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Ordered data abound, yet statistical tests tend

to ignore this order or do not make full use of

it. We present non-parametric tests which probe

the sign order of the residuals comprehensively.

Compared to Pearson’s �2
test and commonly

used sign-based tests, the h and (�2, h) tests

have superior statistical power over orders of

magnitudes of the numbers of data points.

Extracting information from one-dimensionally or-
dered data by model fitting is a fundamental and ubiq-
uitous task in all sciences. Order in data is induced by
time and frequency, space and wavelength, experimen-
tal conditions like concentration, and countless other or-
der parameters. Good fits aim to extract the maximum
amount of useful information from the data. Statistical
tests ensure the goodness of fits.

Widely used statistical tests, however, are blind to or-
der in the data and thus discard valuable information.
For example, Pearson’s1 �2 depends only on the abso-
lute values of the N residuals ri = fi�di between model
fi and data di. Yet, practitioners do not take a reason-
able �2 and the resulting high score in a goodness-of-fit
test at face value. They carefully inspect the residuals
visually and search for recognizable patterns. System-
atic deviations or correlations indicate that one or more
of the underlying assumptions are wrong.

The human intuition needed to judge the randomness
of the residuals is quantified in sign-based tests. The runs
test of Wald and Wolfowitz2 uses the number of runs r
as a test statistic. A run is defined by all consecutive
residuals of equal sign si = sign(ri). Schilling’s test3 uses
the length lmax of the longest run as a test statistic and is
applied in the CorMap4 method, for example. However,
the runs test and the longest run test both probe only
a small part of the information contained in the ordered
signs and, therefore, have lower power than Pearson’s �2

(Supplementary Fig. 1).
Here we introduce test statistics using the full distri-

bution of run lengths and thus assessing sign order com-
prehensively. We collect the lengths of runs of positive
and negative signs in a single histogram h (Fig. 1 and
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Supplementary Fig. 2) and calculate its probability p(h)
analytically (Methods). Probabilities of common sign-
based test statistics can be obtained by marginalization.
The number of runs r normalizes h and lmax is the length
of the longest run counted in h. The h statistic is inde-
pendent of the error model, the error estimates, and the
magnitudes of the residuals, and consequently of the �2

statistic.
For accurate errors, combinations of sign-order infor-

mation and �2 give even more powerful tests. The
weighted runs test of Beaujean and Caldwell uses the
most poorly �2-weighted run as a statistic5. Here we
combine the full run length histogram h with Pearson’s
�2 statistic into the comprehensive (�2, h) statistic, with
a probability that factorizes into p(�2, h) = p(�2)p(h)
(Methods). Note that we distinguish probabilities and
probability densities by the argument of p(·).
As in the Fisher-Irwin test7,8, we use the probabil-

ity p(h) as a measure for typicality of an observed run
length distribution. Typical distributions h close to the
expected distribution6 / 2�l of the run length l have high
probability. Atypical or extreme distributions h with, for
example, multiple long runs will have low probabilities
(Fig. 1). We introduce the cumulative distribution func-
tion cdf(I) of the Shannon information9 I = � ln p(h)
to calculate P-values, P (I) = 1�cdf(I) (Supplementary
Fig. 3).
To combine the h and �2 statistics, we extend the

probability-based definition of typicality to probability
densities p(x) of random continuous variables x. Fol-
lowing Jaynes10, we define the Shannon information as
I(x) = lnm(x)/p(x), where m(x) is the invariant mea-
sure. With this definition, both Shannon information
and P-values are invariant under variable transforma-
tions. For the dimensionless �2 statistic, m(�2) = const.
The Shannon information distribution (SID) for the h

statistic can be calculated by exact enumeration of the
partitions of the integer N or estimated from randomly
generated sign configurations5). For the (�2, h) statistic,
we multiply p(h) with exact probabilities p(�2). Shannon
information values are additive and compiled in cumula-
tive distribution functions (Methods and Supplementary
Fig. 3).
Shifted gamma distribution with three parameters ac-

curately describe the SIDs (Supplementary Note 1 and
Supplementary Figs. 4-6). Using B-splines11 to represent
the dependence of the gamma distribution parameters on
the number of data points N , we can calculate P-values
for all of our test statistics from N ⇡ 50 to N = 100000
accurately and e�ciently (Supplementary Figs. 6 and 7).
The gamma distribution form of the SID is a general fea-
ture (Supplementary Note 1). We note here that it also
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FIG. 1. The histogram h of the run lengths of the signs of the residuals, and its combination with Pearson’s
�2, (�2, h), sensitively detect systematic deviations not detected by �2. (a-f) Results for six di↵erent models (top
panels) with N = 100 data points and added Gaussian noise with zero mean and unit standard deviation. (Top to bottom)
Models, residuals, signs of the residuals, run length distribution, and bar plot of the P-values for the �2, (�2, h), and h tests as
inset. For the true model (a), the run length multiplicities fluctuate about their expected values6 2�l�1N/(1 � 2�N/2) (gray
bars in bottom panels) and all P-values are large. For the incorrect models 1-5 (b-f), weight in the run length histograms is
shifted to larger lengths. The resulting P-values for the h and (�2, h) tests are orders of magnitude lower compared to the �2

test.

captures cdf(� lnP ) defining the statistical power.

The h test detects systematic deviations masked by
common tests. We generated six realizations of N=100
ordered data points according to the true model (Fig. 1a)
with added uncorrelated Gaussian noise of zero mean and
unit variance. The �2, (�2, h), and h tests all give a high
P-value to the true model. However, for the incorrect
models 1-5, the (�2, h) and h tests consistently outper-
form the �2 test, with P-values that are at least one or-
der of magnitude smaller (Fig. 1b-f). h dominates in the
(�2, h) test, with similarly low P-values for h and (�2, h)
tests. Note that the combined (�2, h) test usually has
a lower P-value than the individual tests for incorrect
models (Fig. 2).

The h and (�2, h) tests outperform the �2 test over
orders of magnitudes in the data size N (Fig. 2). We
added noise with di↵erent standard errors to the five in-
correct models (Fig. 1b-f) and evaluated the statistical
power of these tests. Our tests consistently outperform

the �2 test, as exemplified by the power correlations for
N = 500, 5000, and 50000 at significance level ↵ = 0.01
(Fig. 2a-c). Also, the h test has superior statistical power
compared to the runs test2 (Supplementary Fig. 8) and
the longest-run test3 (Supplementary Fig. 9).

