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Abstract— In this paper, it would be worthwhile to consider
the theoretical and computational approach of controlling
Bose-Einstein Condensates (BEC). In high spatial dimension
(2D/3D) case, the BEC system is controlled under external
force in trapped optical lattice at low temperature. Finally, our
conclusion is in accordance with the results in physics/chemistry
realms.

I. INTRODUCTION

Since 1990’s, one can make the bosonic atoms reach Bose-
Einstein condensates in real lab experiments (cf. [1], [2],
[4], [5]). After that, Bose-Einstein condensates (BEC) always
is the focus point in the condensates matter physics last a
couple of decades. It has been sufficiently investigated both
in physics and chemistry fields.

However, control problems of BEC is merely been con-
sidered in quantum control area. With the development of
quantum physics field, control Bose Einstein condensates
(BEC) become possible in optical trapped lattice at low
temperature.

Actually, at the standpoint of physics area, if an ultra-
cold vapor of bosonic atoms are trapped in magnetic well,
pure condensates will be created as they are cooled to a
temperature below the BEC threshold. After that creation,
these BEC are located into a optical lattice potential which
can be realized experimentally by a far detuned laser beam.
This phenomenon of macroscopic quantum system consisting
of ultra-cold atoms in unique in precision and flexibility for
experimental control and manipulation.

To push the progress of the field of quantum system
control, naturally, Bose Einstein condensates regarded asa
quantum control system, and made it changed under the
external control forces.

The aim of this paper is to deal with control of BEC in
optical lattice with the changing of different laser intense
pulse as control input. Our purpose is to deduce the theoretic
results and execute numerical simulation demonstration.

Th article is organized as follows. In Section II, Bose-
Einstein condensates is given by Gross Pitaevskii equation.
In Section III, the mathematical setting is presented in Hilbert
space. The theoretical conclusion for the BEC quantum
system is obtained. In Section IV, computational approach
is performed for4×4 optical lattice. The simulated graphics
are shown in series figures. Lastly, in Section V, resultant
conclusion is contained.
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II. BOSE-EINSTEIN CONDENSATES

Bose-Einstein condensates (BEC) is usually modeled by
the celebrated Gross Pitaevskii (GP) equation, a cubically
nonlinear Schrödinger equation, see [4].

i~ψt = − h2

2m
+ u(x)ψ +Nα|ψ|2ψ, (1)

wherem denote the atomic mass,~ is the reduced Planck
constant,N is the number of atoms in the condensate, and
α = 4π~2/m, with a ∈ R denoting the characteristic
scattering length of the particles. Here, for simplify to denote

u(x) = U(x) + V0(x),

where external potentialU(x) is confining in order to de-
scribe the electromagnetic trap needed for the experimental
realization of a BEC. Assumed harmonic form

U(x) = mω2
0

|x|2
2
, ω0 ∈ R at t = 0.

A particular example for periodic potentials used in physical
experiments is then given by

V0(x) = s
3

∑

i=1

h2x2

m
sin2(xixi), xi ∈ R,

wherex = (x1, x2) denotes the wave vector of the applied
laser field ands > 0 is a dimensionless parameter describing
the depth of the optical lattice, which expressed in terms of
the recoil energy.

The GP equation (1) provides a case for nonlinear codes
since it features high frequency oscillations, two scale exter-
nal potentials,and (focusing/defocusing) nonlinearity.

III. QUANTUM CONTROL FOR BEC

Consider the control problem for BEC described by GP
system (1). Firstly, let us regard the issue into mathematical
setting in Hilbert space.

Let Ω be an open bounded set ofR2 andQ = (0, T ) for
T > 0. Then(x, t) ∈ Q. Introduce two Hilbert spaces

H = L2(Ω), V = H1
0 (Ω)

with usual norm and inner products. Then embedding in
Gelfand triple spaceV →֒ H →֒ V are continuous, dense
and compact.

SupposeU = L2(Ω) is the space of external (e.g. laser
optical lattice) controlsu. Let Uad be a closed and convex
admissible set ofU . Assume initial ground state for each
particle in trapped optical lattice as

ψ(u, 0) = ψ0.



The objective function associated with (1) is given by

J(u) = ǫ1|ψ(u, T )− ψtarget(u)|V + ǫ2(u,u)U . (2)

Here u ∈ Uad, and ψtarget(u) is target state,ψ(u, T ) is
observed final states, respectively. Moreover,ǫi, i = 1, 2 are
weighted coefficients for balancing the values of inherent
cost and running cost.

