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A transferable active-learning strategy for reactive molecular force fields 
Tom A. Young,a Tristan Johnston-Wood,a Volker L. Deringer,*b Fernanda Duarte*a 

Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine learning offers a promising approach to construct such 
potentials by fitting energies and forces to high-level quantum-mechanical data, but doing so typically requires considerable human intervention and data 
volume. Here we show that, by leveraging hierarchical and active learning, accurate Gaussian Approximation Potential (GAP) models can be developed for 
diverse chemical systems in an autonomous way, requiring only hundreds to a few thousand energy and gradient evaluations on a reference potential-energy 
surface. Our approach relies on decomposing the molecular system into intra- and inter-molecular components which are fit separatley. We also introduce a 
prospective error metric to quantify accuracy. We demonstrate applications to a range of molecular systems: from bulk water, organic solvents, a solvated 
metal ion and a metallocage onwards to chemical reactivity, including a bifurcating Diels–Alder reaction in the gas phase and non-equilibrium dynamics (SN2 
reaction) in explicit solvent. The method provides a route to routinely generating machine-learned force fields for reactive molecular systems. 

Introduction 
Molecular simulations are a cornerstone in computational 
chemistry, providing dynamical insights beyond experimental 
resolution.1 Realistic simulation of (bio)chemical reactions 
require the inclusion of the chemical environment where they 
take place (e.g. solvent and/or enzyme) and often extended 
timescales. Therefore, the development of accurate and 
efficient approaches has been central to the development of 
this field. 
 
Empirical interatomic potentials (force fields), in combination 
with molecular dynamics (MD) or Monte Carlo (MC) 
simulations, have been traditionally used to sample the 
potential-energy surface (PES). However, they are limited in 
accuracy and transferability.2 Moreover, most of these 
potentials are parameterised for isolated entities with fixed 
connectivity and thus unable to describe bond 
breaking/forming processes. In contrast, ab initio methods 
provide an accurate description of the PES, which is particularly 
critical for reactions in solution. However, because of their high 
computational cost and unfavourable scaling behaviour, they 
are limited to a few hundred atoms and simulation times of 
picoseconds in ab initio molecular dynamics (AIMD) at the DFT 
level, and practically impossible at the computational ‘gold-
standard’ [CCSD(T)].3  
 
Machine learning (ML) approaches have the potential to 
revolutionise force-field based simulations, aiming to provide 
the best of both worlds,4–6 and have indeed begun to provide 
new insights into a range of challenging research problems.7–15 
The development of an ML potential applicable to the whole 
periodic table mapping nuclear coordinates to total energies 
and forces is, however, precluded by the curse of 
dimensionality. Within small chemical subspaces, models can 
be achieved using neural networks (NNs),6,16–20 kernel-based 
methods such as the Gaussian Approximation Potential (GAP) 
framework21,22 or gradient-domain machine learning (GDML),23 
and linear fitting with properly chosen basis functions,24,25 each 
with different data requirements and transferability.26 GAPs 
have been used to study a range of elemental,27–29 
multicomponent inorganic,30,31 gas-phase organic molecules, 
14,32 and more recently condensed-phase molecular systems 
such as methane33 and phosphorus.34 These potentials, while  

 
accurate, have required considerable computational effort and 
human oversight. Indeed, condensed-phase NN35,36 and GAP 
fitting approaches typically require several thousand reference 
(“ground truth”) evaluations. 
 
Active learning (AL), where new training data is added based on 
the current state of the potential, has been used for generating 
databases and accelerating the fitting process.30,37–41 Notable 
examples in materials modelling include an early demonstration 
of a “query-by-committee” approach in fitting a high-
dimensional NN potential for elemental copper,38 the fitting of 
Moment Tensor Potential25 models42 to predict elemental 
crystal structures37 and multicomponent alloys,39 and the deep 
potential generator (DP-GEN)43,44 that provides an interface to 
deep NN potential models for materials.45 AL schemes have also 
been combined with GP based force fields including GAP,46 and 
included within a first-principles MD implementation such that 
it allows the “on the fly” fitting of force fields for a specific 
simulation system.47,48  
 
Efficient approaches to generate reactive ML potentials become 
even more important when exploring chemical reactions in 
molecular systems, which often require a description at a 
computational level beyond DFT, and therefore require 
reference data at the same level. Very recently, AL approaches 
have started to be adopted for fitting reactive potentials for 
organic molecules based on single point evaluations at 
quantum-chemical levels of theory. Notable examples include 
the modelling of gas-phase pericyclic reactions,13 the 
exploration of reactivity during methane combustion,49 and the 
decomposition of urea in water.40 
 