To systematically compare the data-size dependence of
the statistical power, we assessed the �-risk of our tests
evaluated for noise levels at which the �2 test loses its
power. The �-risk of accepting an incorrect model, given
by one minus the statistical power, is close to zero for
noise levels where the test is powerful. For given signif-
icance level ↵, model m, and number of data points N ,
we determine the value of the standard deviation �̃ such
that the �-risk of the �2 test has a fixed value of 4↵, i.e.,
�(N ;�2) ⌘ 1�pow(N,�2, �̃,m,↵) = 4↵, where pow(·) is
the statistical power (Methods). We then evaluate the �-
risk of a test T for �̃ as �(N ;T ) ⌘ 1�pow(N,T, �̃,m,↵).
The �-risk ratio �(N ;T )/�(N ;�2) = �(N ;T )/(4↵) is
thus the factor by which the �-risk changes if we use
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FIG. 2. The h and (�2, h) tests have superior statistical power compared to the �2 test over orders of
magnitude in the number of data points. (a-c) Power correlation for the h statistic (left) and (�2, h) statistic (right) with
the power of the �2 statistics for (a) N = 500, (b) N = 5000, (c) N = 50000 data points for the alternative models 1-5 shown in
Fig.1f-j and a significance level ↵ = 0.01. Noise levels increase from right to left and top to bottom. The lines in the correlation
plot are fits based on an empirical equation describing the dependence of the statistical power on the noise (Methods). (d-g)
Ratio of the �-risks of the h test (top) and the (�2, h) test (bottom) to the �-risk of the �2 test as function of the number of
data points. Noise levels were set by fixing the �-risk of the �2 test at �(N ;�2) = 4↵ for significance levels ↵ = 0.05 (d), 0.01
(e), 0.005 (f), 0.001 (g). Below the black horizontal lines, the �-risk is lower than that of the �2 test.

test T instead of the �2 test for noise levels where the �2

test has a �-risk of 4↵. �-risk ratios larger/smaller than
one correspond to the test T being less/more powerful
than the �2 test.

Although the h statistic relies on the signs of the resid-
uals only, it performs significantly better than the �2

statistic over a large range of data sizes (Fig. 2d-g, top
panels). With increasing data size, the �-risk ratios de-
crease and drop to values as low as ⇠0.4, ⇠0.2, ⇠0.1,
⇠0.02 for ↵ = 0.05, 0.01, 0.005, and 0.001, respectively.
The locations of the minima and the point of equal power,
where the �-risk ratio is one, move to larger sizes for
larger ↵-values. Uncertainties in the standard errors,
which we assume here to be known exactly, will further
degrade the performance of the �2 test but not of the h
test.

The (�2, h) statistic has lower �-risk than the �2 statis-
tic already for a few tens of data points (Fig. 2d-g, bot-
tom panels). The data-size dependence has a shape simi-
lar to that for h but shifted to even smaller �-risk ratios.
The ratios drop to values of ⇠0.1, ⇠0.01, ⇠ 10�3, and
⇠ 10�4 for ↵ = 0.05, 0.01, 0.005, and 0.001, respectively.

Asymmetric sign probabilities can be conveniently

handled using the h± and (�2, h±) statistics (Methods,
Supplementary Note 2, and Supplementary Fig. 10).
Asymmetric sign probabilities arise, for instance, for
Poisson noise with low count numbers. The h± =
(h+, h�) statistic consists of separate histograms h+ and
h� for runs of positive and negative signs, respectively.
For symmetric probabilities, the statistical powers of h±-
based tests and h-based tests are comparable (Supple-
mentary Figs. 12-15). Using h±, we avoid the extra step
of marginalizing p(h±) to obtain p(h) for asymmetric sign
probabilities. When testing if two samples have been
drawn from the same distribution following Wald and
Wolfowitz2, the superior h or h± tests should replace the
runs test. p(h) and p(h±) are properly normalized and
can be readily used in Bayesian inference and machine
learning to avoid over- and underfitting.

We confirmed our findings and illustrate the sizeable
benefit of using our tests for 353 models fitted to small-
angle scattering X-ray data in SASBDB12 (Supplemen-
tary Note 3 and Supplementary Fig. 11). About one
quarter of all good fits w.r.t. �2 at ↵ = 0.01, are poor
fits w.r.t. h and thus flagged for re-examination (Supple-
mentary Fig. 12). The CorMap4 method identifies 10%
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as poor fits, indicating that it would benefit significantly
from replacing the longest run test with the h test.

It is straightforward to extend the h and h± statis-
tics to ordered data subject to correlated noise. Inter-
preting the signs of the residuals as spins, the uncorre-
lated and correlated cases correspond to one-dimensional
Ising models without and with spin-spin couplings. Con-
stant nearest-neighbor couplings correspond to the sim-
plest case of exponentially decaying correlations. Par-
tition functions and run length distributions h and h±

can then readily be calculated using the machinery of
statistical mechanics (Methods). Proceeding as before
in the case of uncorrelated noise, one can then calculate

P-values as measures of surprise.

An open source Python 3 implementation is avail-
able free of charge at https://github.com/bio-phys/
hplusminus.
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METHODS

The h statistic. The histogram of run lengths for
a given configuration is given by the vector of integers
h ⌘ (h1, h2, . . . , hN ), where 0  hi  N is the number of
runs of length i in a sign configuration. We collect the
lengths of runs of positive signs and the lengths of runs
of negative signs in the single histogram h. Note thatPN

i=1 hi = n, where n is the number of runs, and thatPN
i=1 ihi = N , where N is the number of data points.

This means that h is a partition of the integer N .
We assume that a configuration of N signs is generated

by randomly drawing positive and negative signs with
equal probability. Then, the conditional probability to
observe n runs is given by

p(n|N) =
1

2N�1

✓
N � 1

n� 1

◆
(1)

The binomial coe�cient
�N�1
n�1

�
is the multiplicity of di-

viding N sites in n segments and 2N�1 is the normaliza-
tion constant. Here and in the following we use the con-
vention that the binomial coe�cient

�N
n

�
= 0 for n < 0

and n > N .
We calculate the number of possibilities to arrange n

runs. If all runs were of di↵erent length then there would
be n! possibilities. However, we have hi runs of length
i such that we have to correct n! by dividing out hi! for
all i, i.e., the multiplicity of h is given by the multino-
mial coe�cient n!/

QN
i=1 hi!. The normalization constant

is given by the total number of configurations with n seg-
ments, i.e., by

�N�1
n�1

�
. Consequently, the probability to

observe a run length distribution h for a given number of
data points N and number of runs n is given by

p(h|n,N) =
1�N�1

n�1

� n!
QN

i=1 hi!
(2)

Thus, we obtain for the joint probability p(h) ⌘
p(h, n|N) = p(h|n,N)p(n|N) of observing a run length
distribution h with n runs of finite length

p(h) =
1

2N�1

n!Q
i hi!

(3)

In the Supplementary Note 2, we present a corresponding
expression for p(h) generalized to asymmetric probabili-
ties for the signs.

