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Abstract 

The design of molecular catalysts typically involves reconciling multiple conflicting property 
requirements, largely relying on human intuition and local structural searches. However, the vast number 
of potential catalysts requires pruning of the candidate space by efficient property prediction with 
quantitative structure-property relationships. Data-driven workflows embedded in a library of potential 
catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for 
novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate 
organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on 
representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 
1,558 ligands, including commercially available examples, and trained machine learning models to predict 
properties of over 300,000 new ligands. We demonstrate the application of kraken to systematically 
explore the property space of organophosphorus ligands and how existing datasets in catalysis can be 
used to accelerate ligand selection during reaction optimization. 
 
Introduction 

Ligand engineering on the basis of mechanistic hypotheses has been a primary driver of reaction 
discovery and optimization in catalysis. An emerging and complementary approach applies data-driven 
methods to molecular design by capturing multidimensional property relationships that directly influence 
performance.1 The success of such data-driven approaches relies on the availability of powerful molecular 
representations2–4 that can be used in a wide range of machine learning (ML) methods.5–10 
Organophosphorous (III) ligands are amongst the most widely-used ligands in homogeneous catalysis. In 
this study, we establish a comprehensive workflow to study these ubiquitous compounds that can be 
further extended to other ligand classes. The platform that we developed can be employed for inverse 
design of novel homogeneous catalysts inspired by past work in the context of molecular and materials 
discovery. For example, the Materials Project,11 OQMD12 and AFLOW13 are tools for exploring the inorganic 
compound space that include databases, computer scripts for feature extraction, and ML toolkits. 
Additionally, the Harvard Clean Energy Project14 has similar goals in the space of organic photovoltaics. 
Moreover, in the case of heterogeneous catalysis, the Catalysis-Hub15 contains computed heterogeneous 



 

reaction energies and the associated barriers, and the Open Catalyst Project16 provides density functional 
theory (DFT) geometry relaxations for material surfaces with adsorbates. These illustrative examples 
provide the foundation for how our teams approached the development of a workflow for the chemical 
space of organophosphorus ligands. 

 
 In this context, Tolman introduced what experimentally measured descriptors now referred to as 

the Tolman electronic parameter (TEP)17 and the Tolman cone angle18 in order to quantify and rationalize 
phosphorus ligand properties over fifty years ago. These molecular descriptors allowed mapping of the 
phosphine property space and provided a tool to understand systematic trends in reactivity and stability 
using linear free energy relationships and substituent additivity approaches.19,20 Building on this, the ligand 
knowledge bases (LKB) developed by Fey and coworkers21–23 marked an impressive milestone in the 
mapping of ligand space. The LKB-P consists of computed properties of 366 monodentate 
organophosphorus ligands in typical coordination environments.23 Recently, the profound impact of ligand 
dynamics on catalytic reactions has been recognized more frequently,24,25 however, the systematic 
quantification of ligand flexibility is still underdeveloped. Thus, inspired by the previous approaches to the 
mapping of ligand space, we aimed at developing a workflow that encompasses a wide range of steric 
and electronic properties of catalytically relevant ligands including descriptors for their flexibility to 
enhance the capabilities of data-driven catalyst design.26 

 
Herein we present kraken, an extensive virtual open-access library covering monodentate 

organophosphorus(III) ligands targeted at facilitating the design and optimization of catalytic processes 
(Figure 1). To account for conformational flexibility, a general-purpose physicochemical descriptor set is 
derived from representative conformer ensembles of both the uncoordinated ligands and a model 
complex, which we hypothesized provides access to the essential features describing the multitude of 
intermolecular interactions involved in catalytically relevant steps. Additionally, we demonstrate the 
application of kraken to explore the property space of organophosphorus(III) ligands at a massive scale 
using increasingly sophisticated models for property estimation of arbitrary organophosphorus(III) 
compounds. Finally, we showcase the use of kraken for inverse catalyst design by constructing multiple 
linear free energy relationships based on experimental data and using it to predict the performance of the 
entire ligand database, providing the best candidates to be tested in subsequent experiments. 



