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Abstract

Quantum control is always interested in all the phenomena in the word.1 At the nano-scale,

particle at catalysis surface is a research topic in connected of quantum mechanics and surface

science. Nano-particles appeared at a certain crystals would be considered as control object in

this regarding. Theoretical issue is taking account into control using quantum control theory.

An exciting conclusion is attractive in this work ultimately.

History of nano particle

Nano particle indicate a particle in the scale of 10−9 m, it is intermediate particle of atom and

molecule.2 Those particles possess unique properties of electronic, magnetic, mechanics, conduc-

tion, physical, optical than other particles. For unit nanometer 1nm=10−9m, a particle usual at

1nm to 100nm. Early nanoparticle appeared in ancient materials, surface of ceramic. After it had

been recognized as nanoparticle, people had discovered carbon (C) nanotube, nanowire, nanomo-

tor, nanorod as advance materials. Significantly, nanotechnology had being utilized in industry,

aerospace, medicine and other areas.
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As nanopartice on a matter, metalic or catalysis surface, researches had been reported on the

reaction and non-reaction cases. First is nanoparticle take chemical interaction at surface; second is

the nanoparticle non-reacted on surface in a magnetic field. At a certain nanocrystal surface (such

as silicon crystal for memory storage), nanoparticle can be growth in lab experiments. Control of

nanoparticle had been considered for physical purpose to make an ideal nano-material. In general,

at current instrument equipments (TEM, STM), those kinds of control can be occurred for adjust-

ment of temperature, pressure, particle-type, and so forth. Theoretically, control of nanoparticle at

a practical crystal surface is a fairly interesting topic: what dynamics are those particle obey, what

can we do for a nanoparticle, can one control the nanoparticle as they are on the surface.

In this work, nanoparticle at surface is considered as control target. Control theory is ap-

plied to a quantum system (named as nanosystem) of nanoparticle in the form of time-depended

Schrödinger equation of electron density function. Apart from Schrödinger equation of wave func-

tion for quantum physics, density functional theory is proposed in early years of last century.3

Different to represent a elementary particle as wave function, the idea of density functional theory

is laying on representing a quantum particle by electron density. In this theoretic work, density

functional theory (DFT) is using as tool to do control at the framework of Thomas-Fermi (TF)

theory.4,5 TF model had already been modified as Thomas-Fermi-Dirac (TFD) model,6 Thomas-

Fermi-von Weizsäcker (TFW) model,7 Hohenberg-Kohn model for one electron,8 Kohn-Sham

model for including exchange and correlation correction.9

Density function theory

For nanoparticle, roughly introduce density functional theory as preparation.10 Let Ω be an open

bounded set of R3 at spherical polar coordinate r∈ (0,∞), and Q = (0,T )×Ω for T > 0, (t,r)∈Q.

The ground state energy density of electron is denoted as n(t,r), r is the displacement of electron

from centre of nanoparticle, ~E(t,~r) is electronic field. Then time-dependent density functional
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theory is taking the form of Schödinger equation as11

i
∂

∂ t
η(t,r) =

[
− 1

2
∇

2 +
∫ n(t,r′)
|r− r′|

dr′+
δExc(n(t,r))

δn(t,r)
−~E0(t) ·~r

]
η(t,r).

In here, η(t,r) is wave function of the particle, represent the probability function at time t.

Exc(n(t,r)) is exchange correction function. For unified scattered field ~Es(t,~r), the Hamiltonian

of nanoparticle in the presence of incident field ~E0(t) at time-depended density functional theory

(TDDFT) lead the form of

Ĥ(t) =−1
2

∇
2 +

∫ n(t,r′)
|r− r′|

dr′+
δExc(n(t,r))

δn(t,r)
−~E0(t) ·~r−~Es(t,r) ·~r

Time depended Schrödinger equation

Practically, for N nanoparticle at surface, n(t,r′) =
N

∑
i=1
|η i(t,r′)|2, time-depended Schrödinger

equation is expressed as

 i
∂

∂ t
η

i(t,r) =−1
2

∆η
i(t,r)+ [e(t,r)+V (t,r)−g(t)]η i(t,r),

η i(0,r) = η i
0(r), 1≤ i≤ N.

(1)

System (1) is said as nanosystem. In here, e(t,r) is electron-electron interaction, V (t,r) is contri-

bution of potential energy functional Exc, and g(t) is external electronic field.

e(t,r) =
∫ n(t,r′)
|r− r′|

dr′, V (t,r) =
δExc(n(t,r)

δn(t,r)
, g(t) = ~E0(t) ·~r.