Our goal is to find and characterise quantum optimal
controlu∗ for GP system (1). Hereu∗ will be called quantum
optimal control for GP system (1) subject to objective
function (2).

In order to do theoretical control for GP system (1) with
objective function (2), first of all, we give two definitions to
define the weak solution and its solution space.

Definition 1: Define solution space of the weak solution
by Hilbert space (cf. [3]).

W (0, T, V, V ′)={ψ | ψ ∈ L2(0, T ;V ), ψ′ ∈ L2(0, T ;V ′)}.
Definition 2: A functionψ is called weak solutions of (1)

if ψ ∈W (0, T ;V, V ′) and satisfy
∫ T

0

∫

Ω

i~ψtdtdx

= − h2

2M

∫ T

0

∫

Ω

ψdxdt +

∫ T

0

∫

Ω

uψdxdt

+

∫ T

0

∫

Ω

Nα|ψ|2dx. (3)

By the analogical manipulation as in [6] and take account
into (3), it is easy to prove the following two theorems. Let
us omit proof in here via the restriction of paper length.

Theorem 3:If given initial stateψ0 ∈ V , there exists at
least one quantum optimal controlu∗ for GP system(1)
subject to objective function(2).

Theorem 4:For givenψ0 ∈ V , there exists at least one
quantum optimal controlu∗ for GP system(1) subject to
(2). The optimality systems are given by






iψt = − ~
2

2M
ψ + u

∗ψ +Nα|ψ|2ψ in Q,

ψ(u∗, 0) = ψ0 in Ω,
(4)







ipt = − ~
2

2M
p+ 2|ψ|ψp+ |ψ|2p = 0 in Q,

ip(T ) = p(u∗, T )− ψtarget in Ω,
(5)

(u∗,u− u
∗)U +

∫

Q

p(u∗)(u− u
∗)dxdt ≥ 0, ∀u ∈ Uad. (6)

wherep ∈W (0, T ;V, V ′) is the solution of adjoint systems
(5) corresponding toψ in state systems (4).

As is well known the inequality (6) is the necessary
optimality condition.

IV. COMPUTATIONAL APPROACH

In this work, Wang semi-discrete algorithm (cf. [6], [7])
is executed in controlling quantum dynamics (1).

Precisely, finite element approach will be utilized to
solve state solution. The updated conjugate gradient method
(CGM) for nonlinear case will be used to seek the optimiza-
tion solution of minimization problem of approximate cost
functional consist of (2).

Notice that, at here, the time space is continuous, and
the spatial space will be discrete by finite element method
(FEM) for meeting the wave-particle duality property for per
quantum particle.

A. Experiment setting

SetΩ = [0, 15]× [0, 15] for two dimensions spatial case.
The reduced Planck constant is

~ = 1.0545715964207855× 1034.

The mass of per particle

87Rb = 1.41923× 1025 a.u.

The coefficient in nonlinear term of (1) is4π~2a/m, and
a = 5.1× 109.

Let N = 16 particles are located at lattice, and their
coordination calculated through

xi = 3i, i = 1, 2, 3, 4.

xj = 3j, j = 1, 2, 3, 4.

Then we have

(x1, y1), (x1, y2), (x1, y3), (x1, y4),

(x2, y1), (x2, y2), (x2, y3), (x2, y4),

(x3, y1), (x3, y2), (x3, y3), (x3, y4),

(x4, y1), (x4, y2), (x4, y3), (x4, y4),

respectively. Letdt = 1.0× 104 and the iterationn number
n = 5, T = ndt .

To configure each state function, the appendix function is
given by

Φ(x, v, t) =
1

1.2247448713915894

3
√
2

4
√
1− v2

(

sec[
(x− vt)

2
√
1− v2

]
)2

exp
[

i(vx+
1− v2 + v4

2(1− v2)
t)
]

,

where v are adjustable parameters, and takev =
5

6
in

demonstration of Section IV. Therefore, the initial state of
each particles is given by

ψ0 = Φ(x, v, 0).

Take the target state of each particles by

ψtarget = Ψ(x, v, T ).

The initial control input (i.e. optical lattice configuration) is
supposed by

u0(t) = 1.0× 1019 sin(1.5× 104t).

The initial control variableu0(t) is plotted in Figure 1.



FIG. 1 u0(t) for t ∈ [0, 0.0005]. (red curve)

Take the external potential as

V (x, y, λ) = V0 exp
N
∑

k=1

exp
(

− λ2(x− xj)
2 + (y − yj)

2

2ω2

)

.

