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Abstract:  A series of Diels-Alder reactions between the diene 2,2’-biaceanthylene and 

several dienophiles is presented.  The diene is a cyclopenta-fused polycyclic aromatic 

hydrocarbon with anthracene units linked by two cyclopentene rings.  Depending on 

the dienophile, the major product was the result of a single addition (dimethyl 

acetylenedicarboxylate) or double addition (quinone, benzyne) to the diene.  Single 

crystal X-ray analysis of the quinone-derivative shows a propeller-like structure 

composed of mixed enantiomers.  The synthesis and photophysical properties of these 

compounds is presented. 

Polycyclic aromatic hydrocarbons (PAHs) are intensely studied because of 

their potential application as active components in electronic devices.1,2  Many small 

molecule and polymeric materials with a broad range of band gaps and electronic 

properties have been prepared to take advantages of their extended pi-systems, unique 

molecular connectivity, and ability to include heteroatom substitutions.3,4 Chemical 

linkages between semiconductor aromatic groups play a pivotal role in establishing 

material properties including charge transport, optical band gaps, and chemical 

reactivity.5,6  We recently explored a range of new materials that were accessed from 

cyclopentannulation reactions, which provides opportunities to expand the pi-



conjugated network and to modulate the frontier molecular orbitals to significantly 

change the optical and electronic properties of traditional PAHs.  Furthermore, the 

annulation chemistry provides access to new functional group connectivities that offer 

opportunities for additional chemical transformations.  The Diels-Alder reaction is 

one such reaction that has long been employed in PAH chemistry and offers prospects 

to further tune molecular architectures.7–10 

In previous work, we employed a palladium-catalyzed cyclopentannulation 

reaction11–16 with trimethylsilyl-acetylene and 9-bromoanthracene to give 

aceanthrylene 1.17  Subsequent ipso-bromination with N-bromosuccinimide gave 2 

that could then be homo-coupled with a Nickel-catalyzed Yamamoto cross-coupling to 

give 2,2’-biaceanthrylene 3.  The five-five ring-linked chromophores provided an 

opportunity to utilize the adjacent double bonds of the cyclopentene rings as a diene for 

Diels-Alder reaction chemistry.  To investigate the scope of the transformation, we 

investigated a series of traditional 

dienophiles including dimethyl 

acetylenedicarboxylate, 

benzoquinone, and in situ 

generated benzyne (Scheme 2).   

Depending on the substrate 

utilized, the resulting major 

isolated material was either a 1:1 or a 1:2 adduct, while employing a 1:1 feed ratio of 

diene to dienophile.  Similar differentiation was found in Diels-Alder reaction 

Scheme 1.  Preparation of 2,2’biaceanthrylene 3. 

 

 



chemistry with the similar diacenaphthothiophene based system.18  For dimethyl 

acetylenedicarboxylate, the expected 1:1 adduct 4 was preferentially formed with an 

aromatic pi-sextet at the central 

cycloaddition position.  The new 

aromatic unit limited further 

cycloaddition chemistry from 

proceeding.  For reaction with 

benzoquinone, the 1:2 adduct 5 was 

isolated at the predominant product 

in similarly low yield of 17%.  

Here, the low yields were attributed 

to side-products that were not easily 

identified after chromatographic 

separation and could be owing to the 

higher temperatures required to 

consume the starting materials.  In contrast, the reaction with benzyne, which was 

formed in situ from reaction of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate with 

CsF, was successful at a lower temperature and gave a more reasonable yield of 60% 

of the 1:2 adduct.   

Results and Discussion 

Scheme 2.  Diels-Alder additions to 3. 

 

 



Several synthetic attempts were carried out to differentiate the reaction 

outcomes and to realize 1:1 adducts for the benzoquinone and benzyne reactions.  

These attempts included changing the feed ratios of the reactants to a 2:1 ratio of diene 

3 to dienophile.  However, even with these modifications, the 1:2 diene:dienophile 

adduct was isolated as the major isolatable species.  For the 1:2 adducts to be formed, 

the 1:1 adduct 7 is re-aromatized to form a diene 8 that can participate in a second Diels-

Alder cycloaddition (Scheme 3).  Diene 8 possesses pre-aligned diene functionality, 

and presumably leads to greater reactivity to allow the second equivalent of dieneophile 

to react in preference to the freely rotating diene 3.  The addition of the second 

equivalent of benzoquinone approached from the endo-face and gave two enantiomers 

in a 1:1 ratio.  This structure was 

confirmed by obtaining a single-

crystal that was solved using X-ray 

diffraction.19       The molecules 

in the single crystal existed in 

inverted chirality as well in an exact 

1:1 ratio.  Further analysis showed 

Scheme 3.  Mechanism for formation of 1:2 adduct 5.  

 

 

 

Figure 1.  Crystal structure of 5 with thermal 

ellipsoids drawn at 50% probability. 

 



aceanthrylene segments remain in a planar geometry with the benzoquinone segments 

lying above and below the aromatic plane.  Several attempts were made to oxidize the 

appendages of 5 to quinone functionality but to no avail.   Oxidative chemistry using 

2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) as well as a reductive pathway using 

lithium aluminum hydride followed by aromatization both resulted in the starting 

hydrogenated ketone 5.   

The absorption properties of compounds 3-6 are shown in Figure 2.  A 

significant change in the long wave absorption is found upon the Diels-Alder addition 

to 3.  The broad low energy absorption band centered at ~580 nm is replaced with 

stronger, high-energy bands at ~475 

nm for the three Diels-Alder adducts.  

Compound 4 is the most significantly 

red-shifted with an onset of 560 nm, 

while 5 and 6 longest wavelength 

absorptions are 530 nm and 510 nm, 

respectively.     

In conclusion, we have 

successfully employed 2,2’-biaceanthyrlene as a diene in Diels-Alder transformations.  

The 1:1 adduct is the only isolated product for the system that made a pi-sextet at the 

cycloaddition center.  The 1:2 adduct is predominant when a non-aromatic center is 

formed upon the first cycloaddition and the pre-alignment of a new diene facilitates the 

 

Figure 2.  Absorption spectra of 3-6.    



second addition of a dieneophile.  The resulting materials’ absorptions are blue-shifted 

in the relationship to the starting diene and is presumably owing to the change in 

electronic communication between the two aceanthrylene chromophores.   
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