For different density functional model, Exc at V (t,r) is expressed as detail

V (t,r) =
δExc(n(t,r))

δn(t,r)

=
5
3

ck

∫
n(r)2/3dr+ v(r) TF model
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=
5
3

ck

∫
n(r)2/3dr+ v(r)− 4

3
ce

∫
n(r)

1
3 dr TFD model

=
5
3

ck

∫
n(r)2/3dr+ v(r)− 4

3
ce

∫
n(r)

1
3 dr

+
1
8
(
h2

m
)
∫
[
|Ñn(r)|2

n2(r)
−2

Ñ2n(r)
n(r)

]dr, TFDW model

ck =
3

10
(

h
m
)(3π

2)2/3 and ce = e2 3
4
(

3
π
)1/3. For several nucleus, coulomb potential v(r)=∑

σ

Cσ

|ri−Rσ |
,

Cσ is charge, ri is coordinate of electron at nucleus Rσ . At TFW model, last term of TFDW theory

is in the form of gradient expression as
h̄
m

∫
|(∇n1/2)(r)|2dr. The equation in nano system (1) can

be called as nano equation.

Mathematical setting

To do mathematical setting for time-depended Schrödinger equation (1) in the framework of varia-

tional method. For the practice of nanoparticle at matter or metallic surface, neglect the considera-

tion of complex space for wave function η i(t,r) on variable t and r, take real Hilbert space for real

part and imaginary part in variational theory. In nano system (1), g(t) is external force of electron,

external control input of nanoparticle Pi. Control g(t) is only depended on time t, and independent

of spatial variable r.

For real part and imaginary part of complex-valued function η i(t,r), consider two Hilbert

spaces H = L2(Ω) and V = H1
0 (Ω) for usual norm and inner product.12 V ′ denotes conjugate space

of V . Actually, (V,H) is a Gelfand triple spaces V ↪→ H ↪→ V ′, two embeddings are continuous,

dense and compact. For η i = η i1+ iη i2, η i1,η i2 ∈ L2(Ω), norm of η i1,η i2 in space L2(Ω),H1
0 (Ω)

as ‖ · ‖H ,‖ · ‖V . For η i = η i1 + iη i2, then inner product of η i1 and η i2 in space L2(Ω) and H1
0 (Ω)

denoted as (·, ·)H and (·, ·)V . In here, η
i′ =

∂η i

∂ t
.

Definition 1. For η i = η i1 + iη i2, define solution space W (0,T ) as

W (0,T ) = {η i | η i1,η i2 ∈ L2(0,T ;V ),η i1′,η i2′ ∈ L2(0,T ;V ′)}.
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The norm of η i in the space W (0,T ) can be defined as

‖η i‖W (0,T ) = (‖η i1‖2
L2(0,T ;V )+‖η

i2‖2
L2(0,T ;V )+‖η

i1′‖2
L2(0,T ;V ′)+‖η

i2′‖2
L2(0,T ;V ′))

1
2 .

If η i = η i1 + iη i2 ∈W (0,T ) and ni = ni1 + ini2 ∈W (0,T ), then definition of inner product is

(η i,ni) = (η i,ni)V + (η i′,ni′)V ′ . Respect to the defined norm and inner product, W (0,T ) is

equipped as a Hilbert space.

Definition 2. A function η i is said as weak solution13 of nano system in the form of time-depended

Schrödinger equation (1) for i-th particle Pi, i = 1,2, · · · ,N, if η i ∈W (0,T ) and satisfy

∫ T

0

∫
i
∂η i(t,r)

∂ t
σ

idrdt =
1
2

∫ T

0

∫
∇η

i(t,r)∇σ
idrdt +

∫ T

0

∫
[e(t,r)+V (t,r)−g(t)]η i(t,r)σ idrdt, (2)

where ∀σ i ∈D ′(0,T ) by the means of distribution space, σ i ∈C1(0,T ;V ) and σ i(T ) = 0.

Solution of nano equation

Theorem 3. For η i(0,r) = η i
0(r) ∈V of nanoparticle Pi, i = 1,2, · · · ,N, then there exists a unique

solution η i(t,r) ∈W (0,T ) for time-depended Schrödinger nano system (1).

