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Abstract— In this paper, it would be worthwhile to consider II. BOSE-EINSTEIN CONDENSATES

the theoretical and computational approach of controlling e . .
Bose-Einstein Condensates (BEC). In high spatial dimensio Bose-Einstein condensates (BEC) is usually modeled by

(2D/3D) case, the BEC system is controlled under external the (_:elebrated G_ross Pitaeyskii (GP) equation, a cubically
force in trapped optical lattice at low temperature. Finally, our ~ nonlinear Schroédinger equation, see [4].
conclusion is in accordance with the results in physics/cineistry

realms. 2

i = 5+ u(x)y + Nafy|, (1)

wherem denote the atomic masa, is the reduced Planck

Einstei d tes i | lab . " £ 2 %’nstant,N is the number of atoms in the condensate, and
instein condensates in real lab experiments (cf. [1], [ = 4rnh?/m, with a € R denoting the characteristic

.[4]’ [5]). After thgt, I_305e-E|nste|n condensates (BEC.)@W scattering length of the particles. Here, for simplify tondee
is the focus point in the condensates matter physics last a

couple of decades. It has been sufficiently investigatet bot u(x) = U(x) + W (x),

in physics and chemistry fields. . . S
However, control problems of BEC is merely been conWhere external potential/(x) is confining in order to de-

sidered in quantum control area. With the development (ﬁcril_)e t_he electromagnetic trap needed_ for the experithenta
guantum physics field, control Bose Einstein condensaté%al'zat'On of a BEC. Assm;med harmonic form
. : . : <

EeBnlige)}r:ticr:g.me possible in optical trapped lattice at low U(x) = mw§%7 wo € Ratt=0.

Actually, at the standpoint of physics area, if an ultraA particular example for periodic potentials used in phgsic
cold vapor of bosonic atoms are trapped in magnetic welbxperiments is then given by
pure condensates will be created as they are cooled to a 3 oo
temperature below the BEC threshold. After that creation, Vo(x) = SZ h™x
these BEC are located into a optical lattice potential which m
can be realized experimentally by a far detuned laser beam,
This phenomenon of macroscopic quantum system consisti
of ultra-cold atoms in unique in precision and flexibilityrfo
experimental control and manipulation. :

To push the progress of the field of quantum systerﬁ1e recoil energy. ) )
control, naturally, Bose Einstein condensates regardea as The GP equation (1) provides a case for nonlinear codes

quantum control system, and made it changed under t§ihce it features high frequency oscillations, two scalerex

external control forces. nal potentials,and (focusing/defocusing) nonlinearity.
The aim of this paper is to deal with control of BEC in I1l. QUANTUM CONTROL FOR BEC
optical lattice with the changing of different laser intens

. . . Consider the control problem for BEC described by GP
pulse as control input. Our purpose is to deduce the theoreti . . . .
! . . . system (1). Firstly, let us regard the issue into matherahtic
results and execute numerical simulation demonstration.

setting in Hilbert space.

Einstoin condendates & gven by Gross Piaevaki equation L6 D an open bounded set &f and@ = (0.7) fo
> 0. Then(x,t) € Q. Introduce two Hilbert spaces

In Section lll, the mathematical setting is presented itbétit
space. The theoretical conclusion for the BEC quantum H=1*Q),V=H;(Q)

system is obtained. In Section IV, computational approach , o

is performed ford x 4 optical lattice. The simulated graphicsWIth usua! norm and inner products. Thep embedding in
are shown in series figures. Lastly, in Section V, resultarge!fand triple spacé” — H < V' are continuous, dense

conclusion is contained. and compact. _
Supposed = L?(Q) is the space of external (e.g. laser

.*Previous work reported on 243rd ACS National Meeting, RoSan optical Iattice) controla. Let 4,4 be a closed and convex
Piggo, LUSA, 2012 dmissible set ot/. A initial d state f h
T Mechanical and Automation Engineering, Chinese UniversitHong a mISSI_ € set otd. §sume _Im lal ground state tor eac

Kong, Shatin, N. T. Hong Kong. particle in trapped optical lattice as

¥(u,0) = .