In the present work – with a view to developing potentials to 
simulate solution phase reactions – we consider bulk water as a 
test case and develop a strategy capable of accurately 
describing the structure of liquid water. This strategy requires 
just hundreds of total ground truth evaluations and no a priori 
knowledge of the system, apart from the molecular 
composition. We then show how this methodology can be 
directly transferred to other chemical systems in the gas phase, 
and in implicit and explicit solvent, focusing on the applicability 
to a range of scenarios that are relevant in computational 
chemistry. 
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Results and Discussion 
Despite GAP fitting being increasingly used for inorganic 
systems, we found that the same fitting strategies did not easily 
transfer to the description of complex molecular environments. 
Even with a high correlation and low error on energies in unseen 
test data, some potentials were not stable for more than a few 
femtoseconds. In the following section, we therefore outline a 
training strategy along with a prospective error metric to 
develop robust models for gas-phase and condensed-phase 
molecular systems. 
 
A prospective error metric  

The initial step in validating supervised machine learning (ML) 
tends to follow the splitting of a dataset into training and test 
sets, training the model, then evaluating its performance on the 
test set with a squared error (RMSE/MSE) or a correlation (R2) 
metric. As with model overfitting, this ‘retrospective’ validation 
strategy ultimately limits the applicability of these models.50–56 
In an ML potential, the minimum required domain of 
applicability is the region of configuration space likely to be 
sampled during a simulation with the potential. However, this 
region is not known a priori, making the choice of test data  
 

 
problematic if not impossible for use in a standard train/test 
data split approach. In addition, one would also like to ensure 
high accuracy in regions sampled on the ground truth surface 
(especially for early versions of an evolving potential), but being 
able to quantify this accuracy requires dynamics at the ground 
truth method level in the first place, which is much more 
expensive than sampling with an efficient potential.  
 
Using a train/test set split with high structural similarity 
between the two sets can lead to highly misleadingly accuracy 
whenever the potential is to be taken outside the training 
region in computational practice. For example, splitting an 
AIMD trajectory of water into a training and test set with an 
odd/even frame split (50:50) and training a simple GAP model 
yields an energy error on the order of 1 kcal mol–1 (Figure S1a). 
However, simulations with this potential in the same 
configuration space sample unphysical configurations within 10 
fs (Figure S1b), making an RMSE over a priori test data an 
insufficient metric in quantifying the quality of a potential.  
 

 

 

 

Figure 1: Active learning of machine-learning potentials for liquid water. (a) Schematic of the active learning loop implemented for fitting GAP models, where the GAP-MD 
exploration is run for n3 +2 femtoseconds, where n (the number of evaluations) is incremented after each time the error is evaluated. (b) Schematic illustrating the separation into 
inter- and intra-molecular terms (I+I) for a bulk water system; these are described by separate GAP models and then added to give the combined prediction for energies, E, and 
forces, F. (c) Learning curves for a bulk water GAP model using different training strategies. τacc with El = 0.1 eV, ET = 1 eV, 10 fs interval, 300 K, from the same random minimised 
configuration of 10 waters in a 7 Å cubic box. Error bars quoted as the standard errors in the mean from 5 independent repeats. The horizontal axis denotes the number of evaluations 
in training data generation. See Tables S1-2 for detailed methods. DFTB(3ob) ground truth. Minimum τacc is shown as 0.1 fs to enable plotting on a log scale. (d) Water monomer 
model training performance as characterised by τacc and RMSE over the full 3D PES; see Figure S2 for details 
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Considering that single-point reference energy evaluations are 
reasonably cheap, a ‘prospective’ validation scheme is possible, 
where the error metric operates in the configuration space 
sampled in a simulation. With this in mind, we propose a 
temporal cumulative error metric (τacc, Eqn. 1), defined as the 
time required for the cumulative error (absolute difference 
between true (E0) and predicted (EGAP)) to exceed a given 
threshold (ET); the larger τacc, the more robust the potential. 
Note that a potential’s stability can far exceed τacc, as shown in 
the following. Here only errors above a lower-bound threshold 
value (El) contribute to the cumulative error. The lower 
threshold is required to account for the residual error that is due 
to the finite radial cut-off of the model. In the following we take 
ET to be 10 times El, but it may be adjusted depending on the 
simulation context. 