Proof. Faedo-Galerkin method is using to construct an approximate solution for nano system

(1). From Gelfand triple spaces, V ↪→ H is compact, then there exists an orthogonal basis of H,

{w j}∞
j=1 consisting of eigenfunctions of A = −∆, such that Aw j = λ jw j for all j, 0 < λ

1 ≤ λ
2 ≤

, · · · ,λ j → ∞ as j→ ∞. Gi is the orthogonal projection of H (or V ) onto the space spanned by

{w1, · · · ,wi′}. For 1≤ i≤ N, an approximate solution is defined for nano equation (1) by

η̃
ii′(t) =

i′

∑
j=1

ai j(t)w j,
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and ai j(t) is real-valued coefficient function. i′ is upper index of i-th η̃ i. From n(t,r)=
N

∑
i=1
|η i(t,r)|2

to get expansion of ẽ(t,r) and Ṽ (t,r) of e(t,r) and V (t,r) using basis functions {w j}. Taking

σ i = w j at weak form (2), then approximate solution η̃ ii′(t) satisfy ordinary differential equation

as
∫ T

0

∫
i
∂ η̃ ii′

∂ t
w jdrdt =

1
2

∫ T

0

∫
∇η̃

ii′
∇w jdrdt+

∫ T

0

∫
[ẽ(t,r)+Ṽ (t,r)−g(t)]η̃ ii′w jdrdt

η̃ ii′(0) = η̃ i
0, 1≤ i≤ N.

(3)

Substitute η̃ ii′ as approximate form in (3), from standard theory of ODE, ensure a unique local

solution {η̃ ii′}, i = 1,2, · · · ,N for approximate system (3). For η̃ ii′
0 , there exists a η̄ i

0 ∈V such that

η̃
ii′
0 → η̄

i
0 strongly in H1

0 (Ω), as i′→ ∞.

Take analogous argument for {η̃ ii′}, there exist a function η̄ i ∈V , that ‖η̃ ii′− η̄ i‖V → 0 as i′→∞.

That is, approximate solution η̃ ii′ is bounded in L∞(0,T ;V ). Suppose that {η̃ ii′} and {η̃ ji′} are

two solutions of nano equation (1) for initials η i
0 and η

j
0 . ẽii′ = ẽ(t,r,η ii′),Ṽ ii′ = Ṽ (t,r,η ii′) for

solution η ii′ , and ẽ ji′ = ẽ(t,r,η ji′),Ṽ ji′ = Ṽ (t,r,η ji′) for solution η ji′ . To estimate the external

force as

ẽii′
η

ii′− ẽ ji′
η

ji′

=
∫ N

∑
i=1
|η ii′|2

|r− r′|
dr′η ii′−

∫ N

∑
j=1
|η ji′|2

|r− r′|
dr′η ji′

= ẽii′(η ii′−η
ji′)+(ẽii′− ẽ ji′)η ji′

= ẽii′(η ii′−η
ji′)+

∫ N

∑
i=1
|η ii′|2−

N

∑
j=1
|η ji′|2

|r− r′|
dr′η ji′

= ẽii′(η ii′−η
ji′)+

∫ N

∑
i, j=1
|η ii′−η

ji′||η ii′+η
ji′|

|r− r′|
dr′η ji′.
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Then to have formula

‖ẽii′
η

ii′− ẽ ji′
η

ji′‖2 ≤ ‖ẽii′‖2
H +‖η ii′−η

ji′‖2
H +‖ẽii′− ẽ ji′‖2

H +‖η ji′‖2
H .

Further to estimate

‖Ṽ ii′
η

ii′−Ṽ ji′
η

ji′‖2 ≤ ‖Ṽ ii′‖2
H +‖η ii′−η

ji′‖2
H +‖Ṽ ii′−Ṽ ji′‖2

H +‖η ji′‖2
H .

Hence, by sum of w j on coefficients ai j(t) from j = 1 to i′ (same as replacing w j to η̃ ii′) at weak

form (2) to get

i
2

d
dt
‖η̃ ii′− η̃

ji′‖2
H +g(t)‖η̃ ii′− η̃

ji′‖2
V

≤ 1
2
‖η̃ ii′− η̃

ji′‖2
V +2‖η ii′−η

ji′‖2
H +(‖ẽii′− ẽ ji′‖2

H +‖Ṽ ii′−Ṽ ji′‖2
H)

+(‖Ṽ ii′‖2
H +‖ẽii′‖2

H +2‖η ji′‖2
H).

Set Ii j(t) = ‖η̃ ii′− η̃ ji′‖2
H +‖η̃ ii′− η̃ ji′‖2

V , and C(t) = ‖ẽii′‖2
H +‖Ṽ ii′‖2

H +2‖η ji′‖2
H , by the positive

of second term in left side, and polynomial convergence of expansions ẽ(t,r) and Ṽ (t,r) in third

term of right side at above formula to sure

i
d
dt

Ii j(t)≤ Ii j(t)+C(t).

