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ABSTRACT: A nickel-catalyzed reductive cross-coupling of redox-active N-hydroxyphthalimide (NHP) esters and iodoarenes for 
the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular 

synthesis of substituted -aryl nitriles, an important scaffold in pharmaceutical sciences. Mechanistic studies reveal that 

decarboxylation of the NHP ester to the reactive radical intermediate is accomplished by a combination of a chlorosilane additive and 
Zn dust. The reaction exhibits a broad scope as many functional groups are compatible under the reaction conditions, including 

complex highly functionalized medicinal agents. 

Scheme 1. α-Aryl nitrile synthesis via cross-coupling 

 
 

Nickel-catalyzed reductive cross-couplings (RCC) have 
garnered considerable interest over the past decade since they 

allow for the construction of C–C bonds from two distinct 

electrophilic reagents.1 Compared to traditional cross–

coupling reactions, reductive methods tend to avoid the 
discrete formation of anionic species which often leads to 

milder reaction conditions that exhibit exceptional functional 

group tolerance. Thus, reductive cross-coupling reactions that 
target substrates containing base-sensitive functional groups 

are highly attractive as they elegantly showcase the 

advantages of this cross-coupling strategy. One such example 
that would benefit from this strategy is the synthesis of α-aryl 

nitriles. These scaffolds are of importance to the synthetic 

community due to their versatile nature as synthetic 

intermediates and their prevalence in pharmaceutical agents. 
Thus, considerable efforts have been dedicated to their 

synthesis.2  

Traditionally, feedstock chemicals such as aliphatic nitriles3 
or cyanoacetate salts4  can undergo α-arylation as a 

nucleophilic reagent in the presence of an aryl(pseudo)halide 
coupling partner with a transition-metal catalyst such as Pd 

(Scheme 1a, left). However, these established α-arylation 

methods require strongly basic reaction conditions and/or 
high temperatures to generate the nucleophilic coupling 

partner, which limits both their functional group compatibility 

and their use in late-stage diversification of complex 

molecules. In contrast, cross-coupling reactions using -

(pseudo)halo nitriles as electrophilic coupling partners 

address these limitations as the reactions tend to be milder. As 

such, -(pseudo)halo nitriles have been elegantly employed 

in traditional5 (Scheme 1a, right), and reductive6,7 (Scheme 

1b, left) cross-coupling reactions. The main drawback to these 

methods is that starting material preparation can be 

undesirable since they are typically synthesized from a 
cyanohydrin intermediate which requires the use of a toxic 

cyanide equivalent. As an alternative approach, we envisioned 

using cyanoacetic acid derived electrophiles in a RCC as these 
are feedstock starting materials and easily derivatized 

(Scheme 1b, blue box). Specifically, we envisioned using the 

redox properties of N-hydroxyphthalimide (NHP) esters to 

generate an -cyano radical that can engage in Ni-catalyzed 

arylation.8  

RCC reactions of NHP esters are powerful methods that have 
been used to prepare a diverse range of C–C bonds.9 Notably, 

while there are many examples in the literature describing the 

functionalization of alkyl substituted NHP ester derivatives, 
examples of NHP esters bearing additional functional group 



 

handles in the –position are rare.10 Herein we describe the 
development of a reductive decarboxylative arylation reaction 

of cyanoacetic-derived NHP esters. Mechanistic studies of the 

reaction revealed a unique reduction mechanism for the NHP 

ester substrate and indicated that an -cyano radical 

intermediate is generated in the combined presence of a 

chlorosilane additive and Zn dust. This finding has 
implications on the field of NHP ester functionalization, as the 

role of halosilane additives in previous investigations are not 

fully understood.9b 

We began reaction optimization by exploring the RCC of 

NHP ester 1a and iodoarene 2. Initial experiments led to low 

conversions of aryl iodide and none of the desired product 3a 
(Table 1, entry 1). However, when 1 equivalent of a mono-