I. INTRODUCTION
Since 1990’s, one can make the bosonic atoms reach Bo

sin?(x;2;), =; € R,

=1
erex = (z1,x2) denotes the wave vector of the applied
laser field ands > 0 is a dimensionless parameter describing
the depth of the optical lattice, which expressed in terms of



The objective function associated with (1) is given by Notice that, at here, the time space is continuous, and
the spatial space will be discrete by finite element method
J() = el T) = Yrarger (W]v + e2(w, Wt (2) (FEMF)) for mepeting the Wave-particle{juality property forpe
Here u € Uyq, and iarget(u) is target stateg)(u,T’) is  quantum particle.
observed final states, respectively. Moreover; = 1,2 are
weighted coefficients for balancing the values of inherenk. Experiment setting
cost and running cost. ) ) _

Our goal is to find and characterise quantum optimal S€t€2 = [0,15] x [0, 15] for two dimensions spatial case.
controlu* for GP system (1). Hera* will be called quantum 1he reduced Planck constant is
optimal control for GP system (1) subject to objective
function (2).

In order to do theoretical control for GP system (1) wit
objective function (2), first of all, we give two definitions t
define the weak solution and its solution space.

Definition 1: Define solution space of the weak solution

by Hilbert space (cf. [3]). The coefficient in nonlinear term of (1) i¥rh%a/m, and

W(O0.T.V.V)={¢ | ¥ € L*(0,T: V), € L*(0,T;V')}. a=51x10" | |
Definition 2: A function is called weak solutions of (1) Let N = 16 particles are located at lattice, and their

h = 1.0545715964207855 x 10,
hThe mass of per particle

8TRb = 1.41923 x 10%° a.u.

if ¢ € W(0,T;V,V’) and satisfy coordination calculated through
T
/ /z’fwtdtdx x; =3, 1=1,2,3,4.
thQ r T rj=3j, j=1,2,34.
= — dxdt dxdt
QM/O/QwX +/0/Quwx Then we have
T
+ 0 SlﬁV04¢42dx. ®3) ($1,91)7($17y2)a($1,93)7($17y4%
By the analogical manipulation as in [6] and take account (w2,71), (12,92), (T2, 93), (T2, Y4),
into (3), it is easy to prove the foII_ovx_/lng two theorems. Let (@3, 91), (23, 92), (€3, y3), (3, ya),
us omit proof in here via the restriction of paper length.
(z4,91), (24,Y2), (T4,Y3), (T4, Ya),

Theorem 3:If given initial statey, € V, there exists at
least one quantum optimal contraf* for GP system(1)

. B 4 . .
subject to objective functiof?). respectively. Letlt = 1.0 x 10* and the iteratiomn number

Theorem 4:For givenyy € V, there exists at least one” 5 . ndt . . L
quantum optimal controlt* for GP system(1) subject to To configure each state function, the appendix function is
(2). The optimality systems are given by given by

i? 5 . 1 3v/2 (x — vt) \2
= — 2 4 B(x,v,t) = (s )

e = g ue A Nalglein Q, @ D= st sy — o g i

Y(u*,0) =tho inQ, 1—v? 4+t

2 exp [iox + W“} :
. _ 2 _ . -
ipr = —2MZ*?+ 2[y[yp + Il/fl_p 0in @, ) i
(1) = p(u,T) = Prarger 1N K2, where v are adjustable parameters, and take= = in

(u*,u — u*)y +/ p(u*)(u — u)dzdt > 0, Yu € Uyg. (6) demonstration of Section IV. Therefore, the initial stafe o

Q , i . each particles is given by
wherep € W(0,T; V, V') is the solution of adjoint systems

(5) corresponding ta in state systems (4). o = D(x,0,0).
As is well known the inequality (6) is the necessary
optimality condition. Take the target state of each particles by