The h±
statistic. The h± = (h+, h�) statistic is

given by the pair of run length histograms of runs with
positive signs, h+ = (h+

1 , . . . , h
+
N ), and runs with nega-

tive signs, h� = (h�
1 , . . . , h

�
N ). Note that

PN
i=1 h

S
i = nS

and
PN

i=1 ih
S
i = NS , where nS is the number of runs

with sign S = +,� and NS is the number of positive
(S = +) and negative (S = �) signs.

We consider run length distributions for positive and
negative signs separately. Of n runs, n+ runs have sign
s = +1 and n� runs have sign s = �1, i.e., n = n+ +

n�. Positive and negative runs alternate such that |n+�
n�| = 0 if n is even and |n+ � n�| = 1 if n is odd. The
conditional probability to observe n+ runs of sign +1,
and consequently n� = n� n+ runs of sign �1, is given
by

p(n+|n even, N) = �
⇣
n+,

n

2

⌘
(4)

for even n and by

p(n+|n odd, N) = (5)

1

2


�

✓
n+,

n+ 1

2

◆
+ �

✓
n+,

n� 1

2

◆�

for odd n. Here, �(x, y) = 1 if x = y and zero otherwise.
In summary,

p(n+|n,N) =

(
p(n+|n even, N) for n even

p(n+|n odd, N) for n odd
(6)

The conditional probability to observe N+ = N �N�

positive signs is determined by the product of the multi-
plicities of distributing N+ positive signs on n+ runs and
N� negative signs on n� runs, i.e.,

p(N+|n, n+, N) =
1

Z

✓
N+ � 1

n+ � 1

◆✓
N� � 1

n� � 1

◆

for n+ > 0 and n� > 0 and by p(N+|n, n+, N) = 0 else.
The normalization constant Z is given by

Z =
N�n�X

N+=n+

✓
N+ � 1

n+ � 1

◆✓
N� � 1

n� � 1

◆
= (7)

✓
N � n+ � 1

n� � 1

◆
2F1(n

+, n+ + n� �N ; 1 + n+ �N ; 1)

��1

where 2F1 is the ordinary hypergeometric function.
The conditional probability to observe a run length

histogram hS ⌘ (hS
1 , h

S
2 , . . . , h

S
N ), where S = +,�, is

p(hS |nS , NS , N) =

✓
nS

h1 . . . hNS

◆✓
NS � 1

nS � 1

◆��1

(8)

for nS > 0 and by p(hS |nS , NS , N) = 1 otherwise.
Consequently, the probability to observe the two run

length histograms h+ and h� is given by

p(h±) = (9)

⇥p(h+|n+, N+, N)p(h�|n� n+, N �N+, N)

⇥p(N+|n, n+, N)p(n+|n,N)p(n|N)

In the Supplementary Note 2, we present a correspond-
ing expression for p(h±) generalized to asymmetric prob-
abilities for the signs.
Combination with �2

statistic. Pearson’s �2 test
is based on the probability density of �2 given by

p(�2|k) =
�
�2

�k/2�1
e��2/2

2k/2�
�
k
2

� (10)

where k is the number of degrees of freedom. For k � 2,
p(�2|k) has a single peak at k�2. We introduce p(�2) =
p(�2|N).



6

P-value calculation using the Shannon informa-

tion distribution. We assume that our discrete statis-
tic of state i is called xi and has a probability pi. For
a given value xk we now calculate the probability that
a state xj randomly sampled from the discrete distribu-
tion {xk, pk} has a probability pj  pk, or equally that
Ij � Ik where Ik = � ln pk is the Shannon information9.
The probability distribution of the Shannon information
is then given by counting all states that have the same
probability, i.e.,

p(Ik) = pk
X

i

�[Ik � Ii] (11)

where the sum extends over all states and where �[y] = 1
if y = 0 and zero else. Thus, the P-value is determined
by the cumulative distribution function of the Shannon
information,

P (Ik) = ccdf(Ik) = 1� cdf(Ik) =
X

i

⇥[Ik �Ii]pi (12)

where ⇥[y] = 1 if y � 0 and zero otherwise. We intro-
duced ccdf(Ik) for the complementary cumulative distri-
bution function.

For example, for the probability distribution given by
eq 9, we obtain

ccdf(I) =
X

h±

p
�
h±�⇥

⇥
� ln p

�
h±|N

�
� I

⇤
(13)

where we sum over all run length distributions h± and
where I is the Shannon information of the sample. Using
that p (h±) = 1

2N
P

s1=±1 . . .
P

sN=±1 �(h
±({si}) � h±),

where we sum over all 2N sign configurations {si}, the
above equation can be rewritten as

ccdf(I) = 1

2N

X

s1=±1

. . .
X

sN=±1

⇥
⇥
� ln p

�
h±({si})

�
� I

⇤

(14)
where ⇥[y] = 1 if y � 0 and zero else.

For continuous random variables x and constant in-
variant measure m(x), we obtain

p(I) =
Z

p(x)�[I(x)� I]dx (15)

where �(·) is Dirac’s �-function. We obtain that

p(I) =
X

i

e�I(xi)

|I 0(xi)|
(16)

where xi are the solutions to I(x) = � ln p(x) and I 0(x)
is the first derivative of I(x). The P-value is given by

P (I) = ccdf(I) = 1� cdf(I) =
Z

p(x)⇥[I(x)� I]dx
(17)

In practice, we generate M sign configurations ran-
domly, calculate the probabilities according to eqs 3

or 9, and rank them from smallest to largest, i.e.,
(I1, I2, . . . , IM ) with Ii  Ii+1. We then calculate the
P-value for the Shannon information I of a sign config-
uration by counting all sampled values of the Shannon
information Ii � I and dividing by the number of sam-
ples M , i.e.,

P (I) = k

M
(18)

with k given such that Ik � I and Ik+1 < I. Note
that by calculating the Shannon information instead of
probabilities we avoid numerical problems arising when
evaluating eqs 3 and 9 directly.
For a continuous random variable and a constant in-

variant measure m(x), we use the probability density to
rank samples according to typicality and to calculate the
P-value as for discrete random variables.
The SIDs of various probability distributions closely

follow gamma distributions (Supplementary Note 1).
The SIDs of the Gaussian distribution and the exponen-
tial distribution are given exactly by shifted gamma dis-
tributions. For the truncated Gaussian distribution we
obtain a truncated and shifted gamma distribution. The
SID of the �2 distribution can be accurately approxi-
mated by a shifted gamma distribution and this approx-
imation becomes more accurate for increasing number of
degrees of freedom (Supplementary Fig. 6)
Statistical power. The cumulative P-value distri-

bution function defines the statistical power of a test
statistic for a given model m, i.e.,

pow(N,T,�,m,↵) =

Z ↵

0
p(P |N,T,�,m)dP (19)

where P denotes the P-value and p(P |N,T,�,m) is the
distribution function of P-values generated by all noise
realizations with standard deviation �. The statistical
power quantifies how strongly the P-value distribution
function is peaked at P = ↵. If m is the true model then
the P-value distribution is flat and pow(N,T,�,m,↵) =
↵.
Empirically, we find that the statistical power as a

function of the noise is well described by

pow(�;↵, ki, bi) = ↵
exp

h
� ki

(��bi)
2

i

(20)

for � � bi, where ki and bi are positive constants for a
given test statistic Ti, model, and ↵ value. For �  bi,
we set pow(�;↵, ki, bi) = 1.
From eq 20, we can express � and obtain for a given

value of the statistical power pow

�(pow) =

s
ki

ln ln↵
ln pow

+ bi (21)