 
(1) 
 

This metric has several advantages in that (a) it ensures that a 
potential with high accuracy will result in stable dynamics; (b) it 
allows the user to specify the level of accepted error according 
to the quality of the training method, thus not penalising where 
the error is within the difference between the ground truth and 
the true PES (i.e. a larger threshold may be suitable for a less 
accurate reference method); (c) it penalises large errors, even if 
they only occur for single configurations, which is important as 
such errors may lead to instabilities in the ML-driven MD 
trajectory and (d) it enables a quoted accuracy to include 
regions that may not be accessible to the direct evaluation at 
the ground-truth level (e.g. long-time behaviour). Overall, this 
metric depends on the lower bound and total error, interval 
between evaluations, and the simulation on which it is 
evaluated; so while not unique, it is – crucially – prospective. 
We found this metric to be essential in developing an efficient 
training strategy and accurate potentials for bulk water (Figure 
1). 
 

Water models 

For bespoke ML potentials to be routinely developed for 
molecular systems, one would hope to complete the data 
generation, model training, and know the accuracy of the 
resulting potential within a matter of hours to days. With this in 
mind, here we train GAP models to simulate bulk water, aiming 
to minimise the number of required ground truth evaluations as 
well as the required human intervention, while maximising 
stability (measured by τacc). A selection of training strategies is 

discussed in the following paragraphs and their results are 
outlined in Figure 1.  
 
We initially employed training strategies found to work well in 
elemental materials by, for example, fitting a combined 
potential with two- and three-body GAPs; this approach was, 
however, found to be detrimental to the potential’s stability. 
This can be understood considering a water dimer (HO–
Hc⋯OH2); here, a two-body description that treats the two O–
Hc interactions on the same footing is a poor approximation, in 
view of the different order of magnitude between the 
interactions at their respective minima (Figure S3). Therefore, 
the following GAPs only employ a smooth overlap of atomic 
positions57 (SOAP) descriptor for an exclusively many–body 
description of atomic environments (except for AL-I+I where a 
different approach is used, see below).  
 
Similarly, an emerging approach in generating training data for 
elemental GAPs is to initialise the database with randomised 
configurations (with reasonable constraints, as in ab initio 
random structure searching58), and to gradually explore 
configuration space with evolving versions of the potential (see, 
e.g., ref. 59). However, a similar approach of randomly placing 
water molecules does not in itself afford a stable potential. A 
similar result is observed when the most diverse configurations 
are selected using the CUR algorithm60,59 (Figure S4) or when 
applying intramolecular displacements, following minimisation 
(Figure S4). Selecting frames from classical MD simulations at 
temperatures of 100–1000 K was also found to be an ineffective 
strategy (Figure S5), reaching τacc of only a few fs (“MM-MD”, 
Figure 1c). This is in line with the results reported in ref. 14. Note 
that this is not because the GAP cannot fit reference energies 
and forces from MM configurations (Figure S6), but because of 
a poor configuration space overlap with the ground truth PES 
(Figure S7). Selecting configurations from an AIMD simulation 
at 300 K (AIMD, Figure 1c) was an improvement over training 
on random and MM-generated configurations, with τacc ~10 fs. 
Adding AIMD configurations, however, saturates in accuracy 
quickly even if those are obtained at higher temperatures 
(Figure S8). Using AIMD configurations can also involve a 
significant cost (≫103 evaluations). Finally, active learning from 
only a few randomly generated configurations provides a 
modest uplift in accuracy (AL, Figure 1c), with accuracy on-par 
with GAP trained on AIMD configurations at a third of the 
required reference data. 
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Figure 2: Liquid water simulations. Active learning of bulk water models at various levels of theory. Shown here are oxygen–oxygen, oxygen–hydrogen, and hydrogen–hydrogen 
radial distribution functions from NVT MD simulations of 64 water molecules in a 12.42 Å cubic box, with ground truth (black) and GAP (purple / red) simulations. (a–c) DFTB(3ob 
params) ground truth, 100 ps, 300 K, rcSOAP(O) = 3 Å. (d–f) DFT(PBE) reference RDF data extracted from ref. 61, 30 ps, 330 K, rcSOAP(O) = 3.5 Å. (g-i) DFT(revPBE0-D3) GAP, 30 ps, 330 K, 
rcSOAP(O) = 4.0 Å. 

