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Abstract 

Voltammetry is a foundational electrochemical technique that can qualitatively and quantitatively 

probe electroactive species in electrolytes and as such has been used in numerous fields of study. 

Recently, automation has been introduced into voltammetric analyses to extend their capabilities 

(e.g., Bayesian parameter estimation, compound identification via machine learning); however, 

opportunities exist to enable more versatile methods across a wider range of electrolyte and 

experimental conditions. Here, we present a protocol that uses experimental voltammetry, physics-

driven models, binary hypothesis testing, and Bayesian inference to enable robust labeling of 

electroactive species in multicomponent electrolytes across multiple techniques. We first describe 

the development of this protocol, and we subsequently validate the methodology in a case study 

involving five N-functionalized phenothiazine derivatives. In this analysis, the protocol correctly 

labeled an electrolyte containing 10H-phenothiazine and 10-methylphenothiazine from both cyclic 

voltammograms and cyclic square wave voltammograms, demonstrating its ability to identify 

electroactive constituents of a multicomponent solution. Finally, we identify areas of further 

improvement (e.g., achieving greater detection accuracy) and future applications to potentially 

enhance in situ or operando diagnostic workflows. 
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1. Introduction 

Voltammetry is a foundational technique in electrochemical science that enables both 

qualitative and quantitative characterization of electroactive species for a variety of applications,1–

10 including tracking the transient behavior of electrolytes8,11–13 and labeling compounds within a 

sample.14–17 When electrolyte composition and electrode surface morphology are known prior to 

and remain constant throughout the experiment, established fundamental relationships can be 

leveraged to discern physical and electrochemical properties in the system of interest,3,5,7,18 

enabling mechanistic insights into electrochemical and chemical reactions of electroactive 

compounds.19–24 However, in cases where the electrolyte composition is unknown or evolves 

during the experiment, voltammetric analysis has primarily relied on qualitative visual methods 

(e.g., peak appearance / disappearance, location).14,15 Such approaches have practical utility,14,15,17 

but quantitative treatments are hampered because—unlike other techniques (e.g., nuclear magnetic 

resonance (NMR), Fourier transform infrared spectroscopy)—the output signal is not correlated 

to the molecular structure or connectivity.20 Accordingly, additional analyses are typically required 

to identify constituent components, resulting in workflows that may be time-consuming and 

expensive.1,8,11,25–29 In many cases, the standard techniques employed provide incomplete or 

misleading information, as necessary preparatory steps modify solution compositions, such as 

dilution with deuterated solvents for proton NMR analysis11 or product purification via column 

chromatography for mass spectrometry studies.25 In addition, transient processes are not captured 

by ex situ measurements. Advances in voltammetric methods may enable streamlined component 

identification workflows by reducing the materials, equipment, and time intensity of sample 

characterization, as these techniques can more readily probe electrolytes in their native 

environment.8,30 
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To capitalize on the inherent advantages of voltammetry, black-box (i.e., physics-agnostic) 

classification protocols for labeling voltammograms have been reported, suggesting that 

automation can be leveraged to characterize electrolytes by identifying and incorporating features 

that are challenging or impossible to ascertain from qualitative inspection.29,31–33 While the prior 

literature shows promise, opportunities exist for further improvement. For example, many 

protocols identify compounds less accurately when the training and testing data are obtained under 

different electrolyte or experimental conditions,31 potentially necessitating a separate training 

dataset for each condition tested. Further, these methods do not evaluate all species combinations 

in a multicomponent electrolyte and thus may be less effective when considering a larger number 

of possible compositions.29,32 For example, Farahani et al. simultaneously identified N-acetyl-L-

cysteine and acetaminophen in a blood sample, but the authors also found additional, unknown 

components that contributed to the total voltammetric response.29 Relatedly, Dean et al. labeled an 

electrolyte containing a mixture of Cd, Hg, and Pb cations (among other single-component 

samples),32 but as the authors only considered this single combination, and it is uncertain whether 

their protocol would retain accuracy if all combinations (e.g., Cd-Cu-Pb, Hg-Cu-Pb, etc.) were 

exhaustively considered. Finally, we note that regressive methods (e.g., partial least squares) may 

simultaneously estimate the concentrations of multiple constituents in an electrolyte, which 

theoretically enables them to consider all possible species combinations, but their prediction error 

(either systemic or random) leaves ambiguity as to whether a compound is present at low 

concentrations or absent.33 As such, there is a continued need to advance robust and flexible 

methods for compound identification in complex electrolytes. 

