 0.15), indicating that the center of HIP-loc’s inferred localization is in 
close proximity to that determined from DFT for the majority of compounds. 

 

 
 
Figure 2: (a) Comparison of DFT spin density and HIP-loc localization weights for select 
molecules in the held-out test set. (b) Correlation between HIP-loc weights versus atom-centered 
DFT spin density. (c) Histogram of the localization metric η, which quantifies the agreement 
between the ab initio (DFT) and inferred (ML) centers of localization and where 𝜂 ≪ 1 signifies 
strong agreement.  Energy ΔE is accurately predicted for the majority of molecules and jointly, 
HIP-loc weights closely resemble DFT spin density.  For the final molecule with less accurate ΔE, 
HIP-loc weights and DFT spin density are more dissimilar.  Deviations are expressed in mean-
absolute deviation (MAD) and root-mean-square deviation (RMSD). 
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This agreement is also observed for molecules of the extensibility set.   Similar to 

Fig. 2a, Figure 3a visualizes the similarities between DFT and HIP-loc for two example 
molecules that perform particularly poorly with HIPNN.  Additional visualizations of a 
similar nature are available in supplemental Figs. S15 through S18.  The spatial localities 
associated with the singlet-triplet transitions in these molecules are confined to a relatively 
small number of atoms compared to the molecules’ total number of atoms.  This result 
suggests, albeit not too surprisingly, that the advantages provided by HIP-loc are 
accentuated in the case of strongly localized transitions. In order to fully probe the 
improvement provided by HIP-loc for modeling localized versus delocalized transitions, 
we study the participation ratio (PR). The PR is described as follows: Given an N-body 
wavefunction expanded in terms of atom-localized states |𝜓⟩ = 	∑ 𝑐!|𝜓!⟩"

!#$  with 
expansion coefficients 𝑐!,  the PR is expressed as (∑ |𝑐!|<"

!#$ )</	∑ |𝑐!|="
!#$ , ranging from 1 

(fully localized to a single atom) to N (equally delocalized across all atoms).42 Although 
we are not working with wavefunctions, we apply the concept of PR to estimate the 
number of atoms involved in the singlet-triplet transition based on the ab initio (DFT) spin 
density and thereby quantify the degree of localization.  The squares of the expansion 
coefficients are approximated from the atom-centered DFT spin density (𝑞!): 
PR89: = (∑ 𝑞!"

!#$ )</	∑ 𝑞!<"
!#$ . The PR is complimentary to the previously utilized 

localization metric η.  The latter quantifies the agreement in proximity of the ab initio and 
ML-inferred centers of localization, whereas the former estimates the number of atoms 
involved in the transition and is therefore a more appropriate measure of quantifying the 
degree to which a transition is localized.   

Fig. 3b shows the relationship between absolute error in ΔE and the degree of 
localization as computed by PR 𝑁⁄ . For molecules in which the density is dispersed more 
homogeneously across the atoms (or larger PR89: 𝑁⁄  edging closer to ~1), energy is 
accurately predicted using Eq. 1 of HIPNN.  In fact, HIPNN and HIP-loc achieve 
comparable performance in this regime.  However, for molecules in which the density is 
strongly localized on only a small handful of atoms (or PR89: 𝑁⁄  closer to ~1 𝑁⁄ ), Eq. 2 of 
HIP-loc is superior.  This result underscores the main motivation of our work in that HIPNN 
does not accurately predict the singlet-triplet energy gap for strongly localized transitions, 
whereas HIP-loc’s localization weights allow the model to weight regions of the molecule 
that are attributed to the transition, resulting in better energy prediction. 

Finally, in order to relate the agreement in the centers of localization to the 
accuracy in predicted energy, we also show absolute error in ΔE versus η (Fig. 3c).  The 
distribution is concentrated in the regime of low η and low ΔE error, but in contrast to the 
held-out test set (Fig. 2c), there is also a significant number of molecules that lie in the 
regime of high η. The distribution of ΔE errors in this high η regime is sporadic and 
extends to relatively high error.  Altogether, these results suggest that robust energy 
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prediction is generally improved when the inferred localization determined by the HIP-loc 
weights more closely resembles the localization determined by the quantum mechanical 
spin density. 