Only when the relevant length and energy scales of the 
system are decomposed by treating intra- and inter-
molecular components separately (Figure 1b) a potential 
that is stable for picoseconds is obtained (AL-I+I, Figure 1c). 
We note that this approach is related to but different from 
the hierarchical fitting of GAPs33,62 and related ML 
models32,63 using different levels of computational 
approaches, and the decomposition strategy by Wengert 
and co-workers.64 Here, we employ the same level of input 
data throughout, but describe the stronger (e.g., covalent) 
and weaker intermolecular terms with separate fits that are 
afterwards combined to give the final model. The 
intramolecular GAP for water contains only 2- and 3-body 
terms and the training data are chosen using an evenly 
spaced grid over the full 3-atom PES (8×8×8 grid points in rOH 
and rHH, ~0.1 Å spacing, Figure S9). Energy and force 
evaluations of this potential are a simple sum of intra- and 
inter-molecular terms, but require the former to be 
evaluated in an expanded simulation box to ensure no non-
bonded hydrogen atoms are present within the radius of the 
2- and 3-body descriptors on oxygen (Figure S10). Here the 
intramolecular PES is fairly low-dimensional, so a full and 
reasonably dense grid is available, which in turn allows us to 
define an error measure over the whole PES, where we find 
the error to be inversely correlated with τacc (Figure 1d). 
Using an acceptable error of 0.2 kcal mol-1 per H2O molecule 
for a description of bulk water, which is similar to that 
achieved in a recent NN fit of water,35 we find that this 
potential affords τacc > 10 ps with just a few hundred ground 
truth evaluations (AL-I+I, Figure 1c). This accuracy is on-par 
with a bespoke NN35 (τacc = 7.6±0.7 ps) when trained on 

DFTB energy and forces from a partially manually curated 
dataset of ~7000 training configurations. For comparison, an 
ANI18 potential trained using ~6000 (H2O)5 clusters from the 
ANI-1x dataset gives τacc of 60±9 fs, implying that with these 
training data ANI does not afford an accurate bulk water 
model; somewhat expected considering the training data 
does not include any periodic configurations. 
 
The model fitted using our approach (AL-I+I) yields a good 
description of the ground-truth radial distribution functions 
(RDFs), both considering the location and intensities of the 
peaks corresponding to the first and second coordination 
shells, with reference to the respective ground-truth 
method (Figure 2a-c). This is despite the relatively short-
range atomic cut-offs (3 Å, O only) used. Interestingly, for a 
DFT-quality GAP simply re-evaluating energies and forces on 
DFTB-derived active-learnt configurations is insufficient, 
with the DFTB configurations being high in energy at the DFT 
level (~5 eV, Figure S11). However, applying an active 
learning strategy with a PBE reference method and a slightly 
larger 3.5 Å cut-off generates excellent agreement with the 
AIMD simulation from ref. 61, in only a few hours of total 
training time (Figure 2d-f). The real significance, of course, 
is in moving to more accurate ground-truth methods, for 
which a full MD would not be straightforward: indeed, using 
the same method, a hybrid DFT-quality water model can be 
generated within a few days, which would be inaccessible 
with other methods (the generation of the GAP model 
required ~5 days on 20 CPU cores, Figure 2g-i). These results 
suggest that the training strategy (and hyperparameter 



 

5  

selection) presented here is suitable independent of the 
reference method. 
 
Other solvent systems 

Organic reactions often take place in solvents other than 
water. Using an identical training strategy to the one 
described for water, we therefore trained GAPs for a 
selection of organic solvents with various types of 
intermolecular interactions. To quickly generate the 
reference simulation data for this proof-of-concept, a DFTB 
ground truth is employed; chlorinated solvents were not 
selected due to a large discrepancy between the DFTB-
generated and experimental C–Cl bond dissociation energy 
(Figure S12). A uniform grid over the intramolecular PES is 
now no longer possible, thus AL is used to develop an initial 
intramolecular potential trained using GAP-MD at 1600 K 
(Figure S13). This temperature is used to sample higher-
energy configurations more efficiently. In all cases, only 
hundreds of ground truth evaluations were necessary to 
generate GAPs affording stable dynamics, with τacc values on 
the order of picoseconds (Figure S14, Table 1, SI §S1). For a 
representative example, the computed RDFs for acetonitrile 
compare well with the ground truth (Figure S15). As with the 
water models above, to quantitatively evaluate bulk 
properties training an accurate reference method and the 
inclusion of nuclear quantum effects would be 
necessary.33,35 Nevertheless, this example demonstrates 
that the training method is applicable to a range of chemical 
systems beyond water.  
 

