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Abstract. In this work, quantum control of trapped Bose-Einstein-Condensates (BEC) is
considered at matter surface. For particles at BEC status, quantum system is described by
Gross-Pitaevskii equation, experimental control of BEC is happened at physics field, and
achieved at laboratory. At theoretic aspect, control of trapped condensates is not sufficiently
investigated at academic level. What we interest is applying control theory to BEC trapped on
the surface (metallic, crystal).

At optical lattice, particles are trapping by constrained forces at cooling technique, and
temporally take the same quantum states, such kind of condensates phenomena had already
been surveyed at a variety of areas. The most works are reported on free BEC particles, quite
natural question is arising on the surface science: BEC particles created,detected, and placed
on a certain chemical surface, control of trapped particles is difference or not? We are curious
about optical and mechanical constraints take action together on particles.

In the viewpoint of quantum control realm, our purpose is to apply optimal control
theory (OCT) to trapped Bose-Einstein-Condensates as they are occurred at surface. In the
framework of variational theory at complex Hilbert spaces, prove the existence of quantum
optimal control, and characterize optimal control using optimality (Euler-Lagrange) system.
Control variables for trapped BEC contain three functions: one is electro-magnetic force;
another is external constraint from optical equipment (optical frequency, lattice number); third
is quantum mechanics against gravitational force, which making BEC particles stay at surface
stationary. Review the literatures, electro-magnetic-optical controls are extremely considered
at last couple of years. Gravitational control is rarely considered.

Further extension of the work is to do real-time computer-aided BEC control at matter
surface. Computational approach for simulation of BEC control at two and three dimensions
would be a promise direction.
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1. Physical Background

1990, the bosonic atoms can be reached Bose-Einstein-Condensates (BEC) in lab experiments
for various particles (e.g. 87Rb, 23Na). After that, the researches of BEC had been considered
at the field of quantum physics and relative areas for a long time [1],[2],[3],[4]. Free
trapped BEC had well been investigated at the optical lattices [5]. In fact, at the physical
lab, if an ultra-cold vapor of bosonic atoms are trapped in magnetic well, pure condensates
will be created as they are cooled to a temperature below the BEC threshold. After that
creation, these BEC are located into a optical lattice potential which can be done at current
laboratory experimental condition. In general, control of Bose-Einstein-Condensate has not
been sufficiently taken account into research topic not only at the field of system control, but
also at the particle physics and quantum physics .

To do control of BEC, first need to be considered the purpose of control, that is means
what we want the BEC do for us? if just to create a BEC at optical lattices, no problem at
all now for a cold-atom system confined in a magneto-optical trap. Then, what the BEC can
do for much more usefulness? Theoretical as well as computational free control of BEC had
been reported in our former works [6] and [7]. In this article, we take the BEC as they are
occurred at a matter surface (metal, crystal, etc). Whether these kind of control is different
than free control case. It is one of the aim to find the meaningful of control of BEC, and make
sense of BEC at realistic world.

Physics experiments for creating atomic BEC at surface: such as 23Na at Si surface; 87Rb
at Si; Ti; Au surface; 23Na at 4He; 3He surface; 133Cs at Si surface, and so on.

In lab, temperature of creating Bose-Einstein-Condensate Tb =
h2

2πmk
(

N
2.612V

)2/3; the

number of atoms in a BEC N(T ) = N{1− (T/Tb)
3/2}; average de-Broglie wave length

λ =
h√

3mkT
.

2. Trapped Bose-Einstein-Condensates (BEC)

At first, we show the model of trapped Bose-Einstein-Condensates citing [8]. Suppose N
number particles are trapped in a condensates, each particle as Pn for n = 1,2, · · · ,N. Bose-
Einstein-Condensates is a unusual state of matter in which bosons collectively occupy the
energetic ground state of a quantum system. In physics field, BEC at matter surface had
been created by atom chip, such as silicon wafer that has wires deposited on its surface. By
passing a current through these wires, a magnetic field is produced which is used to create and
manipulate Bose-Einstein-Condensates. To trap a free BEC in science vacuum chamber (cf.
Fig.1), hit atoms with surface rather than hitting the surface with atom.
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Fig. 1. Science Vacuum Chamber, Simulation of Trapped BEC