We can use this expression to describe the correlation
of the statistical power of a test Tj with a test Ti by
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inserting eq 21 into eq 20

ln pow(�(pow);↵, kj , bj)

= exp


� kj
(�(pow)� bj)2

�
ln↵ (22)

Correlated noise. We now introduce sign corre-
lations by biasing configurations represented by his-
tograms. The histograms h and the pair of histograms
h± = (h+, h�) are coarse-grained representations of the
sign configuration. h and h± are complete descriptions
of the configuration space in the sense that each sign
configuration can be assigned to exactly one histogram
h and exactly one pair of histograms h±. A physically
appealing way to introduce correlations is to interpret
the signs as spins of a one-dimensional Ising model. We
define energy potentials E(h) and E(h±) that depend on
h and h±, respectively. The probability to observe the
histogram h then becomes

p(h|E) / p(h) exp[�E(h)] (23)

and analogously for h±.
For nearest neighbor coupling J we have E =

�J
PN�1

i=1 sisi+1 = �J(N � 2n + 1) with the number

of runs given by n =
PN

i=1 hi. For this simplest cor-
related model, the Boltzmann distribution is given by
exp[�E]/ coshN�1(J) and the sign-sign correlations de-
cay exponentially in the thermodynamic limit, hsisji /
exp[�|i � j|/⇠] with ⇠ = 1/ ln tanh(J). We can also
add a field coupling to the spins, which then represents
asymmetric error distributions. With these newly de-
fined probabilities, we can proceed as in the case for un-
correlated noise and calculate P-values as measures for
typicality.

Calculation details. We define five models for the
di↵erence between the true model (Fig. 1a) and alterna-
tive models (Fig. 1b-f). For the true model, this di↵er-
ence is zero. The five alternative models m1, . . . ,m5 have
been generated using step functions and they have been
least-square fitted to the true model. Using a scale pa-
rameter 0 < a < 1, we define steps at indices round(aN)
for each data size N . Model 1, 2, and 3 have a single
step at a = 0.2, 0.4, and 0.5, respectively. Model 4 has
two steps at a = 0.2 and a = 0.4. Model 5 has 4 steps at
a = 0.2, 0.4, 0.6, and 0.8. We have chosen the plateau
values, rounded to the second digit after the comma,
of the models in Fig. 1b-f as (�0.76, 0.19) for model
1, (�0.47, 0.31) for model 2, (�0.38, 0.38) for model 3,
(�0.19, 0.76,�0.19) for model 4, (0,�0.60, 0, 0.60, 0) for
model 5.

We then resolved these models with equally spaced
data points. We used two sets of numbers of data points.
To highlight results for individual values of N , we chose
the numbers of data points as N = i ⇥ 10j , where
i = 1, 2, . . . 9 and j = 1, . . . 4, and N = 105. To study
the size dependence of the statistical power and the �-
risk we use an approximately logarithmic scale for N ,

i.e., N = round(101+0.1i) with i = 0, 1, . . . , 40 such that
N = 10, 13, 16, . . . , 79433, 100000.
To the models we added uncorrelated Gaussian noise

N (0,�) with zero mean and standard deviation �. To
simplify the scan of the noise level for the di↵erent models
and data sizes, we chose the standard deviation � by
setting the variance to �2 = s2

p
N/

PN
i=1 f

2
i . fi are the

values of the model and s is a scaling factor. We set
s = s0/1.8, where s0 takes on 181 equidistant values with
spacing 0.05 in the closed interval [1, 10]. With these
definitions we make sure that we approximately cover
the same range of the statistical power for the �2 test for
all N .
For the P-value calculation, we have to calculate the

distribution of the test statistics for the true model. To
do so, we added normally distributed noise to the mod-
els, evaluated for all noise realization the statistics and
their probabilities, and recorded them in lists. We eval-
uated the �2, h, and h± statistic for 106 samples. For
the (�2, h) and (�2, h±) statistic, we take advantage of
the independence of the �2 statistic and the h and h±

statistic. We generated 5000 �2-values and evaluated
their log-probabilities. We also generated 20000 sign
configurations and evaluated h and h±, and the respec-
tive log-probabilities for those. We then summed up the
Shannon information values corresponding to the prod-
ucts p(�2)p(h) and p(�2)p(h±), sorted the list, and sam-
pled only every 100th value to reduce the size. We then
formed cumulative histograms of the Shannon informa-
tion for each statistic (Supplementary Fig. 3 for an ex-
ample with N = 100).
We perform least-square fits of the cumulative gamma

distribution function to each of the cumulative Shan-
non information distribution functions and extracted the
shape parameter ↵, the inverse scale parameter �, and
the shift or location parameter Io. Note that we use a
di↵erent font for the gamma distribution parameters ↵
and � to distinguish them from the significance level ↵
and the �-risk. We fitted smoothing B-splines11 to these
parameters as functions of the logarithm of the number
of data points N (Supplementary Fig. 6).
To calculate the statistical power for the considered

models, we generated for each model and �-value 100000
samples. For comparison, we evaluated the P-values for
these samples using the numerically estimated cumula-
tive SID for the true model and using its gamma distribu-
tion approximation. We collected the P-values in cumu-
lative distribution functions. We obtained the statistical
power by evaluating the linearly interpolating function
of the cumulative P-value distribution function for the
given significance level ↵.
We calculated the �-risk ratio for the P-values which

we obtained using the numerically estimated cumula-
tive SID and its gamma approximation. These esti-
mates agree excellently with each other (Supplementary
Fig. 16). In Fig. 2, we show results from a power-law fit
to the �-risk ratio calculated using the gamma approx-
imation. We fitted a function c�d with fit parameters
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c and d to the �-risk ratio as a function of the �-risk
for the �2 test in the interval � 2 [10�3, 10�1]. The �-
risk ratios values calculated for the gamma approxima-
tion and calculated from the power-law approximation of
the �-risk ratio agree accurately with each other (Supple-
mentary Figs. 15 and 17). Importantly, we can reliably
extrapolate to extremely low values of the �-risk ratio.
For example, for the (�2, h) test and a significance level
↵ = 0.001, the extrapolated �-risk ratio reaches ⇠ 10�5

for N >⇠ 104. That is, the �-risk of the (�2, h) test is
⇠ 10�5 ⇥ 4↵ = 4 ⇥ 10�8. To estimate the �-risk ratio
without extrapolation, we would have to sample signifi-
cantly more than 109 noise realizations.