Table 1. Average number (N) of total ground truth evaluations (over 5 repeats 
quoted with a standard error in the mean) required to obtain a potential with τacc > 
3 ps, where ET = 1 eV, El = 0.1 eV, 300 K. All SOAP descriptors used 3.0 Å cut–offs; 
they are centred on the stated atomic species, and include all atoms within the 
neighbourhood of those atoms (including hydrogen). See Table S3 for more detailed 
parameters. 

Solvent SOAP descriptors 
centred on Nintra Ninter 

Acetonitrile C, N 269±12 120±60 
Methanol C, O 221±13 292±49 
Acetone C, O 566±80 359±29 
Pyridine C, N 249±36 243±11 
Ammonia N 38±40 109±24 

 

Aqueous Zn(II) 

Modelling metal ions in solution remains one of the main 
challenges for general purpose force fields.65 Historically, 
they have been developed by fitting van der Waals 
parameters to reproduce RDFs and hydration free energy of 
aquo complexes, which are expected to be transferrable to 
more chemically complex environments. However, while 

simple, these models have been often found to lead to 
unstable simulations or poorly describe structural 
properties.65 Considering these challenges and their 
relevance in biomolecular modelling, we decided to use our 
strategy to generate a GAP for aqueous Zn(II) ion as a 
representative system. Here the system was decomposed 
into a [Zn(H2O)6]2+ cluster and the remaining water 
molecules. A strategy identical to the one described for 
water was used, training the intermolecular interactions 
separately with a 4.0 Å intermolecular cut-off for the oxygen 
atoms. Using this potential, MD simulations were 
propagated at 300 K reproducing the experimental66 
coordination number (CN=6), and Zn–O distances of both 
the first (2.08 Å) and second hydration shells without further 
optimisation (Figure 3). From random points in the 
configuration space of [Zn(H2O)6]2+ and 20 water molecules 
(intermolecular distances > 1.7 Å, 10 Å cubic box), τacc 
reached 0.5 ps (El = 0.8 kcal mol-1 per H2O, 20 fs interval). 
Note this value is far short of the 100 ps simulations 
performed to generate the RDF and illustrates that a 
potential may be ‘stable’ and not sample any high energy 
regions for t ≫ τacc. Here, the force field for the Zn-water 
cluster was trained on almost 1000 configurations, 
suggesting that ~20 atom components may be the upper 
limit in component dimensionality for which a model can be 
trained within a day. 
 

  
 Figure 3: Zn(aq) simulation. Zn–O radial distribution function averaged from 1 ns of 
cumulative (10 × 100 ps) NVT MD simulations of Zn(II) in aqueous solution at 300 K, 
with the experimental modal Zn–O distance shown in black. Experimental (X-ray 
diffraction) Zn–O distances from ref. 66, octahedral first hydration shell. Shaded 
area denotes the range of experimental second hydration shell (ref. 66 and cited 
within). GAP trained as those in Table 1 using a PBE/400 eV ground truth, intra-
Zn(H2O)6 used a O SOAP rc = 3.0 Å and inter rc = 4.0 Å. 
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Figure 4: Metallocage dynamics. Temporal twist angle θ for an [Pd2L4]2+ metallocage (right) obtained from 100 independent GAP-MD trajectories (each run for 10 ps at 300K), GAP 
trained on a 68-atom [PdL(py)3]2+ system (py = pyridine), representative of the whole metallocage as shown, at 500 K with a 0.2 eV error threshold for the active-learning protocol. 
Time-dependent histogram generated from 50 fs time chunks over the whole 10 ps time period. PBE0-D3BJ/def2-SV(P) ground truth surface. 

Metallocage dynamics 
With a method capable of generating high-quality potentials for 
modestly sized chemical systems, we next demonstrate the 
applicability of the strategy to investigate a supramolecular 
metallocage consisting of >100 atoms including metal ions. As a 
representative example, we selected the [Pd2L4]4+ metallocage 
architecture (L = organic pyridine-based ligand), which occupies 
a prominent place in supramolecular chemistry. Previously, we 
have studied this system due to its catalytic proficiency in Diels-
Alder reactions employing both classical and DFT modelling.67 
The different flexibility of two similar cage architectures was 
found to be key in explaining their contrasting catalytic activity.  
Taking advantage of the symmetry in the system, a 
representative fragment containing one full ligand and three 
pyridine molecules coordinated to a Pd2+ metal ion (68 atoms) 
was used to fit a GAP for the entire cage (138 atoms) in the gas 
phase. This potential was trained in a few days (~1400 CPUh). 
We used the resulting GAP to perform nanosecond MD 
simulations on the whole metallocage at 300 K in the gas phase. 
This simulation took 1 day and ~100 CPUh to complete. For 
comparison, an equivalent AIMD simulation would take around 
50 years with the reference level of theory employed here. The 
flexibility of the system was monitored and compared to the 
one obtained using classical MD simulations in 
dichloromethane solvent. Compared to classical MD 
simulations, using helicity as a measurement of flexibility, our 
potential describes the cage as being more rigid; this suggests 
that the classical potential overestimates the dynamic flexibility 
(Figure 4). This difference is expected as the MM has no C-C≡C-
C dihedral barrier, which is presumably correctly captured in the 
GAP. This example illustrates the general applicability of the 
approach to increasingly complex systems, where the training 
of a simpler but representative fragment is sufficient to capture 
the relevant features of the full system. 
 