chlorosilane additive such as TBSCl or TMSCl was added, 

low to moderate yields (24% and 55%, respectively) of α-aryl 

nitrile 3a were obtained (Table 1, entries 2-3). Di– and tri–
chlorosilanes generally resulted in increased product 

formation, with the notable exception of Si(tBu)2Cl2, which 

resulted in no detectable formation of 3a (Table 1, entries 4-
7). Ultimately, when 3 equivalents of TMSCl were added in 

combination with NiCl2bpy (10 mol %) as the pre-catalyst, 

and superstoichiometric Zn dust (8 equiv), 3a was obtained in 

82% yield (Table 1, entry 8).11 Decreasing the amount of Zn 

to 2 equivalents resulted in reduced conversion to 3a (Table 
1, entry 9). The reaction is very rapid and occurs within 15 

minutes at room temperature (vide infra), potentially 

signifying that rapid Zn-mediated reduction of the Ni catalyst 
is essential for productive catalysis. Control reactions in the 

absence of Ni, ligand or Zn resulted in no detectable product 

formation. 

 

Table 1. Effect of chlorosilane additive 

 

 
aCalibrated yields determined by GC-MS using dodecane as 

an internal standard. Reactions performed on a 0.1 mmol 

scale. bReaction performed using 2 equiv Zn instead of 8 

equiv. 

 

After establishing the optimal reaction conditions, we set out 
to explore the scope of the reaction (Scheme 2). Notably, the 

reaction was selective for aryl iodides over other common 

cross-coupling partners such as aryl bromides (3t, 3v), aryl 

chlorides (3n), aryl tosylates (3b, 3k), and aryl pivalates (3w). 
Functionalization at the other reactive position of these 

substrates was never observed.12 Aryl iodides bearing base-

sensitive functional groups were also compatible, including a 

phenol (3c), sulfonamide (3d, 3u, 3y), benzyl alcohol (3g, 3t), 

and ketone (3h, 3z). 

Notably, the unprotected alcohols in 3c, 3g, and 3t are 

silylated over the course of the reaction, and either the free 
alcohol (3c, 3g), or the TMS-protected adduct (3t) can be 

isolated directly.13 Aryl iodides containing N-heterocycles 

(3i, 3s, 3u) were efficiently cross-coupled, as well as 5-

iodobenzothiophene (3j, 3r). Tertiary amide substrate (3l), 

and secondary amide (3t) bearing a free N-H were good 
coupling partners. Strongly electron-donating groups on the 

iodoarene are tolerated such as alkoxy (3a, 3m, 3q) and amino 

(3e, 3o) substituents. An ortho-substituted iodoarene gave the 

desired α-aryl nitrile (3f) in 46% yield. Structurally complex 
aryl iodides, bearing a diverse range of functional groups (3s-

u) were also suitable substrates in the reaction, which 

highlights the synthetic utility of this method within the 

context of late-stage diversification. In particular, -

hydroxyamide 3t, is an intermediate towards an anti-

hypercholesterolemic compound which features a selective 
Ar-I over Ar-Br functionalization en route towards those 

medicinal agents.14  

Other NHP esters of functionalized cyanoacetic acids can also 

be used in this transformation. -Aryl nitriles with pendant 

alkyl chains (3v) or an allyl substituent (3w) were prepared in 

moderate to good yields from the corresponding NHP ester. 
Nitrile 3x was prepared in good yield from the NHP ester 

containing a free N-H indole without requiring protecting 

group manipulations.15 Bulky isopropyl (3k-3r, 3t, 3u) and 
cyclohexyl (3y) substituted NHP esters were also suitable 

substrates for this transformation, as well as substrate 3z 

bearing a cyclopropane ring.16  
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Scheme 2. Reaction Scopea 

 