Set Ii j(0) = ‖η̃ ii′
0 − η̃

ji′
0 ‖2

H +‖η̃ ii′
0 − η̃

ji′
0 ‖2

V , Gronwall inequality yield that

Ii j(t)≤ etIi j(0)+
∫ t

0
C(t)et−t ′dt ′, 0≤ t ′ ≤ t.

It implied η̃ ii′→ η̃ ji′ in L2(0,T ;H) and L2(0,T ;V ) as i′→∞. Taking η̃ ji′ =η i to find that η̃ ii′→η i

in C(0,T ;H). Thus, inclusion C(0,T ;H)⊂W (0,T ) to ensure Theorem 3.
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Applying quantum control to nano system

Consider theoretical existence of quantum optimal control for nano particle at catalysis, crystal

surface. For control g(t), set corresponding optimal control g∗(t). Suppose G = L2(0,T ) is the

space of control g(t), and Gad is a admissible set of G . Set ground state of i-th nano particle Pi as

η i(0) = η0. Consider cost function of i-th nano particle Pi for time-depended Schrödinger system

(1) is in the form of

Ji(g) = ε
1‖η i

f (g)−η
i
d‖

2
H + ε

2‖g‖2
G . (4)

for ∀g ∈ Gad . In criteria function (4), η i
d is target state, η i

f (g)) is observed final state of nano

particle Pi at final time t f . ε i, i = 1,2 are weighted coefficients for balancing the values of inhere

cost and running cost. Total cost function J(g) =
N

∑
i=1

Ji(g) for all nano particles at a certain matter

surface.

Two fundamental problems of quantum optimal control for nano quantum system:

i). find quantum optimal control g∗ for nano system (1).

ii). find Eular-Lagrange system for g∗.

For i-th nanoparticle Pi, g∗(t) is said as quantum optimal control for nano system (1) to cost

function (4).

Theorem 4. For η i
0 ∈V of i-th nano particle Pi, n = 1,2, · · · ,N, if Gad is closed convex (bounded)

admissible subset of G , then there exists at least one quantum optimal control g∗ of nano system

(1) subject to cost function (4).

Proof. Set J = inf
g∈Gad

Ji(g), since Gad is non-empty, there is a sequence {gk} in Gad such

that inf
g∈Gad

Ji(g) = lim
k→∞

J(gk) = J. Since {Ji(g)} is bounded in R+, and Gad is closed and con-

vex (bounded) subset of G , there exist a subsequences {gk′} of {gk} can be extracted, and exist a

g∗ ∈ Gad , such that

gk′ → g∗ weakly in G as k′→ ∞. (5)
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From existence theorem 1 of weak solution to get estimate ‖η i‖2
H + ‖η i‖2

V is bounded for η i of

i-th nano particle Pi. For control gk′ , from boundedness of Gad that

η
i(gk′) is bounded in L2(0,T ;H)∩L2(0,T ;V ).

Setting η i∗ = η i(g∗), there exist a subsequence {η i(gk′′)} of {η i(gk′)}, and a η i∗ ∈W (0,T ) such

that

η
i(gk′′)→ η

i∗ weakly in L2(0,T ;H)∩L2(0,T ;V ).

as k′′ → ∞. Since the embedding V ↪→ H is compact, from Aubin-Lions-Temam theorem, then

there is η̄ i ∈ H that

η
i(gk′′)→ η̄

i strongly in L2(0,T ;H), as k′′→ ∞,

and get the convergences for η i as


∂η i(gk′′)

∂ t
→ ∂ η̄ i

∂ t
weakly in L2(0,T ;V ′),

∇η i(gk′′)→ ∇η̄ i weakly in L2(0,T ;H),

(6)

as k′′→∞. Set η ik′′ = η i(gk′′),η ik′′
0 = η i

0, therefore, for i-th nano particle Pi, by taking test function

w j = σ i in (3), by the definition of weak form (2) to find


∫ T

0

∫
i
∂η ik′′

∂ t
σ

idrdt =
1
2

∫ T

0

∫
∇η

ik′′
∇σ

idrdt+
∫ T

0

∫
[e(t,r)+V (t,r)−g(t)]η ik′′

σ
idrdt

η ik′′(0) = η ik′′
0 , 1≤ i≤ N.