 

 
 

Figure 3: (a) Comparison of DFT spin density and HIP-loc localization weights for select 
molecules of the extensibility set that perform poorly with HIPNN.  Predominant regions of the 
molecules associated with the spin transitions are circled.  Also shown are predicted absolute 
errors (abs. err.) in ΔE energies using HIPNN and HIP-loc. (b) Relationship between absolute 
error in ΔE energy and degree of localization for all molecules of the extensibility set as 
determined by the ratio of the reference DFT participation ratio divided by the total numbers of 
atoms in the molecule (PR%&' 𝑁⁄ ).  Results shown are those of HIPNN (top panel) and HIP-loc 
(bottom panel).  HIPNN performs notably worse in the regime of strong localization (PR%&'/𝑁 
close to ~1 𝑁⁄ ) as compared to the regime of delocalized transitions (larger PR%&'/𝑁), whereas 
for HIP-loc, the ΔE prediction is less dependent on the degree of localization.  Compared to 
HIPNN, HIP-loc is particularly more accurate in the regime of strong localization. (c) Relationship 
between HIP-loc’s error in ΔE versus localization metric η for all molecules of the extensibility set.  

DFT HIP-loc

Abs. err. ∆EHIPNN = 119.2 kcal/mol
Abs. err. ∆EHIP-loc =     0.2 kcal/mol

Abs. err.  ∆EHIPNN = 54.8 kcal/mol
Abs. err.  ∆EHIP-loc =   2.0 kcal/mol

(a)
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Localities inferred by HIP-loc are in qualitative agreement with DFT and concomitantly the 
transition energy ΔE is predicted to better accuracy in the regime of low η. 
 

 
To further demonstrate HIP-loc’s feature of localization without changing 

stoichiometry (and therefore drastically changing total molecular energy), we examined 
the predicted energy and concomitant variation in localization while scanning a single 
torsional angle.  The set of molecules investigated consists of three to five six-membered 
aromatic rings and a central carbon-carbon single bond. A relaxed torsional scan over the 
dihedral angle around the carbon-carbon bond is performed and HIPNN and HIP-loc 
predictions are made for each conformation.  The PR is calculated for both the DFT spin 
density and HIP-loc weights in order to compare the overall localization using both 
methods.  The analogous form for PR23456)7 uses HIP-loc weights (𝑤!) in lieu of atom-
centered spin density, that is, PR23456)7 = (∑ 𝑤!"

!#$ )</	∑ 𝑤!<"
!#$ . 

Our conformational analysis shows that when errors in ΔE predictions are relatively 
low across the conformational space, localization is accurately predicted by means of the 
PR.  Rotating the molecule’s dihedral angle changes its aromaticity and shifts spatial 
localization of electron density.  As a result, the S0 and T1 PESs, as well as the ΔE gap, 
vary with conformation.  Fig. 4a shows absolute error in ΔE as a function of dihedral angle 
for a representative molecule containing three six-membered aromatic rings, computed 
with HIPNN and HIP-loc. HIP-loc outperforms HIPNN for all scanned geometries.  
Additionally, there is qualitative agreement in the trends of the PRs computed using HIP-
loc weights and DFT spin density (Fig. 4b).  However, HIP-loc infers more delocalized 
transitions compared to DFT (PR of ~13 versus ~6), but in spite of that, for both methods 
the PR in the planar structure (dihedral of 0° and 180°) is delocalized across atoms on 
each ring, whereas the PR in the non-planar structure (dihedral of 90°) is localized to 
slightly more atoms exclusively on the larger ring.  The net effect is an increase in PR for 
the non-planar conformation.  An animation in Supporting Information showing a torsional 
scan of the molecule in Fig. 4 illustrates this point.  Altogether, we find a correspondence 
between the accuracy of energy prediction and the progression in the degree of 
localization, quantified by PR. These observations are consistent for all the molecules 
studied (Figs. S19 through S23). 
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Figure 4: Conformational scan over the dihedral angle around the single carbon-carbon bond 
(blue arrow) in a representative molecule.  (a) Absolute error (Abs. err.) in predicted ΔE energy 
gap computed with HIPNN and HIP-loc.  (b) Participation ratio (PR) estimated using atom-
centered DFT spin density (left axis) and HIP-loc weights (right axis) as a function of dihedral 
angle.  HIP-loc significantly outperforms HIPNN in predicting ΔE for all scanned geometries.  
Qualitative agreement in the trends of PRs computed with DFT and HIP-loc is also observed. 
 