We used the Z-score approximation of the runs test

of Wald and Wolfowitz and calculated two-tailed P-
values for Z = (r � µr)/�r where r is the number of
runs and where µr = 1 + (2N+N�)/N and �2

r =
(2N+N�(2N+N�–N))/(N2(N–1)).
We calculated the cumulative probabilities cdf(lmax)

for the longest run lmax following Ref. 3. We then cal-
culate a two-tailed P-value by P (lmax) = 2cdf(lmax) if
cdf(lmax) < 0.5 and P (lmax) = 2[1� cdf(lmax)] else.
For all considered statistics, system sizes, and noise

levels, and for given ↵-value, we fitted eq 20 to the sta-
tistical power as a function of � using the fit paramters
ki an bi. We use these fitted values of the parameters
to reproduce the correlations of the statistical powers of
two test statistics using eq 22 as shown in Fig. 2a-c.
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Supplementary Figure 1. The runs test r of Wald and Wolfowitz1 and the longest-run test lmax by Schilling2

perform worse than the �2 test for all data sizes. For the models shown in Fig. 1b-f of the main text (colors), we show
the �-risk relative to the �-risk of the �2 statistic as a function of the number of data points N . We fixed the �-risk of the
�2 test as �(N ;�2) = 4↵ for the significance level ↵ = 0.05, 0.01, 0.005, 0.001 and evaluated the �-risk for the r and lmax test
statistics for the corresponding noise levels. The black horizontal lines indicate a �-risk ratio of one where both tests have equal
power. In each of the four subplots, the top panel shows results for the runs test of Wald and Wolfowitz (r) and the bottom
panel shows results for Schilling’s longest-run test (lmax). Note that we evaluated the longest run test of Schilling for data sizes
up to N = 1000 only because the recursive calculation of the probability2 fails for larger sizes.
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Supplementary Figure 2. Illustration of run-length distributions underlying the h test statistic. (a) To assess the
agreement of a model (blue line) with the data (orange symbols with errorbars indicating the standard error of the mean), we
(b) plot the residuals scaled by the inverse standard error of the mean. (c) The signs of the residuals (blue disks) form runs of
consecutive sign values (red bars). The red numbers next to the runs indicate their lengths. (d) The multiplicities of the run
lengths l (circles) fluctuate about their expected values3 2�l�1N/(1� 2�N/2) (gray bars).
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SUPPLEMENTARY NOTE 1: PROBABILITY
DISTRIBUTION OF THE SHANNON

INFORMATION

Supplementary Figure 3. We use cumulative distribu-
tion functions cdf(I) of the Shannon information I
to calculate P-values, P (I) = 1�cdf(I) . The Shannon
information is given by I = � ln p, where p is the probability
(density) of the test statistic. Top to bottom, we show results
for the �2, h, h±, (�2, h) and (�2, h±) statistics for N = 100
data points. We randomly generated sign configurations and
collected the corresponding values of the Shannon informa-
tion I in complementary cumulative distributions functions
1�cdf(I) (red solid lines). These functions closely follow com-
plementary cumulative shifted gamma distributions, which
have been least-square fitted to the numerical data (black
dashed line). For the values of the fit parameters see Supple-
mentary Fig. 6.

We can calculate the Shannon information distribution
p(I) of a probability distribution p(x) of a continuous
scalar variable x directly via

p(I) =
X

i

p2(xi)

|p0(xi)|
=

X

i

e�I(xi)

|I 0(xi)|
(1)

where p0(x) and I 0(x) are the first derivative of the prob-
ability density p(x) and the Shannon information I(x)
with respect to x, respectively, and where the xi are so-
lutions to

I = � ln p(x) (2)

The Shannon information distribution follows a
gamma distribution in many important cases. In the
following four examples, p(I) is either exactly given by,
proportional to, or approximated by a shifted gamma
distribution,

�(I � Io,↵,�) =
��↵(I � Io)↵�1e��(I�Io)

�(↵)
(3)

↵ is the shape parameter and � the inverse scale param-
eter. The shift parameter Io is determined by the largest
value of the probability density, pmax, as Io = � ln pmax.
Exponential distribution. For the exponential distri-

bution

p(x) = ke�kx (4)

we obtain

p(I) = e�I

k
= e�(I+ln k) = � (I � Io; 1, 1) (5)

where Io = � ln k and Io  I  �1.
Gaussian distribution. For the Gaussian distribution

p(x) =
1p
2⇡�2

e�
(x�µ)2

2�2 (6)

we obtain

p(I) = �

✓
I � Io;

1

2
, 1

◆
(7)

where Io = ln
p
2⇡�2.

Truncated Gaussian distribution. For the truncated
Gaussian distribution given by

p(x) =
1

p
2⇡�2erf

⇣
wp
2�2

⌘e�
x2

2�2 (8)

for �w < x < w and zero otherwise, we obtain that
the probability distribution of the Shannon information
is proportional to a shifted gamma distribution, i.e.,

p(I) = erf�1

✓
wp
2�2

◆
�

✓
I � Io;

1

2
, 1

◆
(9)

where Io = ln
p
2⇡�2/erf

⇣
wp
2�2

⌘
and Io  I 

� ln p(w).
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Supplementary Figure 4. The Shannon information distribution functions closely follow gamma distributions. We
plot on a semi-log scale numerical results for the Shannon information distributions functions p(I) for the �2, h, h±, (�2, h),
and (�2, h±) statistics for N = 50 (blue), N = 100 (orange), N = 500 (red), N = 1000 (green), N = 10000 (magenta),
N = 100000 (brown) data points. Least-square fits of the gamma distribution (black dashed lines) agree excellently with the
numerical results. For the values of the fit parameters see Supplementary Figs. 5 and 6.

Supplementary Figure 5. The Shannon information dis-
tribution function of the �2 statistic can be summa-
rized by only three parameters for given N . The
shifted gamma distributions �(I � Io;↵,�) (eq 3) have been
least-square fitted to the numerically determined Shannon in-
formation distributions p(I) using Io, ↵, and � as fit param-
eters. We show as black lines the parameters for the approx-
imate expression given by eq 12 with ↵ = 1/2, � = 1, and
Io = � ln p(N�2|N), where p(N�2|N) is the �2 distribution
given by eq 10 of the Methods evaluated at its maximum.