HereV0 = −0.6, ω = 1.0 are given parameters. Takeλ =
u

T
at each iteration in subsectionB.

B. Experiment demonstration

By the above experiment setting in subsectionA of
Section IV. It is well for us to proceed the simulating demon-
stration with the MATHEMATICA 7. Particularly, ’Visual
Quantum Mechanics’ (VQM) package is used for graphics
expression of BEC described by GP system (1).

For initial stateψ0 given in subsectionA, its graphics are
shown in Figures 2.

(a). Plot ofψ0.

(b). Box plot ofψ0.

(c). Contour plot ofψ0.

(d). Black white contour ofψ0.

FIG. 2 Plot and contour plotψ(0), x ∈ [0, 15]× [0, 15].

For target stateψtarget at timeT , its graphics are computed
in Figure 3.



(a). Plot ofψtarget.

(b). Box plot ofψtarget.

(c). Contour plot ofψtarget.

(d). Black white contour ofψtarget.

FIG. 3 Plot and contour plotψ(T ), x ∈ [0, 15]× [0, 15].

After running serval round iterations, atn = 5, the
calculated states are shown in Figure 4.

(a). Plot ofψn.

(b). Box plot of psin.



(c). Contour plot ofψn.

(d). Black white contour ofψn.

FIG. 4 Plot and contour plot ofψ(u, t) at n = 5,
x ∈ [0, 15]× [0, 15].

Adjoint system are also calculated and plotted in Figure 5
at iterationn = 5.

(a). Plot ofp(u, t).

(b). Contour plot ofp(u, t)

FIG. 5 Plot and contour plot of adjoint statep(u, t),
x ∈ [0, 15]× [0, 15].

Quantum optimal control lattice express as (iterationn = 4)

u
∗=

(

− 8.41477× 1040 + 1.0× 1019 sin(15000.0t)
)

.

Its graphics is plotted in Figures 6.

FIG. 6 u
∗(t) for t ∈ [0, 0.0005]. (almost a line around

−8.41477× 1040)

Optimal cost function value are computed atn = 4 as

J(u∗) = 3.38171× 1063.

Furthermore, the cost functions iterationsJ(u) with unit
a.u. at each iteration is displayed in Figures 7.



FIG. 7 J(un), n = 1, 2, 3, 4, 5 (green dots)

Also, the error values of cost functionseJ = J(un+1) −
J(un) at each iteration refer to Figures 8.

FIG. 8 ErroreJ, n = 1, 2, 3, 4, 5 (red dots)

Moreover, the evaluate of cost functions can be compared in
Table I.

TABLE I

COST VALUES AT EACH ITERATION

iteration costJ

n=1 1.04663 × 1034

n=2 1.00205 × 1047

n=3 3.38171 × 1063

n=4 3.38171 × 1063

n=5 1.41617 × 1078.

The error values at each iteration are listed in Table II too.
Obviously, one can found that the particles are reached

condensate status in the iterationn = 4 at the4× 4 optical
lattice. At this moment, there is no more external energy is
needed, and the status is holding for a while as condensate
state for each particle.

Definitely, the simulated results are agree with the liter-
ature reported for BEC in chemistry and physics fields (cf.
[1], [2], [4], [5], [9]).

The total used CUP time is4001.96 second, and the
occupied memory is254805008 bytes.

TABLE II

ERROR VALUES AT EACH ITERATION

iteration error costeJ

n=1 1.04663 × 1034 *eJ(u1) = J(u1)

n=2 1.00205 × 1047

n=3 3.38171 × 1063

n=4 0

n=5 1.1617× 1078.

V. RESULTS AND DISCUSSION

In summary, the controlling for BEC have been solved
regarding the quantum dynamics to seek the optimal solution
(cf. [9]). This study extremely acquire the real laboratory
evidence for quantum controlling achievement. The progress
would be a promising research direction (cf. [6], [7], [8],
[9]).

Future research would be interested in focus on the con-
trolling of three dimension (3D) Bose-Einstein condensates
(BEC) at optical lattice. It is left to our further publications.
With the aiding of computer science development, the com-
putational approach and simulation would become true for
high dimension study of controlling BEC as well as physical
phenomena in quantum mechanics. As a bright perspective
of quantum system control in present and future, it can be
considered as possible and feasible.

It is a attempt work of BEC and would be valuable as
constant surveys for a long time.
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