 

 

Figure 1: kraken: a comprehensive database of organophosphorus ligands. A. A set of 1558 organophosphorus 
compounds is gathered, including literature and commercial sources. B. Virtual libraries (VL) are built from the 
substituents of the initial P(III) set. The first level (Virtual Library 1, VL1) contains the initial set; VL2 results from a 
combinatorial approach with two different substituents per ligand (576 total unique fragments), yielding 331,776 
compounds; VL3 is a virtual library where all combinations are possible, i.e., all 3 substituents can be different, with 
over 191 million entries. C. Conformer ensembles are generated for each of the P(III) molecules in VL1, at the GFN2-
xTB level of theory. Each conformer is reoptimized using DFT, with a total of 21,437 conformers evaluated (average 
of 13.8 conformers per ligand). D. 78 physical organic properties are captured for every calculated conformer; 
Boltzmann averages, min-max steric extrema, and other representative conformers are curated for a total of 190 
descriptors per ligand. E. Chemical property spaces are defined and visualized using dimensionality reduction 
techniques. F. ML models are built to simulate a virtual property library for approximately 330,000 compounds in 
VL2. VL3 is deployed by querying the ML models on demand. 

 
Results and Discussion 

Library Scope 
A central goal was to comprehensively map the chemical space of monodentate 

organophosphorus(III) ligands, focusing in particular on structures relevant to applications in catalysis and 
its use for data-driven ligand optimization campaigns. We initially selected phosphines that were 



 

commercially available and prevalent in the organo(transition)metal chemistry literature. In anticipation of 
the ML property prediction goals, we surveyed the scientific literature and systematically added ligands 
with less prevalent substituents based on the core structures found. This was followed by a curation step 
to avoid structures with additional N, P, or S-containing donor sites, and any acidic moieties as these 
structures may bind to the metal through other modes (e.g., bidentate ligands). Overall, the library contains 
ligands with various phosphorus-element bonds encompassing H, B, C, N, O, F, Si, and S next to 
phosphorus in arbitrary combinations. Thus, besides phosphines, other important ligand classes such as 
phosphoramidites, phosphites, and phosphinamines are also included. In its current state, library VL1 (cf. 
Figure 1) is constructed on full DFT calculations for 1,558 ligands and their conformers, at least 400 of 
which are commercially available and including the 200 most-cited phosphorus ligands in the literature. 

Conformer Ensembles 
One key challenge when defining the kraken computational workflow is the representation of the 

conformational space of each ligand, the conformer energies, and the corresponding contribution to the 
ligand properties. This is particularly relevant for steric properties that vary significantly with conformation, 
whereas electronic properties are generally less sensitive.27 While no individual model system (i.e., free 
ligand or specific reference complexes) can fully reflect the conformational space accessible to a ligand 
in any given complex, there are certain limits for attainable geometries and properties. Importantly, 
investigating these ranges and limits was used to probe the behavior of ligands in catalytic systems and 
predict their catalytic performance. For example, the buried volume, i.e., the fraction of the volume of a 
sphere, which is placed at the metal center, occupied by ligand atoms,28 of a trialkyl phosphine could be 
very large if all chains are folded towards the phosphorus lone pair, but it could never be smaller than 
when all chains are folded away (cf. Figure 2C). Thus, the smallest and largest attainable property values 
within the thermally accessible conformers of each ligand is defined as the representative range, 
irrespective of the exact complex environment. Notably, the correct range can only be derived from a 
(sufficiently) complete conformer ensemble. To allow the workflow to operate at large scale and 
reasonable cost, we applied GFN2-xTB,29,30 a semiempirical tight-binding method developed to deliver 
excellent molecular geometries at the fraction of the cost of DFT, together with the workflows implemented 
in CREST to generate conformer ensembles.31,32 Because of the sensitivity of steric properties to structural 
changes, we used these ensembles to select the structures with extreme values for at least one steric 
descriptor to be evaluated using DFT. Importantly, the conformational space of each ligand was assessed 
in two reference states, free ligand and coordinated to Ni(CO)3. Generally, conformations in the free ligand 
tend to occupy more space around the phosphorus lone pair and, hence, free ligands appear more 
sterically demanding than complexed ones. Both situations are important to describing catalytic 
processes including potential unwanted side reactions like ligand dissociation. For consistent results, the 
ligand conformations from both reference states are then optimized as free ligands using DFT. To 
distinguish between a ligand and its individual conformers, we ascribe properties to the individual 
conformers of a ligand and descriptors to a ligand. 