Multivariate normal distribution. The multivariate
normal distribution in n dimensions is given by

p(x) =
1

(2⇡)
n
2
e�

1
2

Pn
i=1 x2

i (10)

Its maximum defines Io = n
2 ln(2⇡). Using spherical

coordinates in n dimensions and that the surface of an
n-dimensional sphere is given by S = 2⇡

n
2 Rn�1/�

�
n
2

�
,

with R2 =
Pn

i=1 x
2
i , we obtain

p(I) = �
⇣
I � Io;

n

2
, 1
⌘

(11)

�2-distribution. As we show next, the Shannon in-
formation distribution function of the �2-distribution
p(�2|N), defined in eq 10 of the Methods, closely fol-
lows a gamma distribution even for just a few degrees of
freedom. That is,

p(I) ⇡ �

✓
I � Io;

1

2
, 1

◆
(12)

with Io = � ln p(N � 2;N) and Io < I < 1. The values
of the shape parameter ↵ and the inverse scale parameter
� are identical to the values for a Gaussian distribution.
The reason is that the �2 distribution approaches the
Gaussian distribution for increasing number of degrees
of freedom. Consequently, this approximation becomes
more accurate for larger N .
In the following we derive the gamma distribution ap-

proximation of the Shannon information distribution for
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Supplementary Figure 6. The Shannon information distribution function of a statistic is summarized by only
three parameters for given N . The shifted gamma distributions �(I � Io,↵,�) (eq 3) have been least-square fitted to
the numerically determined Shannon information distributions p(I) using the location parameter Io, the shape parameter ↵,
and the inverse scale parameter � as fit parameters. Results for the h, h±, (�2, h), and (�2, h±) statistics (left to right) show
a smooth dependence on the data size for all statistics. The black lines show smoothing B-spline fits to the parameters as
a function of log10(N) in the range from N = 30 to N = 100000. With this B-spline representation, we can accurately and
e�ciently calculate P-values from N ⇡ 50 to N = 100000 data points.

Supplementary Figure 7. Validation of the P-value calculation using Shannon information distributions repre-
sented by gamma distributions. We use smoothing B-spline representations for the parameters of the gamma distribution
↵, �, Io as functions of the numbers of data points N (vertical axis; see Supplementary Fig. 6) and compare it to our numerical
results generated by sampling random sign configurations (horizontal axis). Results for N = 50, 500, 5000, and 50000 confirm
that the B-spline representation is accurate and that we can use it to accurately calculate P-values from N ⇡ 50 to N = 100000.

the �2-distribution to highlight the underlying approxi-
mations. The derivative of the Shannon information is
given by

I 0(x) =
2� k

2

1

x
+

1

2
=

1

2


1� k � 2

x

�
(13)

The two solutions of I = � ln p(x) are given by

xn = (2� k)Wn [A(I)] (14)

where we introduced

A(I) =

h
e�I2

k
2 �

�
k
2

�i 2
k�2

2� k
(15)

and where n = 0,�1 indicate the two branches Wn(·) of
the Lambert W function. This function, also called the
product logarithm, is defined as the inverse function of
f(x) = xex. We thus obtain for x�1 > k � 2

|I 0(x�1)| =
1

2


1� k � 2

x�1

�
(16)

and for x0 < k � 2

|I 0(x0)| =
1

2


k � 2

x0
� 1

�
(17)

such that the Shannon information distribution can be
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written as

p(I) = 2e�I

"
1

k�2
x0

� 1
� 1

k�2
x�1

� 1

#
(18)

Inserting, eq 14 into eq 18, we obtain

p(I) = 2e�I


W�1 [A(I)]
W�1 [A(I)] + 1

� W0 [A(I)]
W0 [A(I)] + 1

�
(19)

Using that the derivative of the Lambert W function
is given by

W 0
n(x) =

Wn(x)

Wn(x) + 1
(20)

we obtain

p(I) = 2e�IA(I)
⇥
W 0

�1 [A(I)]�W 0
0 [A(I)]

⇤
(21)

Di↵erentiating the Taylor series of W�1(y)�W0(y) at
y = �1/e, we obtain

W 0
�1(y)�W 0

0(y) = �
p
2eq

1
e + y

�
11e3/2

q
1
e + y

6
p
2

�
769e5/2

�
1
e + y

�3/2

432
p
2

+ . . . (22)

We multiply this expression by y and use only the first
term, which is given by

�
p
2eyq
1
e + y

=

q
2
eq

1
e + y

�
p
2e

r
1

e
+ y (23)

For y ⇡ �1/e, we can neglect the second term and we
obtain

y
⇥
W 0

�1(y)�W 0
0(y)

⇤
⇡

r
2

e

✓
y +

1

e

◆� 1
2

(24)

Next, we evaluate this expression for y = A(I). The

Taylor series expansion of
⇥
e�I⇤ 2

k�2 at Io is given by

⇥
e�I⇤ 2

k�2 =
�
e�Io

� 2
�2+k �

2
�
e�Io

� 2
�2+k (I � Io)

�2 + k
+ . . .

(25)
We use the first two terms of this series and express A(I)
as

A(I) =

h
e�I2

k
2 �

�
k
2

�i 2
k�2

2� k

⇡

2

4�e�Io
� 2

�2+k �
2
�
e�Io

� 2
�2+k (I � Io)

�2 + k

3

5

h
2

k
2 �

�
k
2

�i 2
k�2

2� k

=


1� 2(I � Io)

�2 + k

�
h
2

k
2 �

�
k
2

�
e�Io

i 2
k�2

2� k
(26)

For the second factor, we obtain

h
2

k
2 �

�
k
2

�
e�Io

i 2
k�2

2� k
= �1

e
(27)

such that

A(I) ⇡ �1

e


1� 2(I � Io)

�2 + k

�
(28)

Thus, using this expression for y = A(I), we obtain

y
⇥
W 0

�1(y)�W 0
0(y)

⇤
⇡

r
1

e

✓
I � Io
�2 + k

◆� 1
2

(29)

In this approximation, p(I) is proportional to (I �
Io)�

1
2 e�I . The normalization constant is given by

Z 1

Io

(I � Io)�
1
2 e�IdI = e�Io

p
⇡ = e�Io�

✓
1

2

◆
(30)

such that we obtain

p(I) ⇡ (I � Io)�
1
2 exp(� (I � Io))
�
�
1
2

� (31)

equal to eq 12.
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COMPARISON OF THE h TEST TO OTHER SIGN-BASED TESTS

Supplementary Figure 8. The h test has larger statistical power than the runs test of Wald and Wolfowitz. Power
correlation of the h test (vertical axis) with the runs test of Wald and Wolfowitz (horizontal axis, r is the number of runs) for
the models (colors) shown in Fig. 1b-f of the main text and N = 50, 500, 5000, and 50000 data points. The significance level
is ↵ = 0.01. Note that for model 5 (yellow) and N = 50 the power of the h test reaches ⇠0.95 and the power of the runs test
reaches ⇠0.5 for the smallest errors.