Suppose there is no chemical reaction taking place between the particles and matter surface,
then, without lost of generality, Bose-Einstein-Condensates can be taken as Gross-Pitaevskii
(G-P) equation in the form of a nonlinear Schrödinger equation (cf. [3], [4]) for x = (x1,x2) ∈
R2,

ih̄
∂ψn

∂ t
=− h̄2

2m
∆ψn +(V 1

n (x)+V 2
n (x)+V 3

n (x))ψn +Nν |ψn|2ψn, (1)

for n = 1,2, · · · ,N. h̄ is Planck constant, m is atomic mass, ψn(t,x) is condensate wave
function of n-th particle Pn at BEC, N is total number of condensed atoms, and ν = 4π h̄2as/m
is interacting constant of ground state atoms, where as ∈ R is s wave characteristic scattering
length (e.g. as = 2.75,5.77,−1.45nm for 23Na, 87Rb, 7Li). Notice that, in mean-field
theory, one can substitute ψn = exp(−iµt/h̄)ψn(x) in system (1) to get time-independent
G-P equation having −µψn term of chemical potential µ .

A lot of physical control at lab by adjustment of the parameter of scattering length
as incident. For quantum control purpose, total external force is unified and set Vn(t,x) =
V 1

n (t,x)+V 2
n (t,x)+V 3

n (t,x).
1). The external potential V 1

n (x) is electro-magnetic field for creating BEC of N particle

(P1, · · · ,PN), in general, V 1
n (x)=mσ

2
0
|x|2

2
, trapping frequency σ0 = 2π|x0|2 ∈R2. A harmonic

oscillator can be configured as V 1
n =

m
2
(ω2

x1
x2

1 +ω
2
x2

x2
2).

2). In lab, optical potential [9] for particle Pn (cf. [5]) can be configured as V 2
n (x) =

µ

2

∑
k=1

h̄2x2

m
sin2(xkxk), xk ∈ R2, and µ > 0 is a dimensionless parameter for representing

the depth of optical lattice. The trapped field can adjust the optical frequencies along
the directions of x1,x2 axis. Other kind of optical apparatus can be also confining, e.g.
V 2

n = h̄Ω(t)
2∆

(1+cos(2kLx−δLt)): kL wave vector; δL difference of two beam; Ω0 single photon
Rabi frequency; ∆ detuning.
3). The mechanical gravitational force V 3

n (x) is making these particles staying (in vertical and
horizontal directions) at a matter surface, which indicated the gravity in gravito-magnetic trap
or gravito-optical trap. The magnetic-optical trap known as optical molasses.

Here, we need to discuss atom surface interaction. Such as, intuitive and no consideration
of surface structure, r is separation or displacement from the atom to center of trap, then for



Quantum Surface Control of Trapped Bose-Einstein-Condensates 4

local speed of sound c (e.g. 23Na with density 2× 1012 cm−3, c ∼ 0.6mm/s) and frequency
ω0, atom surface potential can be written

a). r > c/ω0: VCasimir Polder = −C4(ρ)/r4, and C4(ρ) mediated by structure of surface, e.g.
CSi

4 = 6.2×10−56Jm4 for bulk silicon.

b). r > c/ω0 and r > λT : VLifshitz =−CL(ρ)T/r3.

c). r 6 c/ω0: Vvan der Waals London =−C3(ρ)/r3, e.g. C3 = 6.9×10−48.

For 87Rb, VCP = 1/r4,Cvdw = 1/r3. Atom surface interaction (many-body interaction) could
be atom-atom interaction if the surface broken down to its constituent atom.

The disadvantage of gravity in BEC creation, destructure and reduce the gravitational
force, the influence knows as “gravitational sag”. The confined gravito-magnetic trap is to
against the gravity to create a BEC in Vacuum Chamber. At solid surface, such as silicon,
atom collide to surface at low or zero velocity, and near the surface, non-condensed fraction of
atomic cloud is reduced by the ”surface evaporation” effect, in which adsorption preferentially
remove the hottest atom from the cloud.

Resultantly, BEC system (1) is representing an balance status of interacting N particles
BEC condensate trapped by cooling technique: optical lattice; electro-magnetic force; and
gravito-magnetic force (atom surface interaction). Our mission is to discuss three difference
control inputs to the complex G-P equation (1) which is formulated of BEC condensate at
matter surface.

