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Abstract 

In this manuscript, I speculated that the energy density distributions along space and time in a quantum 

system are uniform according to the 1st law of thermodynamics. Thus, the complementary energy 

contributions are added to the classical solutions of the 1D particle in a box problem, making the energy 

density a complex distribution function over space and time. Then the concept is extended to the free 

rotation problem with a Hamiltonian slightly different than the classical Schrödinger equation. The 

picturized energy distribution functions and associated time evolution are described in movies for 

comparison between example classical wave functions and the energy density functions. The wave 

functions for the hydrogen atom are then guessed based on the historical solutions. 

 
TOC: Guessed energy density function shapes (absolute) of carbon-like and oxygen-like atoms. 

 

 

I had trouble explaining the 1D particle-in-a-box mind experiment to my students when I was teaching 

an undergraduate physical chemistry class at Ohio University. The field has been established in the past 

121 years by the greatest physicists in our history, for example, Max Planck, Albert Einstein, Niels Bohr, 

Louis de Broglie, Max Born, Paul Dirac, Werner Heisenberg, Wolfgang Pauli, Erwin Schrödinger, Richard 

Feynman, and many others. The experiment states that there is a space of zero potential energy 

sandwiched between two walls with infinite potentials and a particle say an electron, is put inside the 

potential well.1 The wavefunction of this particle must satisfy the continuous assumption as a well-

behaved curve thus for the ground state, the probabilities of seeing this particle approaching zero near 

the walls and maximized at the center of the well. The excited-state wavefunctions have maximums and 

nodes yielding a probability density function over the space shown in Fig. 1A. A student asked during my 

lecture, why was the probability near the walls zero? I suddenly lost the reason to answer this question 

due to my limited knowledge of quantum mechanics. So, I said that the wavefunction “should” be 
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continuous and made up an explanation by analogy it to the vibration of a guitar string that the two 

ends do not move. 

 
Fig. 1. The probability density function of finding a particle inside the 1D potential well with infinite 
high walls (A) solved with the boundary conditions and (B) a possible solution without considering the 
boundary conditions. 

 

But in fact, I was not sure about my answer. The problem lies in that for a real-world experiment, we will 

never have a potential well to have walls with infinite potentials that break the continuity of space and 

time along the x-axis. Thus, it makes sense to have a continuous wave function along with the whole 

space in the real world. In this mind experiment, we break the continuity of space and time but still 

expect that the wave function is continuous. This expectation seems not physical.  

What if we give up the continuity requirement of the wave function for this special case and instead 

assume uniform energy density over space and time? Different boundary conditions suddenly open, 

specifically, the space and time outside of the wall still give a wavefunction of zero but binary values at 

the wall. If these breaking points are allowed to compensate for our irrational assumption of the 

existence of potential walls with infinite values, we should expect a probability density function shown 

in Fig. 1B. If we want, we can even assume that a single Planck length from a wall is needed for the 

wavefunction to jump from a value to zero to enforce its continuity. 

So I give it a try to solve the time-dependent Schrödinger equation with the no-boundary assumption: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −
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𝜕𝑥2 𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡)  (1) 

where the imaginary number 𝑖 = √−1,  ħ is the reduced Planck constant, m is the mass of the particle, 

Ψ(x, t) is the wave function, and V(x) is the potential profile. Without the boundary restriction, all 

wavefunctions of a free particle in space satisfy this equation: 

𝜓(𝑥, 𝑡) =
1

𝐿
𝑒±𝑖𝑢𝑥±𝑖𝜔𝑡  (2) 

where u and ω are both arbitrary values.  



To meet the experimental observation that energy level is quantized, symmetry argument is required to 

restrict the values the same as the original arguments in history. Let’s assume that the left and right of 

the well have an identical probability in any given time to have the same amplitude of momentum, i.e. 

at a resonant state. This argument shrinks the solutions to 𝑢𝑛 =
𝑛𝜋

𝐿
 and 𝜔𝑛 =

𝑛2𝜋2ℏ

2𝑚𝐿2  where n = 1, 2, 3,… 

is a positive integer. A comparison among the wavefunctions solved with the boundary and without the 

boundary conditions is shown in Fig. 2. 