Conclusions 
 

In conclusion, machine learning (ML) is becoming an integral part of physical 
chemistry research and has already made substantial advances in the development of 
fast and transferable ML potentials for ground state dynamics.  Ground state energy can 
be classified as an extensive property that is represented as a sum over individual atomic 
contributions whereas electronic excitation energies are best categorized as localized, 
non-extensive properties that depend on subsets of atoms. In this work, we utilized ML 
for advancing excited state electronic structure modeling by training a Hierarchical 
Interacting Particle Neural Network (HIPNN) to predict phosphorescence energy, defined 
as the gap between the lowest energy triplet and singlet states. Our work improves upon 
the original version of HIPNN that is based on the extensivity principle, particularly in the 
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case of large aromatic compounds for which their singlet-triplet transition energies do not 
scale strongly with molecule size. 

Our main contribution is a new set of localization layers for learning target 
excitation energies.  These localization layers do not depend on the detailed structure of 
the underlying model and could be implemented in any atom-centered neural network. 
Combined with HIPNN, the new approach (denoted HIP-loc) defines energy as a 
weighted sum, where inferred localization weights assigned to the atoms determine the 
atoms’ contribution to the target energy (Eq. 3). This minor yet profound modification 
substantially improved prediction quality on a more challenging set of experimentally 
verified phosphorescent compounds that consist of, on average, ~2x more atoms than 
the molecules found in the training set.  Extensibility is an important practical advantage 
of the model because it allows screening large molecules for which ab initio calculations 
are computationally prohibitive. Moreover, the superior energy prediction of HIP-loc over 
HIPNN was not readily visible on the held-out test set, but only the extensibility set in 
molecules with strongly localized transitions, showing that extensibility tests provide 
strong characterization of model performance. We achieve RMSEs of ~4 kcal/mol (~5% 
error) on the held-out test set and ~13 kcal/mol (~13% error) on the extensibility set (Fig. 
1). The physical significance of HIP-loc’s localization weights, to our surprise, is that they 
qualitatively correlate to the quantum mechanical spin density (Figs. 2 and 3). Thus, the 
model inferred localities of the electron density associated with the singlet-triplet transition 
in order to make more accurate and transferable prediction of the singlet-triplet energy 
gap. This result is remarkable given that DFT spin density was not provided as a target 
during training. Instead, the neural network was provided with somewhat limited 
information, yet discovered this result nonetheless with a modest change in how target 
energy is calculated that effectively took into account the relative contribution of the 
atoms. 

The results and performance of the new HIP-loc model leads us to conjecture that 
predictions for localized molecular properties are likely to improve if reference electronic 
properties (e.g., electron densities) are used explicitly as targets during training. This idea 
sets the stage for many interesting applications of ML in physical chemistry, where 
learned properties are dependent on, or correlated to, the spatial distribution of the many-
electron wavefunction. We also envision applying localization layers to other localized 
molecular phenomena and systems such as anions, cations, radicals, or other excited 
states. 

Supporting Information 
Details regarding datasets, ML training procedures, and localization metric η. Ab initio 
energies ES0, ET1, and ΔE as a function of number of atoms, histograms of percentage 
error in ΔE prediction on T1 thermal conformers in the held-out and extensibility test sets 
using HIPNN and HIP-loc, training and testing parity plots of predicted versus true ΔE on 
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thermal conformers sampled around equilibria of S0 and T1 using HIPNN and HIP-loc, 
distributions of molecule size for the held-out and extensibility test sets, absolute errors 
in ΔE as a function of number of atoms, parity plots of predicted versus true ΔE for the 
extensibility set categorized by chemical similarity, localization of singlet-triplet transition 
for select molecules of the extensibility set computed from DFT spin density and HIP-loc 
weights, conformation-dependent localization of singlet-triplet transitions in molecules 
with a single torsional angle, and molecular animations of torsional scans including that 
of the molecule in Fig. 4. 
 