If using (5), (6), and taking k′′→ ∞ to yield that


∫ T

0

∫
i
∂ η̄ i

∂ t
σ

idrdt =
1
2

∫ T

0

∫
∇η̄

i
∇σ

idrdt+
∫ T

0

∫
[e(t,r)+V (t,r)−g(t)]η̄ i

σ
idrdt

η̄ i(0) = η i
0, 1≤ i≤ N,
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For ∀σ i ∈C1(0,T ;V ). It inferred that η̄ i is a solution of (1) in the sense of distribution D ′(0,T )

on (0,T ). From uniqueness of weak solution for nano system to attain η̄ i = η i(g∗). For η i to get

two convergences as

η
i(gk′′)→ η

i(g∗) strongly in L2(0,T ;H),

η
i
f (g

k′′)→ η
i
f (g
∗) strongly in H, as k′′→ ∞.

Since the norm ‖ · ‖L2(Ω) are lower semi-continuous in weak topology of L2(Ω), for i-th nano

particle Pi

lim inf
k′′→∞

‖η i
f (g

k′′)−η
i
d‖

2
H ≥ ‖η i

f (g
∗)−η

i
d‖

2
H .

Vice versa, from weak convergence (5) that lim inf
k′′→∞

(gk′′,gk′′)G ≥ (g∗,g∗)G . For cost function (4),

J = lim inf
k′′→∞

Ji(gk′′) ≥ Ji(g∗), and Ji(g∗) = inf
g∈Gad

Ji(g). That is, g∗ is quantum optimal control of

nano system (1) subject to criteria function (4). It is Theorem 4.

For quadratic cost function (4), the existence of Gâteaux differentiable of Ji(g) on control

variable g make us to rewrite the first order necessary optimality condition DJi(g∗)(g− g∗) ≥ 0

in term of solution for adjoint system. One can derive the optimality system of quantum optimal

control g∗ for nano system (1) to cost function (4).

Theorem 5. For η i
0(r)∈V of control problem for nano system (1) to cost function (4), if Gad is

closed convex (bounded) admissible subset of G , then quantum optimal control g∗ is characterized

by Eular-Lagrange system as

 i
∂

∂ t
η

i(t,r) =−1
2

∆η
i(t,r)+ [e(t,r)+V (t,r)−g∗(t)]η i(t,r) in Q,

η
i(0,g∗) = η

i
0 on Ω.

(7)

 i
∂

∂ t
ni(t,r) =−1

2
∆ni(t,r)+ [e(t,r)+V (t,r)]ni(t,r) in Q,

ni(T,g∗) = η
i
f (g
∗)−η

i
d on Ω.

(8)

∫ T

0

∫
σ
∗ni(g∗)(g−g∗) drdt +(g∗,g−g∗)G ≥ 0 ∀g ∈ Gad. (9)
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In here, ni ∈W (0,T ) is solution of adjoint system (8) corresponding to η i of nano system (7).

(9) is necessary optimality condition for quantum optimal control g∗ of i-th nano particle Pi, i =

1,2, · · · ,N. σ∗ is conjugate operator of σ in σ(η i) = g∗η i.

Discussion

Practically, theoretic found optimal control g∗ can be executed in laboratory by the means of

control adjustment or confinements. This kind of physical control had been taken as: control

particle-type (atomic number, Fermi energy, potential energy, electron density); control particle

size (number of atoms, ground state molecules, lattice constants); quantum number selection rule

for principle and angular quantum number. For instance, metal nano particle 1− 100nm contain

102-108 atoms, nobel metal nano particle silver Ag, gold Au take lattice constants 0.408, 0.407,

principle quantum number n = 5, n = 6, Fermi level µ = 5.49 eV, µ = 5.53 eV, et al. Our work is

based upon those experimental results, consider the theoretic control theory as purpose to evident

existing physical control conclusion and provide theoretical support for real-time computer aided

lab control.

Conclusions

In summary, at this work, quantum control for nano-particles at matter (catalysis, crystal, metal)

surface is proposed initially and theoretically using the density function theory of time-depended

Schrödinger equation. Through applying the DFT approach to TDSE, optimal control theory is

worked as consideration to manipulate the nano-particles appeared at a certain surface (no chem-

ical reaction take place). Compare to the study of particles at surface governed by Schrödinger

equation, density function theory is a new tool for controlling at nanoscale under the optical equip-

ment by accessing the successful control conclusion on molecule and atom scales. Theoretical

control, computational control and experimental control of nano-particles at surface would be ex-

tremely interesting work in the future.
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