Existing approaches can be augmented to address these areas by incorporating physics-based 

modeling and by evaluating the presence of each compound individually using binary hypothesis 
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testing34 (i.e., each is present or absent). While the coupled reaction-transport phenomena that 

govern voltammetric responses are well-known,5,19 these processes are not yet widely considered 

in automated voltammetric labeling methodologies, which may partially explain why prior 

protocols are challenged by varying electrolyte conditions.31,32 By incorporating physical 

phenomena into model formulations, voltammograms may be accurately simulated across a wide 

variety of conditions (e.g., different experimental techniques and active species concentrations) 

using a single set of electrochemical and transport descriptors. Further, the number of possible 

compositions for a multicomponent electrolyte scales combinatorically with the number of species, 

potentially rendering exhaustive evaluation infeasible for larger sets. However, labeling can 

instead scale linearly with the number of components by assessing the presence of each compound 

individually and subsequently combining these results to characterize the overall electrolyte. Thus, 

automated labeling protocols may potentially enable analysis of more complex multicomponent 

systems. 

Physical models and binary hypothesis testing can be readily adopted to identify electroactive 

compounds with Bayesian inference, which is used to infer the state of a system by recursively 

combining previous information of a process with new observations. While prior knowledge can 

come from an arbitrary source, Bayesian inference provides a quantitative basis to integrate 

information from previous observations, resulting in informed estimations; it is also an apt 

framework to conduct binary hypothesis testing.34 Within voltammetric labeling, the results for 

each compound can be combined to estimate the overall electrolyte makeup, which, in turn, can 

be used to inform subsequent studies that may involve different techniques. Physical models can 

also be readily evaluated with the Bayesian framework.35 However, despite its use in multiple 

disciplines36–38,34 and within the field of electrochemistry,35,39–42 to the best of our knowledge, 
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Bayesian inference has not been used for voltammetric labeling; as such, this work seeks to 

develop a simple yet versatile protocol for identifying electroactive components using Bayesian 

inference. 

Here, we construct and validate a labeling protocol that builds on previous work by combining 

experimental voltammetric data, physics-informed modeling, binary hypothesis testing, and 

Bayesian inference to identify electroactive constituents in a multicomponent solution. This 

protocol is validated with a case study involving a set of five phenothiazine derivatives and two 

voltammetry techniques—cyclic voltammetry (CV) and cyclic square wave (CSW) voltammetry. 

Specifically, we demonstrate that the protocol can differentiate between the solubilized species 

even when the testing and training datasets are obtained with different experimental techniques. 

Consequently, this methodology can reduce the training data needed to probe multiple electrolytes 

across a range of conditions and techniques, enabling accelerated in situ or operando electrolyte 

labeling. This protocol can also enable fewer and more targeted follow-up ex situ techniques that 

may be integrated with previous estimations through the Bayesian framework, reducing the time 

and resources needed to fully characterize more diverse electrolytes. To enable further 

development and expansion of this protocol, we provide an open-source MATLAB® code able to 

construct a compound library from CSW voltammograms and, using that library, label electrolytes 

from previously unexamined experimental data. 

 

2. Methods 

2.1 Overview 

To accurately label electroactive components in electrolytes with voltammetry, a library 

cataloguing compounds must first be developed and subsequently proven effective in the 
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identification of compounds from previously unseen experimental data. Accordingly, the 

experimental acquisition methods and the library development are respectively detailed in 

Sections 2.2 and 2.3. Once a high-fidelity library is fully constructed, it can be fit to new 

experimental data to label electrolytes. This labeling process, in turn, involves two major steps. 

The first (Section 2.4) is a regressive step that fits catalogued species to an experimental 

voltammogram, where all compounds in a library are fit to yield a vector of best-fit concentrations; 

each vector entry corresponds to a single catalogued compound. The second step (Section 2.5) 

involves using the same experimental dataset to label the multicomponent electrolyte being probed; 

in this instance, each compound in the library is evaluated to determine its probability of being 

present using binary hypothesis testing and Bayesian inference. To increase accessibility and 

degree of implementation, the code used for both library construction and compound identification, 

along with subroutines, are available open access on GitHub: https://github.com/afentonjr/BayES-

Lab. 