 

aReactions performed on a 0.2 mmol scale. Yields reported are isolated yields after purification. bReaction performed on 0.5 mmol scale. 
cReaction worked up with TBAF (2.5 equiv). dReaction performed on 0.1 mmol scale. e4 equiv TMSCl and 2 equiv 1b were used. fArI 

contained the free OH but was isolated as the OTMS adduct.
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Scheme 3. Role of chlorosilane in product formationa 

 

 

 
aReactions performed on 0.1 mmol scale. Calibrated yields 

determined by GC-MS using dodecane as the internal standard. 
bPre-treated Zn was prepared by stirring with TMSCl (3 equiv) in 

DMA for 30 min. It was then filtered, washed with DMA, and 

dried in the glovebox before being added to the reaction under 

otherwise standard conditions. 

 

Since the chlorosilane was an essential component to the 

reaction and, in its absence, no product was obtained (Table 
1, entry 1), we set out to investigate its role.  Chlorosilanes 

have been used as additives for other reductive cross-coupling 

reactions.9b,17 These reports typically suggest that the 

chlorosilane acts as an in-situ activator for the stoichiometric 
metal reductant (Zn or Mn). While several reports use this 

reagent in catalytic amounts, some methods require 

stoichiometric (or near stoichiometric) quantities, which 
suggests a role beyond that of simply activating the 

reductant.9b,17d,f,g,h,i As the field of reductive cross-coupling 

continues to expand, detailed mechanistic understandings of 
the role of the components in these reactions will be essential 

to inspire future development.  

Our initial mechanistic experiments demonstrated that 

TMSCl is necessary in stoichiometric amounts in the reaction 
(Scheme 3). As shown in Scheme 3a, we found that the yield 

of 3a increases with increasing amounts of TMSCl. To 

investigate whether the role of TMSCl was simply to act as an 
in-situ activator for Zn, we pre-treated standard Zn dust18 with 

TMSCl (3 equiv) and subsequently used this as the 

stoichiometric reductant in the reaction (Scheme 3b).19 
Notably, in the absence of additional TMSCl, 3a was not 

observed which suggests that TMSCl plays a crucial role 

beyond solely acting as an activator for the metal reductant 

(Scheme 3b). 20 

Scheme 4. Reaction kineticsa 

  

 
aReactions performed on a 0.3 mmol scale. Yields determined by 
1H NMR using 1,3,5-trimethoxybenzene as an internal standard. 
bReaction performed on a 0.1 mmol scale. 

 

To further understand the role of TMSCl, we studied the 
kinetics of the transformation, under slightly modified 

reaction conditions where TMSCl was added after 5 minutes 

(Scheme 4a, plot i). Interestingly, before the addition of 
TMSCl, we observed significant conversion of NHP ester 1a 

(black triangle) to the carboxylic acid 4 (red diamond), along 

with trace amounts (ca. 3%) of decarboxylated side-product 5 

(green square).21 Product 3a (purple circle) was not detected. 
Once TMSCl was added, however, we observed rapid 

formation of 3a, along with increased amounts of 
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decarboxylated side-product 5 (ca. 20%). It is important to 
note that carboxylic acid 4 is generated as a result of 

background hydrolysis of NHP ester 1a.22 When the same 

experiment was conducted in the absence of NiCl2bpy 
(Scheme 4a, plot ii), we observed a similarly rapid 

decomposition of NHP ester 1a to carboxylic acid 4. 

Decarboxylated side-product 5 was again not observed until 

TMSCl was added, at which point 1a was rapidly converted 
to 5 (ca. 40% in under 3 minutes). Importantly, when 1a is 

treated with TMSCl in DMA but in the absence of Zn, 4 was 

observed and 5 was not detected.15 The most commonly 
accepted mechanism for NHP ester activation under Ni 

catalysis is through a single electron transfer (SET) from a 

low-valent Ni species (Ni(I) or Ni(0)) which leads to 
decarboxylation and liberation of the alkyl radical.8a,e,9a,d,h,23 

The observation that 5 is formed in appreciable amounts 

(>5%) only after the addition of TMSCl suggests that 

reduction of the NHP ester 1a to the -cyano radical is 

mediated by a combination of chlorosilane and zinc.  