Acknowledgements: 
The work at Los Alamos National Laboratory (LANL) was supported by the LANL Directed 
Research and Development (LDRD) funds and performed in part at the Center for 
Nonlinear Studies (CNLS) and the Center for Integrated Nanotechnologies (CINT), U.S. 
Department of Energy, Office of Science user facilities. This research used resources 
provided by the LANL Institutional Computing (IC) Program as well as the LANL Darwin 
Cluster. LANL is operated by Triad National Security, LLC, for the National Nuclear 
Security Administration of the U.S. Department of Energy (Contract No. 
89233218NCA000001). 
 

References: 
1 G. N. Lewis and M. Kasha, J. Am. Chem. Soc., 1944, 66, 2100–2116. 
2 N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern molecular photochemistry of organic 

molecules, 2017. 
3 R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi and N. Armaroli, Angew. Chem. Int. 

Ed., 2012, 51, 8178–8211. 
4 Q. Zhao, C. Huang and F. Li, Chem. Soc. Rev., 2011, 40, 2508. 
5 H. Yersin, Ed., Highly Efficient OLEDs with Phosphorescent Materials, Wiley, 1st edn., 2007. 
6 Y. Tao, C. Yang and J. Qin, Chem. Soc. Rev., 2011, 40, 2943. 
7 M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri and M. A. Baldo, Science, 2008, 321, 226–

228. 
8 Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi and M. P. Aldred, Chem. 

Soc. Rev., 2017, 46, 915–1016. 
9 C.-X. Sheng, S. Singh, A. Gambetta, T. Drori, M. Tong, S. Tretiak and Z. V. Vardeny, Sci. 

Rep., 2013, 3, 2653. 
10 S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, 

I. Münster, C. Schildknecht and G. Wagenblast, Adv. Mater., 2008, 20, 3325–3330. 
11 S. Mukherjee and P. Thilagar, Chem. Commun., 2015, 51, 10988–11003. 
12 Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu and W. 

Huang, Nat. Mater., 2015, 14, 685–690. 



 

17 

13 J. Hafner, C. Wolverton and G. Ceder, MRS Bull., 2006, 31, 659–668. 
14 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and A. Walsh, Nature, 2018, 559, 547–

555. 
15 P. O. Dral, J. Phys. Chem. Lett., 2020, 11, 2336–2347. 
16 O. A. von Lilienfeld and K. Burke, Nat. Commun., 2020, 11, 4895. 
17 L. Ward, A. Agrawal, A. Choudhary and C. Wolverton, Npj Comput. Mater., 2016, 2, 16028. 
18 A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi and M. Ceriotti, Sci. 

Adv., 2017, 3, e1701816. 
19 F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals, S. 

Kearnes, P. F. Riley and O. A. von Lilienfeld, J. Chem. Theory Comput., 2017, 13, 5255–
5264. 

20 J. Behler, J. Chem. Phys., 2016, 145, 170901. 
21 V. L. Deringer, M. A. Caro and G. Csányi, Adv. Mater., 2019, 31, 1902765. 
22 T. Mueller, A. Hernandez and C. Wang, J. Chem. Phys., 2020, 152, 050902. 
23 Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. 

Thompson, M. A. Wood and S. P. Ong, J. Phys. Chem. A, 2020, 124, 731–745. 
24 J. S. Smith, O. Isayev and A. E. Roitberg, Chem. Sci., 2017, 8, 3192–3203. 
25 Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby and T. F. Miller, J. Chem. Phys., 2020, 
153, 124111. 

26 M. Gastegger, J. Behler and P. Marquetand, Chem. Sci., 2017, 8, 6924–6935. 
27 H. Zhai and A. N. Alexandrova, J. Chem. Theory Comput., 2016, 12, 6213–6226. 
28 K. Gubaev, E. V. Podryabinkin, G. L. W. Hart and A. V. Shapeev, Comput. Mater. Sci., 2019, 
156, 148–156. 