3. Interaction effects (pseudopotential)

1D Two particles overlap interaction, an effective 1D contact potential Vint(rn,rn′) =

g1Dδ (rn− r′n), rn,r′n is the distance from the atom to trap center, and g1D is an effective
1D coupling strength g1D = 2ash

√
νν ′, as is scattered length h is Planck constant. ν ,ν ′

are trapped frequencies at rn,r′n
2D All the particles get forces to support their stay at surface, to each particle Pn located at

the distance of rn. The effective interaction between the bosons, is obtained in the long
wavelength approximation to be

V 3
n (rn− r′n) =

4π h̄2as

m
δ (rn− r′n). (2)

where h̄ is Planck’s constant, as is the s-wave scattered length.

3D Notice that, free particles in spatial 3D, g3D =
4π

ωx2x3
g1D, then (2) valid.

Interaction effects is taking the similar coefficient as the last term of (1) which is the
interaction of two bosons of particles i, j ∈ {1,2, · · · ,N}.

µ Chemical Potential: usual µ = Ω ·L for vortex trap; µ = m
3

∑
k=1

ω
2
k x2

k/2 for spherical trap;

many-body µ = δE/δN to make total number of condensed particles N =
∫
|

N
π

n=1
ψn|2dV ,

E is energy function. Two dimensional rotating µ = 1−Ω2. For uniform µ = Nν . µ can
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be considered either a Lagrange multiplier or a parameter in the zero temperature ground-
canonical thermodynamics potential.
Hamiltonian. Get notation complex scalar function ψn(t,x) and operator ψ̂n(t,x), then
ψn(t,x) = 〈ψ̂n(t,x)〉. The Hamiltonian Hn for each particle Pn at a BEC, then many-body
system Hamiltonian

H =
N

∑
n=1

Hn =
N

∑
n=1

{∫
ψ̂
∗
n (x)[−

h̄2

2m
∆+Vn(x)]ψ̂n(x)dx

+N
4π h̄2as

2m

∫ ∫
ψ̂
∗
n (x)ψ̂

∗
n (y)ψ̂n(x)ψ̂n(y)dxdy

}
.

ψ̂∗n is conjecture (field operator) of ψ̂n, and ψ̂n or ψ̂n
∗ is annihilate or create particle.

[ψ̂(x), ψ̂∗(y)] = δ (x−y), [ψ̂∗(x), ψ̂∗(y)] = 0.
Lagrangian density function. Total Lagrangian function for many-body N particles in a BEC

L=
N

∑
n=1

L (ψn(t,x))=
N

∑
n=1

{
1
2

ih̄[
∂ψ∗n (t,x)

∂ t
ψn(t,x)−ψ

∗
n (t,x)

∂ψn(t,x)
∂ t

]

+
h̄2

2m
|∇ψn(t,x)|2 +Vn(t,x)|ψn(t,x)|2 +

1
2

Nν |ψn(t,x)|4
}
.

4. Mathematical Setting

Second, we give mathematical setting at the framework of variational method in complex
Hilbert spaces citing [10]-[12]. Let Ω be an open bounded set of R2 and Q = (0,T )×Ω for
T > 0, (t,x) ∈ Q. In G-P system (1), Vn(t,x) is total control input acting at particle Pn, and
control Vn(t,x) is depended on spatial variable x and time t. For complex-valued function ψn,
define complex solution space L2(Ω) and H1

0(Ω) corresponding to L2(Ω) and H1
0 (Ω), use the

notations H = L2(Ω),V = H1
0(Ω) for two complex Hilbert spaces. Further, V′ is complex

conjugate space of V. Actually, (V,H) is a complex Gelfand triple spaces V ↪→ H ↪→ V′,
two embeddings are continuous, dense and compact. For ψn = ψ1

n + iψ2
n ∈ L2(Ω), ψ1

n ,ψ
2
n ∈

L2(Ω), define norm of ψn in complex space L2(Ω) as

‖ψn‖L2(Ω) = (‖ψ1
n‖2

L2(Ω)+‖ψ
2
n‖2

L2(Ω))
1
2 .

If ψn = ψ1
n + iψ2

n ∈ L2(Ω) and φ n = φ
1
n + iφ 2

n ∈ L2(Ω), then inner product of ψn and φ n in
complex space L2(Ω) can be defined by

(ψn,φ n)L2(Ω) = ((ψ1
n,φ

1
n)L2(Ω)+(ψ2

n,φ
2
n))L2(Ω))+ i((ψ2

n,φ
1
n)L2(Ω)− (ψ1

n,φ
2
n)L2(Ω)).