Reaction dynamics in gas and solvent phase 
The high dimensionality and ensuing flexibility of machine-
learned force fields makes them highly suitable in principle to 
study reaction dynamics – the latter usually require many costly 
electronic structure calculations to obtain atomic level 

descriptions of reaction mechanisms, solvent effects or post-
transition state (TS) dynamics.68,69 In the following section, we 
show that our data-efficient strategy enables accurate reactive 
potentials (τacc > 100 fs) with only a few hundreds of DFT 
evaluations for a set of prototypical organic reactions. 
 

Gas phase bimolecular nucleophilic substitution  

The SN2 nucleophilic substitution reaction is fundamental in 
organic chemistry and has been extensively studied using AIMD 
and analytically fit PES.68,70 However, even with efficient 
approaches to fitting PES, AIMD methods still require tens of 
thousands of energy evaluations.71 Here, we generated a 
reactive GAP to study the reaction between chloride and methyl 
chloride. By initialising active learning from the transition state 
(TS), the true intrinsic reaction coordinate is reproduced to 
within 1 kcal mol–1 (Figure S16). Interestingly, and unlike our 
previous attempt to generate a DFT-quality GAP by evaluating 
energies and forces on DFTB active-learnt configurations, here 
uplifting a DFT-level GAP to an accurate wavefunction-level GAP 
is possible. This method allows coupled cluster-quality energy 
profile (Figure 5a) and dynamics to be propagated from the TS  
with just 55 energy and (numerical) force evaluations at the 
CCSD(T) level (Figure 5b/S16). The resultant GAP is considerably 
more accurate than the underlying DFT energy profile (dashed, 
Figure 5a). 
 
Post-TS bifurcating pathway in a Diels-Alder reaction 

GAPs for more complex reactions involving reactions that 
proceed on a bifurcating PES can also be trained. These 
reactions typically require AIMD simulations, where selectivity 
is determined from the average behaviour of many trajectories 
leading to either product. Other approaches have also been 
developed.72 We here explored the dimerisation between 
cyclopentadiene, for which endo selectivity has been 
rationalised on the basis of  bifurcating reaction pathways.73 
Once again, initiating active learning from the literature TS (TS1, 
Figure 5) using a DFT method analogous to the one used in the 
original work by Caramella and co-workers affords a reactive 
potential from which 500 fs trajectories were propagated. 
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Figure 5: Gas phase SN2 reactive dynamics. Energetics of a model SN2 reaction in the gas 
phase. (a) Predictions (GAP) and ground-true (DLPNO-CCSD(T)/ma-def2-TZVPP) energy 
values on the MP2/ma-def2-TZVPP intrinsic reaction coordinate (IRC). Shaded region 
bounds the ‘chemically accurate’ (±1 kcal mol–1) region. (b) Parity plots of between GAP 
predictions and true energies from ten 100 fs GAP-MD trajectories initialised from the 
TS (300 K). Dark and light shaded area bound the ±1 kcal mol-1 and ±2 kcal mol–1 error 
regions, respectively. 

Interestingly, we found that propagating the system from this 
TS did not afford any products (P1 or P2, Figure 6), with all 
trajectories leading to the reactant state (Figure S18). Further 
investigation and generation of the relaxed 2D potential energy 
surface over the two possible forming C–C bonds (r1, r2) leading 
to products provided a rather different surface to the one 
suggested in ref. 73, with a flat portion then an incline as r1, r2 
shorten below 2.9 Å, with a steeply exergonic reverse reaction 
(intrinsic reaction coordinate, IRC, shown in Figure S19). As 
noted by Caramella, following the IRC forwards from TS1 the 
reaction proceeds to another TS1’ which is similar in energy (∆E 
= 2 kcal mol-1). By training a GAP at 500 K and propagating GAP-
MD from TS1’, sampling the area of the PES around a valley-ridge 
inflection point (VRI), trajectories did lead to the expected two 
products (e.g., purple line, Figure 6 and Figure S20). With no a 
priori knowledge, apart from the structure of TS1, the topology 
of the bifurcating surface can therefore be revealed efficiently 
using GAP dynamics. Given the strategy is completely 
automated, and with training taking a few hours to days, this 
enables the routine examination of dynamical effects at the 
transition state following its location. 