 
 



 

 
Figure 2: The computational workflows used to build kraken. A. Free and Ni(CO)3-complexed ligands from VL1 are 
subjected to a conformer search with CREST at the GFN2-xTB level.  Ligand conformer ensembles are subjected to 
a conformer selection. DFT is used for geometry optimization and single points of the selected conformers as free 
ligands. B. Illustrations of some properties computed for each conformer. C. Ensembling conformer properties to 
generate ligand descriptors. 

 

 



 

Chemical Space Analysis 
With this dataset, we set out to map the associated property space, understand the corresponding 

property limits and unveil uncharted regions potentially inspiring forays towards new unique ligand 
classes. The traditional analysis of phosphine properties uses Tolman’s steric and electronic map, with 
the TEP on the abscissa and the Tolman cone angle on the ordinate.33 This simple yet powerful 
visualization technique has helped chemists to survey available ligands rapidly and select structures with 
appropriate steric and electronic properties for specific applications. A more sophisticated version of 
Tolman’s map has been introduced by Fey and co-workers using LKB21,23 (see above) by reducing multiple 
descriptors to two dimensions via principal component analysis (PCA). Inspired by this work, we applied 
the recently developed Uniform Manifold Approximation and Projection34 (UMAP, Figure 3A) as well as 
PCA (Figure 3B) to our entire database of DFT-computed ligands with all computed descriptors. These 
dimensionality reduction representations are available to interrogate on the interactive web application 
(https://kraken.cs.toronto.edu). 

Nonlinear dimensionality reduction techniques can be employed to cluster compounds with a 
similar distribution of properties and for segregating distinct ligand classes from each other. For this 
purpose, we applied the UMAP technique as it preserves both local and global structure in the data and 
is computationally efficient.34 The corresponding result is shown in Figure 3A using the elements bonded 
directly to phosphorus as a color code to illustrate the major phosphorus ligand classes. It is immediately 
obvious that the various ligand classes are well separated demonstrating the superior ability for data 
classification of UMAP. This suggested that our descriptor set contains relevant information to differentiate 
chemically distinct ligand types. Notably, UMAP essentially segregates the database into two important 
ligand superclasses, i.e., phosphorus bound to relatively electropositive elements like carbon and silicon 
and phosphorus bound to at least one relatively electronegative element like oxygen or nitrogen, with 
some overlaps between these two. Importantly, this aligns well with the binding affinities of these ligands 
as the atom type bound to phosphorus affects this property most severely. 

The principal components obtained from PCA define a linearly uncorrelated descriptor set 
condensing the information contained in the database to as few dimensions as possible, while 
approximately preserving distance information in the descriptor space. This preservation of distances 
allows us to interpolate linearly between points in the descriptor space and, hence, understand the 
properties of unexplored regions as well. Accordingly, the resulting first two principal components were 
used to visualize the property space as depicted in Figure 3B. Again, by coloring the data points by the 
corresponding elements attached to the phosphorus atom, we can explore the relationships between 
common ligand classes, such as a smooth transition from phosphines (red) to phosphites (blue) via the 
intermediate phosphinites and phosphonites (purple) in the lower left of the chemical space. 

Furthermore, not only can various ligand classes be distinguished, but the resulting principal 
components can be analyzed with respect to the properties they are encoding. PC1 generally represents 
total volume and PC2 pyramidalization. A more detailed analysis can be found in the ESI. Nevertheless, 
since the PCs combine various descriptors simultaneously, they represent a more integrated 
representation of the ligand space. Evaluating the next most heavily weighted principal components, PC3 
is mainly determined by flexibility descriptors related to the inclusion of conformer ensemble property 
information and PC4 contains general orbital descriptors. Importantly, the added information from the 
computationally derived properties incorporates both depth and precision to compound representation as 
compared to Tolman’s mapping. To provide a more intuitive illustration of the PCA property mapping, the 



 

individual data points on the PCA plots were colored with respect to the buried volume28 (Vbur, Figure 3C) 
and the minimum molecular electrostatic potential (MESP) in the phosphorus lone pair region,35 which is 
correlated with the experimentally determined TEP (Vmin, Figure 3D). Notably, these plots demonstrate 
that PC1 generally trends with Vbur and PC2 trends with Vmin, even though it is not strongly collinear.  