For ψn ∈H1
0(Ω), the norm of ψn in complex space H1

0(Ω) is

‖ψn‖H1
0(Ω) = (‖ψ1

n‖2
H1

0 (Ω)
+‖ψ2

n‖2
H1

0 (Ω)
)

1
2 .

If ψn,φ n ∈H1
0(Ω), then inner product of ψn and φ n in complex space H1

0(Ω) is defined as

〈ψn,φ n〉H1
0(Ω) = 〈ψ

1
n ,φ

1
n 〉H1

0 (Ω)+ 〈ψ
2
n ,φ

2
n 〉H1

0 (Ω).
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Set ground state of n-th particle Pn as ψn(0,Vn) = ψn0. The total ground state ψ(0,V) = ψ0,
and ψ(V) = (ψ1,ψ2, · · · ,ψN). Denote H =HN = L2(Ω)N , and V = VN =H1

0(Ω)N .
Definition 1 [Solution space] Complex space W (0,T ) is said as solution space of ψ

W (0,T ) = {ψ|ψ ∈ L2(0,T ;V ),ψ ′ ∈ L2(0,T ;V ′)}.

The norm of ψn in complex space W (0,T ) can be defined as

‖ψ‖W (0,T ) =
(
‖ψ‖2

L2(0,T ;V )+‖ψ
′‖2

L2(0,T ;V ′)

) 1
2
.

If ψ,φ ∈W (0,T ), then definition of inner product is

〈ψ,φ〉W (0,T ) = 〈ψ,φ〉V + 〈ψ ′,φ ′〉V ′.

Thus, W (0,T ) is a complex Hilbert space equipped by above norm and inner product.
Definition 2 [Weak solution] A function ψ is said as weak solution of BEC system in the form
of G-P equation (1) for N particles (P1, · · · ,PN), if ψ ∈W (0,T ) and satisfy∫ T

0

∫
ih̄

∂ψ

∂ t
ηdxdt =

h̄2

2m

∫ T

0

∫
∇ψ∇ηdxdt+

∫ T

0

∫
Vψηdxdt +Nν

∫ T

0

∫
ψ

2
ψηdxdt, (3)

where η is a arbitrary test function by the means of distribution in space D ′(0,T )N , η ∈
C1(0,T ;V ) and η(T ) = 0. The formulation (3) is said weak form of BEC system (1).

The existence theorem of weak solution.
Theorem 3 [Existence theorem of weak solution] For ψ0 ∈ V of N particle (P1, · · · ,PN), then
there exists a unique weak solution ψ ∈W (0,T ) for G-P equation (1).

Our trapping manipulation (V 1
n ,V

2
n ,V

3
n ) is worked and valid for finding a wave function

solution of G-P equation.

5. Quantum Surface Control of BEC

Third, let’s to apply quantum control theory to BEC and give the proof. Suppose Q =

[0,T ]×Ω and set Vn = V 1
n +V 2

n +V 3
n , U = L2(Q) is the space of controls Vn, and Uad is a

admissible set of U . Set control V = (V1, · · · ,Vn, · · · ,VN), and corresponding optimal control
V∗ = (V ∗1 , · · · ,V ∗n , · · · ,V ∗N). Denote U = U N and Uad = U N

ad , then V ∈ U. The particles wave
motion make us to do terminal observation by photograph, scanning electron micrograph, or
computer monitor at final time T, t f . The cost function of n-th particle for G-P system (1) can
be composed in the form of

J(Vn) = ε
1‖ψ f

n (Vn)−ψ
target
n (Vn)‖2

H+ ε
2‖Vn‖2

U . (4)

In criteria function (4), Vn ∈ Uad , ψ
target
n (Vn) is target state, ψ

f
n (Vn) is observed final state

of particle Pn at final time t f . ε i, i = 1,2 are weighted coefficients for balancing the values
of system inherent cost and control running cost. In summary, the total cost function

J(V) =
N

∑
n=1

J(Vn) for a condensate of N particles can be represented as

J(V) = ε
1‖ψ f (V)−ψ

target(V)‖2
H + ε

2‖V‖2
U. (5)
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In criteria function (5), V ∈ Uad , ψ target(V) = (ψ
target
1 (V1), · · · , ψ

target
N (VN)) is target state,

ψ f (V) = (ψ
f

1 (V1), · · · ,ψ f
N(VN)) is observed final state of N particle at final time t f . Hence,

we have 3N controls term of N trapped particles.
Two fundamental problems of quantum optimal control for Bose-Einstein-Condensates at
surface:

i). Find quantum optimal control V∗ for G-P system (1).
ii). Find Eular-Langrange system for V∗.