Supplementary Figure 9. The h test has larger statistical power than Schilling’s longest run test. Power correlation
of the h test (vertical axis) with the longest run statistic, lmax, (horizontal axis) for the models (colors) shown in Fig. 1b-f of
the main text and N = 50, 100, 500 and 1000 data points. The significance level is ↵ = 0.01. Note that for model 5 (yellow)
and N = 50 the power of the h test reaches ⇠0.8 and the power of the longest run test reaches ⇠0.6 for the smallest errors.
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SUPPLEMENTARY NOTE 2: GENERALIZATION
TO ASYMMETRIC SIGN PROBABILITIES

In the derivation of eq 9 of the Methods, we assumed
that positive and negative signs are equally likely. Here,
we assume signs have probabilities p+ to be positive and
p� = 1� p+ to be negative. For these asymmetric prob-
abilities, we derive the probability of observing distribu-
tions of run length of positive and negative signs corre-
sponding to eq 9 of the Methods. We write this proba-
bility as

p(h±|p+) = (32)

⇥p(h+|n+, N+, N)p(h�|n� n+, N �N+, N)

⇥p(n+, n�|N+, N)p(N+|N, p+)

where p(h+|n+, N+, N) and p(h�|n � n+, N � N+, N)
are given by eq 8. In the following, we derive expressions
for p(n+, n�|N) and p(N+|N).

The probability that we find N+ positive signs is given
by the binomial distribution as

p(N+|N, p+) =

✓
N

N+

◆
pN

+

+ pN�N+

� . (33)

Next we calculate the joint probability p(n+, n�|N+, N)
to find n± runs with signs ±1. To take into account that
in an alternating sequence of positive and negative runs,
n+ and n� cannot deviate from each other by more than
one, we introduce � = n+ � n� = �1, 0, 1. For the two
ordered states with all signs positive (N+ = N) or all
signs negative (N+ = 0), the probabilities are equal one,

p(n+ = 1,� = 1|N+ = N,N) = 1 (34)

and

p(n+ = 0,� = �1|N+ = 0, N) = 1 (35)

and zero otherwise. For N+ 6= 0, N , the conditional
probability is given by

p(n+,�|N+, N) =
1 + �(�, 0)

Z

✓
N+ � 1

n+ � 1

◆✓
N� � 1

n+ ��� 1

◆

(36)
For � = 0, 1 + �(�, 0) = 2 which accounts for the two
possible arrangements of runs for n+ = n�, starting the
sequence of runs either with a positive or a negative run.
The normalization constant Z is given by the double sum

Z = (37)

n+
maxX

n+=n+
min

�max(n
+)X

�=�min(n+)

[1 + �(�, 0)]

✓
N+ � 1

n+ � 1

◆✓
N� � 1

n+ ��� 1

◆

where the lower limit for the number of positive runs n+

is given by

n+
min =

⇢
0 for N+ = 0, and

1 otherwise.
(38)

and the upper limit by

n+
max = min(N+, N� + 1) . (39)

The lower limit for �, and therefore the upper limit for
the number of negative runs n� = n+ +�, is given by

�min =

8
><

>:

1 for n+ = N� + 1,

0 for n+ = N�, and

�1 otherwise,

(40)

and the upper limit by

�max =

8
><

>:

�1 for n+ = 0,

0 for n+ = 1, and

1 otherwise.

(41)

We show numerically that for p+ = p� = 1/2, eq
32 gives the same results as eq 9 of the Methods. For
N = 10, we generate 106 sign configurations, for which
we evaluate p(h±) given by eq 9 of the Methods and
p(h±|p+ = 1/2) given by eq 32 presented here. Addi-
tionally, we determine the probabilities of the pairs of
distributions (h+, h�) by counting. To do so, we convert
(h+, h�) into unique strings. We find that both expres-
sions agree well with each other and with the numerically
determined probabilities (see Supplementary Fig. 10).
We can generalize p(h) given by eq 3 of the Methods

to asymmetric sign probabilities by summing eq 32 over
all histograms h+ and h� = h� h+, i.e.,

p(h|p+) =
X

h+

p((h+, h� h+)|p+) (42)

where we use that h± = (h+, h � h+). The sum over
all histograms for the positive signs,

P
h+ , has to be

performed under the constraints
PN

i=1 h
S
i = nS andPN

i=1 ih
S
i = NS for S = +,� and hi = h+

i + h�
i .
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Supplementary Figure 10. Validation of eq 9 of the
Methods (bottom axis) and the alternative expression
given by eq 32 (red) using numerical data for N = 10
data points. We calculated the run length histograms h+

and h� for 106 randomly generated sign configurations. Nu-
merically determined probability values for (h+, h�) (green)
agree well with the analytical expressions. Note that di↵er-
ent run length histograms can have the same multiplicities
and thus the same probabilities. For the example considered
here we count the 179 unique histograms h± expected from
the theory of integer partitions and the 11 unique nonzero
probability values given by sums of powers of 1/2. The small-
est probability value is given by 1/210 ⇡ 0.98⇥ 10�3.
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SUPPLEMENTARY NOTE 3: APPLICATION TO
SASBDB

We downloaded all 1776 available data sets from the
SASBDB4 (Dec. 2020), 1221 of which contained at least
one model. The total number of available models was
1781. 1510 of the corresponding model files contained
four columns, i.e., the values of the momentum transfer
q, the experimental intensity, the errors, and the model
itself. From these, we removed stretches at the smallest
q-values where the measured intensity has been set to
a constant value due to the extrapolation of the model
intensity to q = 0. For the 1510 models, we recalculated
the values of �2 and compared them to the corresponding
values in the database. In all cases we assumed that the
number of degrees of freedom is given by the number of
data points. We found that for 1265 models belonging to
1069 experimental scattering intensities, the recalculated
�2 value was within ±1% of the database value. We
discarded all other models.

Many of the remaining models were extremely poor
fits, which we discarded. Not all models is SASBDB are
meant to be accurate. Instead, they are used to illustrate
that a given model does not fit the data at all or to
interpret the intensity using simple geometrical bodies.
Thus, we analyze all 353 models for which the P-values
for both the �2 and h test were above 10�6.

Supplementary Figure 11. The cumulative distribution
function of the data sizes. We downloaded all 1221 data
sets from SASBDB (blue). We selected all 353 model fits
with P-values larger than 10�6 for both the �2 and h tests
for further analysis (orange).