To confirm that carboxylic acid 4 does not decarboxylate 
under the reaction conditions, we spiked 4 into a standard 

reaction between an alternative NHP ester substrate 1b and 4-

iodoanisole 2 (Scheme 4b). Decarboxylated side-product 5 

and cross-coupled product 3a were not detected, while the 
expected arylated product 3q was still obtained in 51% 1H 

NMR yield. Since 5 is not generated from carboxylic acid 4, 

it is most likely being formed via direct conversion of the NHP 

ester 1a to the -cyano radical followed by subsequent 

reduction to the anion or HAT with a solvent molecule.24  

Scheme 5. Radical clock experiments 

 
aYield determined by 1H NMR using 1,3,5-

trimethoxybenzene as an internal standard.  

To further support the mechanistic hypothesis that TMSCl and 

Zn are responsible for -cyano radical formation from 1a, we 

conducted a series of radical clock experiments. First, we 

prepared cyclopropane containing NHP ester 6 and subjected 
it to TMSCl and Zn in DMA (Scheme 5a). The expected ring-

opened acrylonitrile derivative 7 was isolated in 23% yield as 

a 7:3 E:Z mixture of isomers.25,26 For comparison, when 6 was 
submitted to the standard reaction conditions in the absence 

TMSCl, 7 was not detected and carboxylic acid 8 was 

observed as the major product (Scheme 5b). Importantly, no 

arylated products were detected during this reaction. 
Subjecting cyclopropane substrate 6 to the standard reaction 

conditions in the presence of TMSCl, Zn, Ni and aryl iodide 

resulted in a complex mixture, and the expected δ-arylated 

product could not be isolated. 

 

Scheme 6. Possible catalytic cycle 

 
Based on these combined data and previous investigations,27,28 

a plausible catalytic cycle is shown in Scheme 6. NHP ester 

1a undergoes TMSCl mediated reduction by Zn to liberate the 

-cyano radical 9 via loss of CO2 and phthalimide anion 
(phth–).29 This radical is then captured by a Ni(II) oxidative 

addition complex 10 to generate Ni(III) intermediate 11, 

which upon reductive elimination furnishes the desired 
product 3a along with a Ni(I) species 12. Single electron 

reduction generates the Ni(0) complex 13 which could 

undergo an oxidative addition with iodoarene 2 thereby 
restarting the catalytic cycle.30 Since the consumption of NHP 

ester 1a to -cyano radical 9 is rapid and occurs in the absence 

of a nickel catalyst (Scheme 4), one explanation for the 
observed increase in yield when 8 equivalents of Zn are used 

(Table 1, entries 8 vs. 9) is that it enables rapid reduction of 

Ni(I) species 12 to a catalytically active Ni(0) species 13 and 

that this step is crucial in reducing the formation of side 

product 5.  

 

In conclusion, we have developed a Ni–catalyzed reductive 
cross-coupling reaction of cyanoacetic acid-derived NHP 

esters and iodoarenes to yield valuable α-aryl nitriles. The 

reaction conditions are mild and a broad scope of functional 
groups are tolerated as a result. A chlorosilane additive is 

necessary for the reaction to proceed and plays a crucial role 

in mediating NHP ester reduction and decarboxylation to a 

reactive -cyano radical intermediate. In its absence, 

decarboxylation only occurs in trace amount (< 5%) and 

cross-coupling is not observed. The prevalence of 
chlorosilanes as additives in RCC reactions renders this 

finding significant for mechanistic understanding and further 

developments in this field. Studies involving an 

enantioselective version of the reaction, along with utilizing 
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other -functionalized NHP ester derivatives are currently 

underway in our group. 
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