For N particle (P1, · · · ,PN), V∗ is said as quantum optimal control for G-P system (1) to total
cost function (5).
Theorem 4 [Existence of quantum optimal control] For ψ0 ∈ V of N particles (P1, · · · ,PN), if
Uad is closed convex (bounded) admissible subset of U, then there exists at least one quantum
optimal control V∗ of Bose-Einstein-Condensates system (1) subject to cost function (5).

Note that, all the trapping methodologies V are worked at low temperature (∼ nK) to
control atoms, from create a BEC at surface; get enough time to observe low or zero velocity
of atoms (density of atom ↑, velocity of atom ↓); to release atoms from a BEC status.
Proof. Set J = inf

V∈Uad
J(V), since Uad is non-empty, there is a sequence {Vk} in Uad such that

inf
V∈Uad

,J(V) = lim
k→∞

J(Vk) = J. Since {J(V)} is bounded in R+, and Uad is closed and convex

(bounded) subset of U, there exist a subsequences {Vk′} of {Vk} can be extracted, and exist a
V∗ ∈ Uad , such that

Vk′ → V∗ weakly in U as k′→ ∞. (6)

From the existence Theorem 3 of weak solution to get estimate ‖ψ‖2
H + ‖ψ‖2

V is bounded
for ψ of N particles (P1, · · · ,PN). For control Vk′ , from boundedness of Uad that

ψ(Vk′) is bounded in L2(0,T ;H )∩L2(0,T ;V ).

Setting ψ∗ = ψ(V∗), there exist a subsequence {ψ(Vk′′)} of {ψ(Vk′)} and a ψ∗ ∈W (0,T )
such that

ψ(Vk′′)→ ψ
∗ weakly in L2(0,T ;H )∩L2(0,T ;V ).

as k′′→∞. Since the embedding V ↪→H is compact, from the Aubin-Lions-Temam theorem
(cf. [11]), then there is ψ ∈H that

ψ(Vk′′)→ ψ strongly in L2(0,T ;H ) k′′→ ∞,

and get the convergences for ψ as

∂ψ

∂ t
(Vk′′)→ ∂ψ

∂ t
weakly in L2(0,T ;V ′), (7)

∇ψ(Vk′′)→ ∇ψ weakly in L2(0,T ;H ), (8)

as k′′→ ∞. Set ψk′′ = ψ(Vk′′), therefore, for N particles (P1, · · · ,PN), by taking test function
w j = η , by the definition of weak form (3) to find∫ T

0

∫
− ih̄ψ

k′′ ∂η

∂ t
dxdt =

∫ T

0

∫
− h̄2

2M
∂ψk′′

∂x
∂η

∂x
+Vk′′

ψ
k′′

η +Nν |ψk′′ |2ψ
k′′

ηdxdt.
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If using (6), (7)-(8), and taking k′′→ ∞ to yield that∫ T

0

∫
− ih̄ψ

∂η

∂ t
dxdt

=
∫ T

0

∫
− h̄2

2M
∂ψ

∂x
∂η

∂x
+V∗ψη +Nν |ψ|2ψηdxdt ∀η ∈C1(0,T ;V ). (9)

It inferred from (9) that ψ is a solution of (1) in the sense of distribution D ′(0,T )N on (0,T ).
From the uniqueness of weak solution for BEC system to attain ψ = ψ(V∗). For ψ to get two
convergences as

ψ(Vk′′)→ ψ(V∗) strongly in L2(0,T ;H ),

ψ
f (Vk′′)→ ψ

f (V∗) strongly in H , k′′→ ∞.

Since the norm ‖ · ‖L2(Ω) are lower semi-continuous in weak topology of H , for N particles

lim inf
k′′→∞

‖ψ f (Vk′′)−ψ
target‖2

H ≥ ‖ψ f (V∗)−ψ
target‖2

H .