 

2.2 Experimental 

All chemicals were used as received, and all experiments were conducted in a glovebox 

(MBraun Labmaster, H2O < 5 ppm, O2 < 1 ppm) filled with argon (Airgas, purity of ca. 100 %, 

catalog number AR UHP300). The glovebox temperature was measured to be 25.5 °C and 25 °C 

on two occasions using a glass thermometer (VWR®, ± 2 °C). All the phenothiazines, the 

tetrabutylammonium hexafluorophosphate (TBAPF6), and the dichloromethane (vide infra) were 

opened and stored in the glovebox. All materials were directly added from their container to a 10 

mL volumetric flask with a plastic spatula to ensure the mass of material in the electrolyte matched 

the balance reading (Mettler Toledo, Balance XS64, 61 g capacity with ±0.1 mg readability). Every 
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electrolyte studied contained 1 mM of each redox-active material, along with 0.1 M TBAPF6 

(Sigma Aldrich, ≥ 99 %, 86879) in dichloromethane (ACROS OrganicsTM, 99.9 %, AC610931000). 

Ferrocene (Sigma Aldrich, 98 %, F408) was used as an internal standard for the reference 

electrode43 at a concentration of ca. 1 mM. The working electrode was a glassy carbon disk 

electrode (CH Instruments, 3 mm dia., CHI104) polished with 0.05 μm alumina powder (Buehler 

MicroPolish Powder, 4010075) in deionized water (18.2 MΩ cm). The pseudo-reference electrode 

was either a Ag/Ag+ electrode using a non-aqueous reference electrode kit (MF-2062) filled with 

0.1 M AgPF6 (Sigma Aldrich, 98 %, 208361) in acetonitrile (Fisher, Certified ACS, A21-1) or, 

when the first pseudo-reference electrode was unavailable, an aqueous Ag/AgCl (3 M NaCl) 

electrode (BASi, MF-2052) brought into the glovebox and stored in vial containing propylene 

carbonate (Gotion, 99.99 %) without any supporting salt during experiments. The counter 

electrode, in turn, was a Pt coil electrode (BASi, 99.95 %, MW-1033). When not in use, the Ag/Ag+ 

pseudo-reference was stored in the glovebox in the same fill solution, and the Ag/AgCl pseudo-

reference was stored outside the glovebox in a solution of 1 M KCl. 

Five phenothiazines (Figure 3)—synthesized and purified as described in the SI by the Odom 

Research Group at the University of Kentucky—were catalogued to create the library used for 

validating the labeling protocol (Section 3): 10H-phenothiazine (i.e., unsubstituted phenothiazine, 

PT), 10-methylphenothiazine (MPT), 10-ethylphenothiazine (EPT), 10-isopropylphenothiazine 

(iPrPT), and 10-phenylphenothiazine (PhPT). Two electrolytes each containing only a single 

phenothiazine (1 mM) were examined to estimate the electrochemical parameters for the 

corresponding compound in library development. Three electrolytes each containing a mixture of 

1 mM PT and 1 mM MPT were used to test the identification protocol. 
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For each prepared electrolyte, two voltammetry techniques were conducted—CV and CSW 

voltammetry—using either a VMP-3 potentiostat (BioLogic) or a VMP-300 potentiostat 

(BioLogic) using EC-Lab software and processed with Microsoft Excel and MATLAB® R2020a. 

Cyclic voltammograms were obtained at 25, 50, 100, 200, 500, and 1000 mV s-1, with all 

voltammograms corrected for resistance-driven potential distortions using the BioLogic protocol 

“iR determination with electrochemical impedance spectroscopy” (the “ZIR” protocol).44 For the 