 
Figure 6: GAP dynamics on a bifurcating surface. 2D PES (B3LYP/def2-SVP) along the 
forming bond distances (r1, r2) in the dimerization of cyclopentadiene. An example of 
GAP-propagated reactive dynamics (300 K) is shown from TS1 (7N in ref. 73), which leads 
to reactants, (representative trajectory in orange), and from TS1’ which leads to products 
(a representative trajectory is shown in purple). 3D projection is truncated at 2.5 eV 
above the minimum for plotting. Interpolated surface used a cubic spline using 
scipy.interp2d with the raw surfaces shown in Figure S21. All trajectories shown in Figure 
S18 and 20. 

Solution phase bimolecular nucleophilic substitution 

The ability to accurately describe bond-breaking/forming paths 
in the condensed-phase is crucial if this strategy is to be applied 
to increasingly complex processes, such as enzymatic reactions. 
Towards this goal, and having accurately generated potentials 
for condensed-phase molecular systems and gas-phase 
reactions, we decided to extend our active learning strategy to 
explicitly solvated reactions; once again, using the SN2 reaction 
between chloride and methyl chloride as a test case. SN2 
reactions have been used as a test case for a recent ML 
potential, but those studies have been limited to the gas phase 
and used thousands of training points.20 In terms of reactions in 
explicit solvent, a NN has been trained by Parrinello and co-
workers to study urea decomposition in water.40  
 
Adopting an identical strategy to the one employed for the 
systems described above, the intra- and inter-molecular PES 
dynamics can be propagated from the TS and the effect of 
explicit solvation interrogated (Figure 7). Using only the gas-
phase TS as an a priori point on the PES the training is complete 
in a day (on a single compute node) if only short time (<1 ps) 
dynamics are of interest. Interestingly, the behaviour in explicit  
water (blue, Figure 7) differs from the implicit counterpart (red, 
Figure 7). Solvent reorganisation is instantaneous in the implicit 
case, which results in oscillations in the C-Cl bond characteristic
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Figure 7: Solution-phase SN2 reactive dynamics. Reactive GAP MD trajectories (lines) propagated from the TS, trained on implicitly solvated configurations (CPCM(Water)-PBE/def2-
SVP, red) and explicitly solvated configurations (PBE/400 eV, blue). Ground truth implicitly solvated surface (cubic interpolated, 5:1) underneath with the error to the GAP prediction 
in Figure S23. Intramolecular GAP used C-only (rcSOAP = 6 Å) descriptor with the intermolecular explicit solvent using a SOAP on O (rcSOAP = 3.5 Å) and Cl (rcSOAP = 4.5 Å, Figure S24). 

of a gas phase reaction. In contrast, in explicit solvent the 
dynamics are more complex, with a slower transition from the 
product channel. Additionally, one of the 10 trajectories re-
crosses the barrier after 170 fs of simulation (Figure S22), where 
the solvent has not reorganised to accommodate the anionic 
chloride yet, making the path to products shallower in energy. 
The component-wise separation of the system also leads to the 
possibility of training to a more accurate ab initio surface for the 
gas phase reaction, in a similar way to QM/MM, but here a 
ML(A)/ML(B) partition is available where A and B are two 
different ground truth methods. Application of this kind of 
hierarchical ML potential fitting will be the subject of further 
work.  