IV. COMPUTATIONAL APPROACH
. - . wtarget = ‘I](X; v, T)

In this work, Wang semi-discrete algorithm (cf. [6], [7])
is executed in controlling quantum dynamics (1). The initial control input (i.e. optical lattice configurati) is

Precisely, finite element approach will be utilized tosupposed by
solve state solution. The updated conjugate gradient rdetho
(CGM) for nonlinear case will be used to seek the optimiza- uo(t) = 1.0 x 10" sin(1.5 x 10*).
tion solution of minimization problem of approximate cost
functional consist of (2). The initial control variableu(t) is plotted in Figure 1.
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FIG. 1 uo(t) for t € [0,0.0005]. (red curve)

Take the external potential as

N —a)* + (y - yj)Q).

N
V(z,y,A) = Voexp »  exp (— i

k=1

HereVy = —0.6,w = 1.0 are given parameters. Take= %
at each iteration in subsectidh

B. Experiment demonstration

By the above experiment setting in subsectién of

Section IV. It is well for us to proceed the simulating demon-

stration with the MTHEMATICA 7. Particularly, 'Visual

Quantum Mechanics’ (VQM) package is used for graphics

expression of BEC described by GP system (1).

For initial statey, given in subsectior, its graphics are
shown in Figures 2.

(a). Plot of .

(d). Black white contour of)y.

FIG. 2 Plot and contour plop(0), x € [0, 15] x [0, 15].

For target stat@...; attime7’, its graphics are computed
in Figure 3.



(d). Black white contour of)¢arget.

FIG. 3 Plot and contour plop(T), x € [0, 15] x [0, 15].

After running serval round iterations, at = 5, the
calculated states are shown in Figure 4.
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(c). Contour plot ofygarget-

(b). Box plot of psi,,.



(c). Contour plot ofy,, .

(d). Black white contour ofp,,.

FIG. 4 Plot and contour plot of(u,t) atn =5,
x € [0,15] x [0, 15].

Adjoint system are also calculated and plotted in Figure 5

at iterationn = 5.
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(a). Plot ofp(u, t).-

(b). Contour plot ofp(u,t)

FIG. 5 Plot and contour plot of adjoint statéu, ¢),
x € [0,15] x [0, 15].

Quantum optimal control lattice express as (iteratios 4)
u'= (= 841477 x 10" + 1.0 x 10" sin(15000.0¢) ).

Its graphics is plotted in Figures 6.
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FIG. 6 u*(t) for ¢t € [0,0.0005]. (almost a line around
—8.41477 x 10%0)

Optimal cost function value are computedrat 4 as

J(u*) = 3.38171 x 1093,

Furthermore, the cost functions iteratiodgu) with unit
a.u. at each iteration is displayed in Figures 7.
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FIG. 7 J(u,),n = 1,2,3,4,5 (green dots)

Also, the error values of cost functiors = J(u,+1) —

J(uy,,) at each iteration refer to Figures 8.
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FIG. 8 ErroreJ,n=1,2,3,4,5 (red dots)

TABLE Il
ERROR VALUES AT EACH ITERATION

iteration  error costJ

n=1 1.04663 x 1034 *eJ(u1) = J(u1)
n=2 1.00205 x 1047

n=3 3.38171 x 1093

n=4 0

n=5 1.1617 x 1078,

V. RESULTS AND DISCUSSION

In summary, the controlling for BEC have been solved
regarding the quantum dynamics to seek the optimal solution
(cf. [9]). This study extremely acquire the real laboratory
evidence for quantum controlling achievement. The pragres
would be a promising research direction (cf. [6], [7], [8],
[9]).

Future research would be interested in focus on the con-
trolling of three dimension (3D) Bose-Einstein condensate
(BEC) at optical lattice. It is left to our further publicatis.
With the aiding of computer science development, the com-
putational approach and simulation would become true for
high dimension study of controlling BEC as well as physical
phenomena in quantum mechanics. As a bright perspective
of quantum system control in present and future, it can be
considered as possible and feasible.

It is a attempt work of BEC and would be valuable as
constant surveys for a long time.
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