“ZIR” protocol, the working electrode potential was set to its open-circuit value. A sinusoidal 

potential with a 20 mV amplitude and a 100 kHz frequency was applied, a delay of 10 % of the 

period duration was added before the measurement, and the reported resistance was averaged over 

four measurements. The resistance was compensated either 100 % or 85 % by the software during 

the experiment, with the remaining percentage manually post-corrected; in some cases, the 

solution resistance was not fully compensated during acquisition to avoid possible oscillations in 

the potentiostat.44 For all voltammetry experiments, the bandwidth was manually adjusted via trial 

and error to minimize noise in the current acquisition. The potential bounds varied for each 

compound; the low potential bound was set to be approximately 400-500 mV negative of the 

ferrocene redox potential. The upper bound was set to be between 200-400 mV positive of the 

redox potential of the phenothiazine(s) probed. More specifically, the upper bound was set far 

enough away from the phenothiazine redox potential as to minimally influence the voltammogram 

shape3 but not so far as to access the second electron transfer event of the phenothiazine to a 

considerable extent8 or to oxidatively decompose the electrolyte. Generally, the upper bound was 

found via visual inspection using CV at a 50 mV s-1 scan rate. After each cyclic voltammogram 

was obtained, no electrochemical experiments were conducted for either 5 min (50-1000 mV s-1) 

or 10 min (25 mV s-1) before the next to allow the boundary layer to reset. 
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CSW voltammograms were obtained using the same potential bounds as those in the cyclic 

voltammograms. The step height was 10 mV, the pulse height was 50 mV, and the pulse duration 

(per half-period) was 100 ms, resulting in an effective scan rate of 50 mV s-1. The potential was 

held at the initial, most negative (i.e., reductive) potential for 2 s before the initial positive 

(oxidizing) sweep, and the reported current for each potential step was calculated by averaging the 

raw current over the last 30 % of the step. Six CSW voltammograms were obtained at these same 

conditions for each electrolyte. The “ZIR” protocol was performed the same way as that with CV, 

and each CSW voltammetry experiment was separated by a 5 min wait. Following the initial suite 

of CV and CSW voltammetry tests, 1 mM of ferrocene was added, and the experiments were 

repeated to calibrate the potential axis to that of a known redox event.43 For library development, 

two electrolytes of each phenothiazine were tested, resulting in 12 identical CSW voltammetry 

datasets with the same potential waveform and two identical CV datasets at six different scan rates; 

only the CSW voltammograms were used to construct the library. For protocol validation, three 

electrolytes of the phenothiazine mixture were examined, resulting in 18 identical cyclic square 

wave voltammograms and three identical cyclic voltammograms at six different scan rates. 

 

2.3 Library development 

In this work, library development involves generating a characteristic set of electrochemical 

and transport descriptors (vide infra) for each compound by acquiring experimental data, by 

simulating modeled voltammograms, and by curve fitting the two using both weighted least 

squares and Bayesian inference. We note that this approach is not the only viable method, but it 

does possess favorable properties as compared to other options. For example, literature data 
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mining45 could be used, but the natural language processing necessary to implement this method 

is non-trivial and the quality of the data accessed uncertain. 

 

2.3.1 Experimental data acquisition 

We elected to use CSW voltammetry to acquire the data for library construction because it can 

be more accurately modeled; its waveform minimizes background electrochemical signals while 

amplifying Faradaic processes,20,42,46 offering an advantage over CV.4,47 For this reason, SW (so 

by extension CSW) voltammetry have been employed in many studies involving qualitative (i.e., 

visual) analyses.14,15,17 Further, CSW voltammetry can more readily discern various electron 

transfer mechanisms (e.g., an electron transfer followed by the homogeneous degradation of the 

product48) than square wave (SW) voltammetry by virtue of the reverse sweep. We also conduct 

repeats of experiments for statistical rigor and to calculate the experimental standard deviation 

(vide infra). As mentioned in Section 2.2, each compound studied in this work was catalogued 

using data from two electrolytes; for each, six CSW voltammograms were acquired at the same 

experimental conditions, resulting in 12 total experimental CSW voltammograms for each 

compound in the library. 

 

2.3.2 Model development 

The theoretical models used in this work are necessary both for parameter extraction and 

electroactive compound labeling and as such are discussed here. For each compound in the library, 

two models (diffusion rate-limited and kinetic rate-limited one-electron transfers) were simulated 

using the one-dimensional transient diffusion equation with an electrochemical reaction on a 
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planar, impermeable, and ideal (non-fouling) electrode surface. The reaction considered is 

Equation (1). 