Conclusions 
Studying dynamic processes and the effect of explicit solvation 
on chemical reactions demands a rapid method to develop 
bespoke force-field models with high accuracy. Here, we 
demonstrated that within the Gaussian Approximation 
Potential (GAP) machine learning framework, accurate and 
robust models can be developed efficiently for gas-phase and 
condensed-phase molecular reactions. Our strategy starts from 
a small number of randomly selected points in the configuration 
space, from which active learning training of intra- and inter-
molecular components of the energy and forces is carried out. 
The developed method is completely automated and publicly 
available (https://github.com/duartegroup/gap-train). We also 
define a prospective error metric, which is found to be crucial in 
developing robust active-learning-based potentials, whereas 
correlation on a predefined test set is insufficient to assess the 
quality of such a potential. We illustrate the generality of this 
approach by modelling bulk water, Zn(II) in aqueous solution, 
and chemical reactions in the gas phase and explicit solvent, 
including post-TS cyclisation and SN2 reactions. The diversity of 
the examples presented here demonstrates the general 
applicability of the strategy and encourages applying this 

approach in the modelling of more complex reactions in 
homogeneous and heterogenous environments.  

Methods 
All Gaussian Approximation Potentials (GAPs) were trained 
using the GAP and QUIP codes (Singularity distribution, commit 
#66c553f) and a Smooth Overlap of Atomic Positions (SOAP)57 
kernel with hyperparameters as defined in Table S1. GAP-MD 
simulations were performed with ASE74 interfaced to QUIP with 
the quippy wrapper using the Langevin integrator with 0.5 fs 
timesteps at 300 K unless otherwise specified. Condensed 
phase MD simulations were performed with three-dimensional 
periodic boundary conditions following minimisation and 
equilibration for at least 20 ps. Initial configurations, CUR60 
selection and all learning curves were generated with the gap-
train module, which was used to run the automated fitting 
(Figure 8).75 All active learning was performed using a ‘diff’ 
strategy, where a configuration is added to the training set if |E0 
– EGAP| is larger than a threshold. With system-dependent 
hyperparameter optimisation, using a threshold on the 
maximum atomic variance predicted by the Gaussian process 
(‘gp_var’) can result in accelerated learning (Figure S25). CUR 
selection used SOAPs averaged over atoms in a configuration 
using the Dscribe76 package ('inner’ averaging, over entries of 
the expansion coefficient vector). Intra+Inter (I+I) energy and 
force evaluations used an expansion factor of 10 to ensure no 
intermolecular atoms were within the intra GAP cut-off. The 
NumPy77 implementation introduces a negligible computational 
overhead for expanding the box (~0.1 ms step-1 real time) but 
requires two GAP calculations on the inter and intra 
components, currently carried out in serial. All generated 
potentials, with the exception of the revPBE0-D3 water 
potential and metallocage, were trained in less than a day on 10 
CPU cores. The revPBE0-D3 water potential was constructed 
without any prior data in 5 days (1 intra + 4 inter) and used 20 
CPU cores, while the metallocage fragment was trained for 3 
days also on 20 CPU cores. Explicit SN2 reaction dynamics was 
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performed using intra components for H2O and [Cl⋯CH3Cl]—, 
where the latter, due to the finite atomic cut-off employed, has 
the correct dissociation behaviour when Cl— and CH3Cl are 
distant. 
 
Periodic DFTB calculations performed with DFTB+78 using 3ob79 
parameters, and molecular equivalents using GFN2-XTB80 in XTB 
v. 6.2.3. Periodic pure DFT calculations were performed with 
GPAW81,82 v. 19.8.1 with the PBE83 functional and a 400 eV 
plane-wave cut-off from a dzp LCAO initial guess at the gamma 
point. Hybrid periodic DFT calculations with the revPBE084,85 
functional combined with the D386 dispersion correction were 
performed with CP2K.87 
 
Molecular DFT, MP2 and coupled cluster [DLPNO-CCSD(T)] 
calculations performed with ORCA88,89 v. 4.2.1 wrapped with 
autodE90 using PBE83 and PBE085 functionals, (ma)-def2-SVP, 
def2-TZVP, ma-def2-TZVPP basis sets.91 AIMD calculations at 
the DFTB level performed with DFTB+ with 3ob parameters79 
and MM simulations performed with GROMACS92,93 2019.2 with 
TIP3P parameters.94  
 
AN1-1x NN trained using on a subset (6276 configurations) of 
the full ANI-1x dataset,95 containing only water clusters with 
energies and forces re-evaluated at DFTB(3ob) using the 
TorchANI96 implementation with only O and H networks. All 
default parameters and training with forces using a batch size 
of 128, appropriate for fewer data. Best validation RMSE = 1.18 
kcal mol–1 after 218 epochs. Behler NN16 trained on 7258 RPBE 
configurations from ref. 97, re-evaluated at DFTB(3ob) with 
n2p298 using the default parameters and symmetry functions.  

 

Figure 8: Example Python input script required to train a bulk water model from 
scratch at the DFTB level using four CPU cores. 
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