 

 

Figure 3: Properties space visualization of monodentate organophosphorus(III) ligands using UMAP and PCA. 
A. Dimensionality reduction of the descriptor space with UMAP to two dimensions. B. Dimensionality reduction of 
the descriptor space with PCA and projecting the corresponding results onto the two largest principal components, 
PC1 and PC2. C. Data points projected onto PC1 and PC2 subsequently colored by Boltzmann-averaged Vbur. D. 
Data points projected onto PC1 and PC2 later by Boltzmann-averaged Vmin. 

 



 

It is envisioned that these property maps can be used intuitively by process chemists that may not 
be experts in data science. Specifically, when the basic requirements in terms of sterics and electronics 
are known from previous experiments, the rational selection of the best ligand types that meet various 
process needs such as cost, environmental, and/or performance goals should be straightforward, similar 
to how the Solvent Selection Tool is applied by process chemists to locate the best solvent for a given 
reaction.36 

Expanding the Space with Machine Learning 
While we achieved a substantial coverage of the organophosphorus ligand space using quantum 

chemical simulations, 1558 compounds merely constitute a fraction of the conceivable space of this ligand 
class. Our computational workflow is too resource-intensive to probe all possible compounds of interest 
and explore the sparsely covered territory more comprehensively (see Figure 3 and Figure 4A). Hence, to 
complement the simulations described above, we investigated several complementary ML methods to 
expand the compound space in our library significantly, and provide descriptor estimates for >300,000 
molecules. 

Inspired by the Benson group-increment theory20,37 in thermochemistry and the demonstration of 
substituent additivity for the TEP by Tolman,17 we tested if descriptors can be expressed as the sum of 
constant contributions from each substituent at phosphorus. To accomplish this, we represented each 
ligand as a matrix of all unique substituents bound to the central phosphorus atom containing the number 
of each substituent present in a particular compound (Figure 4B), which we term “Bag of Substituents” 
(BoS). For instance, PMe2tBu would be encoded by the features “Me” and “tBu”, with a value of 2 in the 
former column, a value of 1 in the latter, and zeros in all other feature columns (576 in total). Linear 
regression of each descriptor individually was used with the BoS encoding to assess the additivity 
hypothesis. The coefficients of determination are a measure of how well the additivity assumptions hold 
for a descriptor and the trained weights correspond to the group increments. It should be noted that this 
model is inherently incapable of extrapolating to unseen substituents. As a consequence, all substituents 
needed to be included at least once in the training data, and, when possible, we enforced it to contain at 
least two occurrences. Apart from this constraint, we used a random 60:20:20 train-validation-test split. 
Good prediction quality was observed for a number of descriptors (58 properties with R2

test
 !"#$%#). As 

expected, Vmin
(Boltz) (R2 = 0.97, cf. Figure 5) and Vbur

(Boltz) (R2 = 0.95) are well predicted. Interestingly, several 
descriptors that may not be expected a priori to be “additive” are also predicted with good accuracy, such 
as the Boltzmann-averaged NBO partial charge at the phosphorus atom (R2

test
 > 0.99).  

 



 

 

Figure 4: Defining and expanding the kraken chemical space with machine learning strategies. A. Construction 
of the virtual libraries VL2 and VL3, respectively, from virtual library VL1, which comprises 1558 unique ligands. a: the 
number of unique ligands excludes ligands in which the phosphorus atom is within a ring. B. Illustration of the “Bag 
of Substituents” model to predict ligand descriptors based on substituent increments. d: descriptor; cd: constant; 
wi,d: substituent weight per descriptor; i in the sum: total number of occurrences for a given substituent in a ligand. 

 

While the BoS encoding strategy is relatively effective, some descriptors are not well predicted (45 
properties with R2 < 0.50) as is expected when substituent interactions or conformational effects are 
present that this simple model cannot incorporate. Thus, we used molecular fingerprints and graphs as 
more generalizable features to expand our predictive capacities. With those representations, we also 
applied other model types such as random forest (RF),5 gradient boosting regressions (GBR),38,39 Gaussian 
processes (GP),39,40 and graph convolutional neural networks41 (GCN, see Figure 5 for the performance on 
one representative descriptor, more details on the ML models are in the ESI). Each of the models was 
found to be accurately predictive for a subset of descriptors. However, as none of the approaches were 
consistently the best for all the descriptors considered, we generated one metamodel for each descriptor. 
This was accomplished by ensembling all the models linearly to maximize the overall prediction quality.  