The energy solutions converge to the classical solutions in the textbooks. However, we see a very 

different shape of the wavefunctions 𝜓(𝑥, 𝑡) (Fig. 2) and probability density functions |𝜓(𝑥, 𝑡)|2 (Fig. 1). 

There is an interconversion between the real part and the imaginary part of the wavefunction which 

maintains the modulus of the wavefunction constant across the well (Fig. 1B), i.e. it is now equally 

possible to observe a particle at anywhere of the well. I assume that the real part can be the electric 

field and the imaginary part can be the magnetic field of the particle in the well that resonant and 

maintain the energy of the particle for a measurable period (Fig. 2B).  

At any given time, the sum of the “momentum” in the magnetic field is zero, and/or the sum of the 

“momentum” of the electric field is zero. I guess any non-resonant frequency decays to the energy levels 

by radiating electromagnetic waves when the product of the two sums is not zero that breaks the 

conservation law. After all, the whole energy equation is Maxwell’s electromagnetic wave function. 

Since the wavefunctions belong to a subset of the free-space matter-waves, the Heisenberg uncertainty 

principle still holds and the two sets of the solutions are entangled together in the momentum space.  

 
Fig. 2. A few examples (n = 1, 2, 3) of the real (z-axis) and imaginary (y-axis) parts of the wavefunction 
at time zero of the solutions with (A) zero probability densities, and (B) equal probability densities at 
the boundaries vs anywhere inside the classical 1D particle-in-a-box well (x-axis from 0 to L). The 
probability density function is the square modulus of the two curves where the left yields a 
probability density curve with nodes (Fig. 1A) and the right yields a flat line along the x-axis (Fig. 1B) 



inside the well. See attached a movie created using MATLAB and a video converting code.2 Time 
evolution is shown in SI video 1. 

 

We can add back the missing energy in the original Schrödinger equation to make the energy density 

equals everywhere in space and time. We can also modify the stationary differential equation to 

−
ℏ2

2𝑚
(

𝜕𝜓(𝑥,𝑡)

𝜕𝑥
)

2
+ 𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝐸𝜓(𝑥, 𝑡) (3) 

We can still use the original equation to quantize the energy levels. Put Equation 2 into Equation 3, we 

got the stationary-state energy to be: 

𝐸𝑛 =
ℏ2𝑘2

2𝑚𝐿2 𝑒±𝑖𝑘𝑥 (4) 

Where 𝑘𝑛 =
𝑛𝜋

𝐿
. Equation 4 says that the energy density is evenly distributed in the 1D well. However, 

there is an interconversion between the real energy and the imaginary energy that follows a 

complementary symmetry and obeys the energy conservation law. 

 

For the rigid free rotator problem, the Hamiltonian becomes, 
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] + 𝑉(𝜃, 𝜑, 𝑡)𝜓(𝜃, 𝜑, 𝑡) = 𝐸𝜓(𝜃, 𝜑, 𝑡) (5) 

where R is the radius of the rotator, θ and ϕ are the rotation angles, and V = 0. The rotational energy is 

assumed equally distributed in the two rational degrees of freedom. The third degree of freedom is the 

axis rotation which does not carry angular momentum, the same argument as in the classical equations. 

Based on the solutions on Equation 1, I guess a set of stationary wave functions: 

𝜓𝑗,𝑘(𝜃, 𝜑) = 𝑒±𝑖𝑗𝜃𝑒±𝑖𝑘𝜑  (6) 

Where j and k = 0, 1, 2, 3… And     

𝐸𝑗,𝑘 =
(𝑗2+𝑘2)ℏ2

4𝑚𝑅2 𝑒±𝑖𝑗𝜃𝑒±𝑖𝑘𝜑  (7) 

There is a difference between these solutions and the classical solutions. The classical solutions are Ej = 