Our results for the synthetic data in the main text show
that the h- and h±-based tests are powerful given the
data size distributions of SASBDB (Supplementary Fig.
11). 80% of the data sets have more than 500 data points
and the median is at N ⇡ 1000. For the 353 models
we used for the following analysis, 60% of the models
have more than 500 data points. The median of the size
distribution is at N ⇡ 700. That is, the size distribution
for the full SASBDB is shifted to larger values where our

sign-based tests become even more powerful.
We calculated the P-values for all models for the �2,

h, h±, (�2, h), and (�2, h±) statistics using the gamma
distribution approximation of the Shannon information
distribution. Additionally, we compare with the CorMap
test5, for which we take the P-values directly from the
data base.
We analyzed the statistical power of the various tests

for three di↵erent sets of fitted models: (1) Poor fits
w.r.t. �2 for which P (�2) < 0.01, (2) good fits w.r.t. �2

for which P (�2) > 0.01, and (3) poor and good fits
together (Supplementary Fig. 12). For all sets we find
that the CDFs of the P-values of the h and h± statistics
are highly correlated. The CDFs of (�2, h) and (�2, h±)
statistics show a similarly strong correlation. Given a
test statistic, we refer to fits with P < 0.01 as ‘poor fits’
and fits with P > 0.01 as ‘good fits’ in the following.
For the poor fits w.r.t. �2, we find that ⇠20% are good

fits w.r.t. (�2, h) and (�2, h±) (Supplementary Fig. 12,
left panel). These fits have poor but not terribly poor
�2-values and do not show systematic deviations or cor-
relations according to the sign-based tests. Likely reasons
are overfitting or that the models are good, but the er-
ror estimates are a bit o↵. About 55% of the poor fits
w.r.t. �2 are good fits w.r.t. h and h±. That is, the cor-
responding signs of the residuals pass this test for ran-
domness. In contrast, ⇠80% of the poor fits pass the
CorMap test for randomness. That is, the CorMap test,
which applies the longest-run test2, is less powerful.
For the good fits w.r.t. �2, the CDF curves of the

(�2, h), (�2, h±), h and h± statistics lie on top of each
other (Supplementary Fig. 12, center panel). That is,
for good �2 values the P-values of the combined tests
(�2, h) and (�2, h±) are determined by h and h±, respec-
tively. Our tests identify ⇠25% of the good fits w.r.t. �2

as poor fits. That is, the corresponding residuals show
correlations or systematic deviations. The CorMap test
identifies only ⇠10% of the good fits w.r.t. �2 as poor
fits.
Considering all good and poor fits together, we find

that the h and h± test perform as well as the �2 test
(Supplementary Fig. 12, right panel). At P = 0.01, the
sign-based tests identify about ⇠30% as poor fits, the �2

test ⇠27%. In contrast, the (�2, h) and (�2, h±) identify
⇠40% as poor fits. In comparison, the CorMap test iden-
tifies ⇠15% as poor fits. Thus, more than 10% of all the
models do not pass the (�2, h) and (�2, h±) tests even
though they pass the �2 test.
In summary, our results for fitted models in SASBDB

confirm the superior statistical power of our sign-based
tests presented in the main text. Importantly, these re-
sults show the sizable benefit of using our tests to ensure
model quality.
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Supplementary Figure 12. The cumulative distribution function of the P-values of fitted models in SASBDB
evaluated for various tests (colors). The gray line represents the CDF expected for true models, cdf(P ) = P , as a reference.
We discarded extremely poor models for which P < 10�6 for both the �2 and h test in this analysis. The black vertical line
indicates the value P = 10�2, which we use to distinguish poor (left of the line) from good fits (right of the line). We show
CDFs for 94 poor fits w.r.t. �2 with P (�2) < 10�2 (left panel), for 259 good fits w.r.t. �2 with P (�2) > 10�2 (center panel)
and all 353 poor and good fits fits together (right panel).
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COMPARISON OF THE h± TEST TO OTHER SIGN-BASED TESTS

Supplementary Figure 13. The h± test has larger statistical power than the runs test of Wald and Wolfowitz.
Power correlation of the h± test (vertical axis) with the runs test of Wald and Wolfowitz (horizontal axis, r is the number of
runs) for the models (colors) shown in Fig. 1b-f of the main text and N = 50, 500, 5000, and 50000 data points. The significance
level is ↵ = 0.01. Note that for model 5 (yellow) and N = 50 the power of the h test reaches ⇠0.8 and the power of the runs
test reaches ⇠0.5 for the smallest errors.

Supplementary Figure 14. The h± test has larger statistical power than Schilling’s longest run test. Power
correlation of the h± test (vertical axis) with the longest run statistic, lmax, (horizontal axis) for the models (colors) shown in
Fig. 1b-f of the main text and N = 50, 100, 500, and 1000 data points. The significance level is ↵ = 0.01. Note that for model
5 (yellow) and N = 50 the power of the h test reaches ⇠0.8 and the power of the longest run test reaches ⇠0.5 for the smallest
errors.
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�-RISK RATIO CALCULATION AND GAMMA APPROXIMATION OF THE SHANNON
INFORMATION DISTRIBUTION

Supplementary Figure 15. �-risk ratios for the h± statistic and the (�2, h±) statistic. For the models shown in
Fig. 1b-f of the main text, we show the �-risk of the h± and (�2, h±) tests relative to the �-risk of the �2 statistic as a function
of the number of data points for the significance levels ↵ = 0.05, 0.01, 0.005, 0.001. Results from the numerically determined
SIDs (crosses), the gamma distribution approximation (squares), and the power-law fits of the �-risk ratio calculated using the
gamma approximation (circles) agree excellently with each other. For the (�2, h) test at ↵ = 0.001 and N >⇠ 1000 values of the
�-risk ratio determined from the numerically determined SIDs and from their gamma distributions approximations are missing
due to numerical limitations. The power-law fits can be used for extrapolation in this regime.
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Supplementary Figure 16. �-risk ratios calculated from the numerically determined SIDs (crosses) and from
their gamma distribution approximations (squares) agree excellently with each other. We show results for the
models shown in Fig. 1b-f of the main text (colors). Note that due to numerical limitations, �-risk ratio values are missing for
significance levels ↵ = 0.001 and data sizes N >⇠ 1000 for the (�2, h) test.
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Supplementary Figure 17. �-risk ratios calculated using the gamma distribution approximation of the SID
(squares) agree excellently with the results from power-law fits to the �-risk ratios (circles). We show results for
the models shown in Fig. 1b-f of the main text (colors). Note that due to numerical limitations, �-risk ratio values calculated
using the gamma approximation are missing for significance levels ↵ = 0.001 and data sizes N >⇠ 1000 for the (�2, h) test. The
power-law fits can be used for extrapolation in this regime.
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