 



 

 

Figure 5: Regression performance of machine learning models. Illustrative performance of all seven types of ML 
models from this study for the prediction of Vmin. BoS = Bag of Substituents, FP = fingerprint representation: circular 
fingerprints, radius = 2, folded to 1024 dimensions, red FP = reduced fingerprints representation: 100 most important 
fingerprint dimensions based on the feature importance of the GBR FP model. For additional details on the ML 
models see the ESI. 

 

The performance of the metamodel predictors is illustrated in Figure 6A with Vmin as an example. 
We then applied the metamodels to the >300,000 compounds arising from binary combinations of all 
unique substituents present in our original library (VL1) to create an extensive virtual library (VL2) with 
estimated descriptors. This chemical space can be visualized in a new PCA plot revealing the virtual space 
now available (see Figure 6D). Compared to the PCA plot of VL1 (cf. Figure 3B), the plot of VL2 appears 
more continuous in the descriptor ranges covered and extrapolates considerably into underexplored 
chemical space thereby encompassing many new structures that one might want to explore in future 
catalytic reactions in a single lookup table. 



 

 

Figure 6: Machine learning modeling results. A. Stacked linear ridge regression of the seven models was used to 
create a metamodel for each descriptor.  B. Comparison of the mean absolute errors (MAEs) of the seven initial 
model classes and the metamodels across all descriptors. C. Distribution of the MAEs of the metamodels across all 
descriptors. D. Expansion of the descriptor space from VL1 to VL2 with the metamodels as illustrated by PCA with 
VL2 being projected onto the first two principal components obtained from VL1. 

 

Inverse Ligand Design 
Finally, we aimed to demonstrate the immediate practical applicability of kraken to a typical 

problem common in reaction development and ligand design. Specifically, we wanted to utilize the ML-
predicted database to identify viable alternative ligands for a selective catalytic reaction. To do this, we 
revisited two independent studies by Biscoe and Burke, respectively,42,43 that reported enantiospecific Pd-
catalyzed sp3-sp2 cross-coupling reactions of stereodefined alkyl-boronic acid derivatives with aryl 
halides. The two studies identified unique ligands that successfully achieve high levels of stereoretention 
(Figure 7A). In the Biscoe study, the ligand discovery was guided using predictions from statistical 
modeling that electron-poor Buchwald-type44,45 biaryl phosphine ligands were the best performers. The 
Burke study also discovered that electron-poor ligands were required but a different core structure, one 



 

based on ortho-tolyl phosphines, was found to be highly selective for this reaction. Intuitively, the best 
ligands from either study are structurally unique and a practicing organic chemist would not necessarily 
think to substitute one with the other. In addition, the reaction conditions, while distinct, are similar enough 
to expect qualitatively comparable selectivity of the ligands under each condition. 

Based on these findings, we hypothesized that kraken’s descriptors applied to an original dataset 
could be used to predict similar ligand structures found to be optimal in the others. As a first step, several 
statistical models of each data set were constructed (details in the ESI) by correlating experimental results 
to the ligand descriptors, which were included in VL1 (Figure 7B). Unique models were averaged to 
provide robust predictions of which ligands would provide high selectivity.46 Gratifyingly, trained on the 
results reported by the Burke group, our predictions identify the exact ligands reported by the Biscoe 
group as most selective. Similarly, regressing the Biscoe dataset and virtually screening VL1 revealed 
untested electron-poor triaryl phosphines, in particular, Buchwald and ortho-tolyl derivatives, as most 
selective. This suggests that these two reactions likely proceed via similar mechanistic pathways in the 
stereodetermining events.  
 After this successful validation of the interconnectivity of the two reactions, we combined the two 
datasets to enhance the robustness of the predictions while exploring the entire virtual search space of 
VL2. This is visualized in the PCA plot depicted in Figure 7C wherein the black-framed points represent 
the experimental data from the two studies, atop the ML library in gray. We were then interested in 
comparing two distinct approaches to suggest novel ligands in a large search space. First, we applied the 
averaged regression models that were trained on the experimental results to the entire VL2 to obtain 
selectivity predictions and robustness estimates. The ligand predictions were then curated by filtering 
structures through descriptor limits reported for this process (small ligands)42 and ligands that presumably 
would not form a metal complex (very large ligands). As a result, we obtained ~100 ligands that are 
predicted to provide selective stereoretentive cross-coupling. Many of these are bulky and electron-poor 
Buchwald-type ligands, represented by the two structures in Figure 7D. Notably, ligand D1 merges 
structural elements into a hybrid of both the Biscoe and Burke ligand designs. 