J(J+1) ħ2/(2mR2). The energy is assumed only dependent on one rotational angle and is independent on 

the other angle, which is a confusing assumption. This assumption yields an energy spacing jumping 

from J to J+1 state (2J+2) ħ2/(2mR2) that has been experimentally confirmed with rotational spectra of 

molecules such as hydrogen chloride.3 In order to get the identical answer, the new solutions will need 

to adapt a selection rule (∆J = ±2, ∆k = 0) or (∆J = 0, ∆k = ±2), instead of ∆J = ±1. A comparison between 

shapes of the classical solutions and the new solutions are shown in Fig. 3, and Fig. 4 with the time 

evolution shown in the SI video 2 and video 3 respectively. Larger quantum numbers give more 

structures with an example of j =±2 and k = ±2 shown in video 4.  

The new solutions also have different node structures than the classical probability density functions. I 

speculate that the real part of the energy density function is electric field energy, and the imaginary part 

of the energy density function is magnetic field energy or vice versa. The distribution and strength in the 



real and imaginary parts are set to equal now and I expect it to be variable depending on the systems. 

Importantly, these equations resemble Maxwell’s equation of electromagnetic waves of massless 

photons. We still have nodes for the electric part and the magnetic part of the wave function that are 

orthogonal to each other, which can be tested by measuring the nodes with electric and magnetic 

methods. A problem is over time the real part and the imaginary part both evolve into chiral structures 

for these solutions when both j and k are none zero, whose physical meaning is unclear.  

Both Pauli's exclusion principle and spin can be explained by these new wave functions. When the phase 

of these solutions is shifted π, a perfectly complementary wave function shows up. If this new phase-

shifted function is simply added back to the original function, both the electric momentum and magnetic 

momentum are canceled over all space and time. This perfectly explains the Pauli exclusive principle. 

The left-handed and right-handed chiral structures in the wavefunction (Fig. 4) naturally explain the spin 

of the magnetic field thus we don’t need to introduce additional spin as in the classical solutions when 

no chiral structure is observed (Fig. 3). 

 

 
Fig. 3. Example classical solutions of rigid rotator free rotation wave functions with angular quantum 
number 1 at time zero.  

 



 
Fig. 4. Example solutions of rigid rotator free rotation new energy density function with angular 
quantum numbers (1, 0), (1, 1), and (1, -1). 

 

Based on the above theory, I then give it a random guess on the new wavefunctions of atoms. For the 

hydrogen atom, based on the historically established solutions, I guess an un-normalized solution as 

𝜓𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑, 𝑡) = 𝐻𝑛(𝑟)𝑒
±

𝑖𝑟

𝑛𝑎0𝑒±𝑖𝑙𝜃𝑒±𝑖𝑚𝜑𝑒±𝑖𝜔𝑡  (8) 

Where Hn(r) is the Hermite polynomial, and a0 is the first Bohr radius. We can see that this solution will 

both satisfies the new wave equation and provide the same energy solutions with the complementary 

imaginary part to make the energy evenly distributed over space. 

One advantage is this wave function is much easier to calculate than the classical solutions. Fig. 5 

showing consistent shapes of the energy functions for atoms such as carbon-like and oxygen-like atoms 

by simply adding the wave functions together.  



 
Fig. 5. Sum up the energy function to get bald guesses of the shape of (A) carbon with l = 0, -1 and m = 
±1, (B) oxygen with l =1 and m = ±1.  Explains well the tetrahedral structure in carbon and the water 
structure. 

 

In summary, I hope you agree that rethinking the boundary conditions in the classical-quantum 

mechanical problems that have established over 100 years ago inspires super surprising results. The 

main new idea is that energy is equally distributed in space a new wave function is proposed (Equation 

3) to replace the classical Schrödinger equation. If we just use the conservation of the momentum of the 

electromagnetic field within each cycle, we can further free up the phase restriction for free particles, 

making a free particle really “free”. This wave equation works consistently with the classical equation 

and  

offers the consistent energy equations with a lot of “spookiness” vanishes in the new model. It has the 

opportunity to be the missing piece of “incomplete” quantum mechanics that Einstein and others have 

been looking for over the past 100 years.  

 

Supporting information 

Videos and MATLAB source codes are attached to the supporting information. 
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