29 J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev and A. E. Roitberg, J. Chem. Phys., 2018, 148, 
241733. 

30 R. Jinnouchi, K. Miwa, F. Karsai, G. Kresse and R. Asahi, J. Phys. Chem. Lett., 2020, 11, 
6946–6955. 

31 K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller and A. Tkatchenko, Nat. Commun., 
2017, 8, 13890. 

32 D. Jha, L. Ward, A. Paul, W. Liao, A. Choudhary, C. Wolverton and A. Agrawal, Sci. Rep., 
2018, 8, 17593. 

33 S. Chmiela, H. E. Sauceda, K.-R. Müller and A. Tkatchenko, Nat. Commun., 2018, 9, 3887. 
34 J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak, O. 

Isayev and A. E. Roitberg, Nat. Commun., 2019, 10, 2903. 
35 M. Bogojeski, L. Vogt-Maranto, M. E. Tuckerman, K.-R. Müller and K. Burke, Nat. 

Commun., 2020, 11, 5223. 
36 D. Lu, H. Wang, M. Chen, L. Lin, R. Car, W. E, W. Jia and L. Zhang, Comput. Phys. 

Commun., 2021, 259, 107624. 
37 J. Westermayr and P. Marquetand, Mach. Learn. Sci. Technol., 2020, 1, 043001. 
38 J. Westermayr and P. Marquetand, Chem. Rev., 2020, acs.chemrev.0c00749. 
39 J. Westermayr, M. Gastegger and P. Marquetand, J. Phys. Chem. Lett., 2020, 11, 3828–3834. 
40 J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401. 
41 P. Rowe, V. L. Deringer, P. Gasparotto, G. Csányi and A. Michaelides, J. Chem. Phys., 2020, 
153, 034702. 

42 S. Tretiak and S. Mukamel, Chem. Rev., 2002, 102, 3171–3212. 



 

18 

43 T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester 
and G. D. Scholes, J. Phys. Chem. B, 2009, 113, 656–667. 

44 A. N. Panda, F. Plasser, A. J. A. Aquino, I. Burghardt and H. Lischka, J. Phys. Chem. A, 2013, 
117, 2181–2189. 

45 B. J. Gifford, S. Kilina, H. Htoon, S. K. Doorn and S. Tretiak, Acc. Chem. Res., 2020, 53, 
1791–1801. 

46 N. Lubbers, J. S. Smith and K. Barros, J. Chem. Phys., 2018, 148, 241715. 
47 B. Nebgen, N. Lubbers, J. S. Smith, A. E. Sifain, A. Lokhov, O. Isayev, A. E. Roitberg, K. 

Barros and S. Tretiak, J. Chem. Theory Comput., 2018, 14, 4687–4698. 
48 A. E. Sifain, N. Lubbers, B. T. Nebgen, J. S. Smith, A. Y. Lokhov, O. Isayev, A. E. Roitberg, 

K. Barros and S. Tretiak, J. Phys. Chem. Lett., 2018, 9, 4495–4501. 
49 D. Bahdanau, K. Cho and Y. Bengio, ArXiv14090473 Cs Stat. 
50 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. 

Polosukhin, ArXiv170603762 Cs. 
51 A. M. Cooper, J. Kästner, A. Urban and N. Artrith, Npj Comput. Mater., 2020, 6, 54. 
52 J. S. Smith, N. Lubbers, A. P. Thompson and K. Barros, ArXiv200605475 Cond-Mat 

Physicsphysics Stat. 
53 K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko and K.-R. Müller, J. Chem. 

Phys., 2018, 148, 241722. 
54 B. Anderson, T.-S. Hy and R. Kondor, ArXiv190604015 Phys. Stat. 
55 D. Bousquet, R. Fukuda, D. Jacquemin, I. Ciofini, C. Adamo and M. Ehara, J. Chem. Theory 

Comput., 2014, 10, 3969–3979. 
56 F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129–138. 
 
 
 
 
 