While this approach likely provides relatively safe predictions with structural similarity to the best 
experimental ligands, we envisioned an explorative strategy providing more structural diversity by 
analyzing the relative positions of ligands in the descriptor space. We classified the “more selective” and 
“less selective” regions in this space defined proximity to the nearest experimental data point in the first 
four principle components and ranked the resulting >30,000 structures by minimizing the distance to the 
most selective experimental ligands. This explorative classification method suggests unexplored ligands 
that upon inspection have some structural familiarity to both Burke’s and Biscoe’s ligand designs, which 
is highly encouraging. This strategy would be especially effective when a researcher has relatively sparse 
data early in an optimization campaign as the local neighborhoods of the active space could be rapidly 
explored. We also envision this process will be highly effective in iterative ligand searches, especially when 
commercial ligands only provide modest performance. 
 



 

 

Figure 7: Using kraken for virtual ligand optimizations in asymmetric catalysis. A. Overview of enantiospecific 
Pd-catalyzed sp3-sp2 cross-coupling reactions of alkyl boronic acids and aryl halides. a: conditions: Burke et al.: [B] 
= B(OH)2 (S), R = H, X–Ar = 1-Br-4-Ph-C6H4, [PdL] = Pd2dba3 (5 mol%) + 10 mol% L, base = Ag2O (3 eq), solvent = 
dioxane, T = 85 °C, t = 24 h. Biscoe et al.: [B] = BF3K (R), R = Ph, X–Ar = 1-Cl-4-CO2Et-C6H4, [PdL] =  G3 Buchwald 
precatalyst (10 mol%), base = K2CO3 (3 eq), solvent = toluene:H2O (2:1), T = 100 °C, t = 24 h. B. Statistical modeling 
of experimental results to predict how data from one reported reaction could inform ligand choice in the other through 
a virtual screen of VL1.  C. Combining the results of the statistical models for both reactions to evaluate the entirety 
of VL2 for predicting new ligands. D. Exploring the PCA descriptor space to determine ligands in the high selectivity 
regime with novel structures.  

 
 



 

Conclusions and Outlook 
We have developed kraken, which covers 300 thousand monodentate organophosphorus(III) 

ligands with 190 property descriptors including an extensive description of their conformer-dependence, 
mapping essentially the complete space of conceivable structures that could be used in 
organo(transition)metal reactions. We demonstrate its application in visualizing the associated property 
space, predicting properties of molecules not subjected to our full quantum-chemical workflow, and 
applying the corresponding results to inverse catalyst design. 
 

Kraken is accessible as a web application (https://kraken.cs.toronto.edu). Computed data is 
available at the semi-empirical QM, DFT, and ML levels of theory. For 1,558 organophosphorus 
compounds, there are both semi-empirical QM and DFT data comprising 190 computed descriptors and 
properties, as well as the coordinates information for the associated conformers. The ML data consists of 
331,776 entries obtained by generating all organophosphorus ligands with two distinct substituents 
combinatorially and training the models on the Boltzmann-averaged DFT dataset (see above). Lastly, 
around 183 million distinct organophosphorus compounds can be queried to generate the ML property 
predictions on-the-fly. 

 
Overall, we believe that the property maps generated by common dimensionality reduction 

techniques included in the kraken platform can be a valuable aid in the understanding of the space of 
organophosphorus ligands. We envision that it will enable organic chemists to perform computer-assisted 
interactive ligand exploration and provide new insights into relevant properties to solve a given problem. 
The kraken tool may enable informed catalyst design based on organophosphorus ligands, facilitate the 
optimization of reaction process parameters, inspire new ligand choices and promote the synthesis of 
new organophosphorus compounds. The database and tools reported herein are currently being applied 
to enhance reaction optimization47 and mechanistic workflows.48 The open-source nature of our codes, as 
well as the open database, is designed to be extended by others and we welcome further contributions 
by the community. 
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Web Application and Codes Availability 

The database can be accessed and used free of charge via the web application at 
https://kraken.cs.toronto.edu. MORFEUS can be freely accessed at 
https://github.com/kjelljorner/morfeus. The collection of workflow codes and machine learning models 
used in this project will be available at https://github.com/aspuru-guzik-group/kraken. 
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