Vice versa, from weak convergence (6) that lim inf
k′′→∞

(Vk′′ ,Vk′′)U ≥ (V∗,V∗)U at L2(Q)N . To

cost function (5), J = lim inf
k′′→∞

J(Vk′′)≥ J(V∗), and J(V∗) = inf
V∈Uad

J(V). That is means, V∗(t,x)

is quantum optimal control to criteria function (5). It is Theorem 4.
Theorem 5 [Optimality system] For ψ0 ∈V , and control problem for G-P equation (1) to cost
function (5), if Uad is closed convex (bounded) admissible subset of U, then quantum optimal
control V∗ is characterized by Euler-Lagrange system as ih̄

∂ψ

∂ t
=− h̄2

2M
∆ψ+V∗ψ +Nν |ψ|2ψ in Q,

ψ(V∗,0) = ψ0 on Ω,
(10)

ih̄
∂σ

∂ t
=− h̄2

2M
∆σ+2Nνψψσ+Nνψ

2
σ in Q,

iσ(T ) = ψ
f (V∗)−ψ

target on Ω,
(11)

∫ T

0

∫
σ(V∗)(V−V∗)dxdt +(V∗,V−V∗)U ≥ 0 ∀V ∈ Uad. (12)

In here, σ ∈W (0,T ) is weak solution of adjoint system (11) to solution ψ of BEC system
(10). It is known that (12) is necessary optimality condition for quantum optimal control
V∗(t,x) of N particles (P1, · · · ,PN).

6. Bang-Bang Principle

Take admissible subset Uad of control space U as

Uad = U N
ad = {Vn|Vn =V 1

n +V 2
n +V 3

n ,V
1
n ∈ [0,T ]× [V 1a

n ,V 1b
n ];

V 2
n ∈ [0,T ]× [V 2a

n ,V 2b
n ];V 3

n ∈ [0,T ]× [V 3a
n ,V 3b

n ]}N .

That is, for a.e. t ∈ [0,T ]

V 1a
n (t)≤V 1

n (t)≤V 1b
n (t), V 2a

n (t)≤V 2
n (t)≤V 2b

n (t), V 3a
n (t)≤V 3

n (t)≤V 3b
n (t)
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to make V a
n (t,x)≤Vn(t,x)≤V b

n (t,x) for

V a
n =V 1a

n +V 2a
n +V 3a

n , V b
n =V 1b

n +V 2b
n +V 3b

n .

Set Va = (V a
1 , · · · ,V a

N),V
b = (V b

1 , · · · ,V b
N), hence Va ≤ V ≤ Vb. Then, at the necessary

optimality condition (12), consider system cost of first term at cost function (5) (taking ε2 = 0)
to get ∫ T

0

∫
σ(V∗)(V−V∗) dxdt ≥ 0, ∀V ∈ Uad

From the Lebesgue convergent theorem to get, for a.e. x ∈Ω and t ∈ [0,T ], we have

σ(V∗)(V−V∗)≥ 0, ∀V ∈ Uad.

The details formulation for quantum optimal control can be determined by the sign of solution
σ(V∗) of adjoint system as

if σ(V∗)≥ 0 thenV∗(t,x) = Va(t,x) for a.e. (t,x) ∈ Q;

if σ(V∗)≤ 0 thenV∗(t,x) = Vb(t,x) for a.e. (t,x) ∈ Q.

It is well known, this is the Bang-Bang Principle for optimal control input V∗(t,x) subject to
admissible subset Uad .

7. Conclusions and Discussion

At matter surface, quantum control for trapped Bose-Einstein-Condensate is considered with
full proof of the existence of optimal control in complex Hilbert space (cf. [17]). Quantum
control theory is applied to Gross-Pitaevskii equation in the framework of variational method.
Bang-Bang Principle is deduced for quantum optimal control. It is a theoretical work of
control trappping BEC. Computational approach and numerical demonstration would be
further research direction. Physical experiments, surface at room temperature might be useful
device to manipulate atoms.

As to the theoretic survey of controlling trapped Bose-Einstein-Condensates at matter
surface, forthcoming works could be concentrate to computational, and experimental aspects
at the physics and chemistry fields at 2D or 3D cases.

At laboratory control of particles, atom, ion at BEC status on the matter surface (e.g.
control of ion Y b+ in 87Rb atoms BEC, 23Na atoms BEC at Si surface, and so on) would also
be a interesting future works.
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