 R O e−+  (1) 

In Equation (1), a phenothiazine ( R ) oxidizes to a radical cation (O ) in a one-electron transfer; 

the mass conservation equations are expressed in Equation (2). Note that all values are non-

dimensional unless otherwise noted. 
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In Equation (2), lower-case ic  is the dimensionless concentration of species i  (
1
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where upper-case iC  is the dimensional concentration and 
,R bulkC  is the dimensional concentration 

of R  far from the electrode, both in units of mol m-3), 
2

R etD r −=   is dimensionless time ( iD  is 

the diffusion coefficient of species i  in units of m2 s-1, t  is dimensional time in units of s, and er  

is the electrode radius in units of m), 
1

ex r −=   is the dimensionless length ( x  is the distance from 

the electrode in units of m), and Od  is the ratio of diffusion coefficients 
1

O RD D− . 

These coupled dimensionless differential equations are subject to the boundary and initial 

conditions expressed in Equations (3) - (6) for a single electron transfer. Equations (5) and (6) 

are mutually exclusive and should not be simultaneously used; Equation (5) is used for a diffusion 

rate-limited one-electron transfer, while Equation (6) is used for an kinetic rate-limited one-

electron transfer.19 
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In Equations (3)-(6), 0E E = − is the overpotential in units of V ( E  is the applied potential and 

0E  is the formal potential of the redox couple, both in units of V vs. a reference redox event), GR  

is the universal gas constant (8.314 J mol-1 K-1), T  is the absolute temperature in units of K (set 

to 298.15 K based on the measured glovebox temperature), F  is the Faraday constant (96485 C 

mol-1), 
1

0 0 e RK k r D−=   is the dimensionless heterogeneous rate constant ( 0k  is the dimensional 

analog in units of m s-1), and   is the transfer coefficient (dimensionless). Equation (3) assumes 

that only species R  is present before the experiment and far away from the working electrode at 

all times, while Equation (4) relates the flux of both species at the electrode surface. Equation (5) 

relates the surface concentration of the species via the Nernst equation (diffusion rate-limited 

electron transfer), while Equation (6) relates the surface flux of O  to the surface concentrations 

via the Butler-Volmer relation (kinetic rate-limited electron transfer). 

These voltammograms were numerically simulated; details on the implementation scheme are 

in the SI (Section S.2.4) based on an established framework.19 Briefly, each voltammogram was 

simulated with a discretization of 20000 steps in potential per unit volt (i.e., 5 × 10-5 V per step) 

using either MATLAB® R2020a on an Intel® Core™ i7-7500U CPU @ 2.70 GHz 2.90 GHz laptop 

computer or MATLAB® (either R2019b or R2020a) on the MIT Supercloud supercomputing 

resource;49 the former computing resource took ca. 8 s to simulate each voltammogram. Note that, 
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as the simulation time scales approximately linearly with total number of discretization steps, the 

speed can be increased by introducing coarser discretization albeit at the expense of accuracy. 

 

2.3.3 Fitting procedure 

The experimental and simulated voltammograms generated according to the procedures 

outlined in Sections 2.3.1 and 2.3.2 are then compared to perform parameter estimation. These 

were fit by simultaneously adjusting the values of all the electrochemical and transport descriptors 

(specifically, the electron transfer mechanism, 0E , RD , OD , and, for kinetic rate-limited electron 

transfers, 0k  and  ) introduced to the simulator to find which parameter set, designated as the 

vector  , maximized the model likelihood. The likelihood function (Equation (7)) is assumed to 

be a product of the probability distribution functions (PDFs) of the error at each overpotential, 

which are assumed to be normal and independent of each other (i.e., the errors are random and not 

systemic nor reliant on errors at other overpotentials). 
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In Equation (7), ( )( ); , ,f exp mI I     is the PDF of the experimentally measured current 
expI  

(treated as a random variable) parameterized by the modeled current m
I  and the experimental 

standard deviation   (all in units of A); as such, ( )( ); , ,f exp mI I     is equivalent to the PDF of 

the error (i.e., the difference between experimental and modeled currents). m
I  is a deterministic 

function of the overpotential vector and parameter vector  ; note that difference currents are 

used in the place of absolute currents for CSW voltammetry.  , in turn, was either calculated 

between the 12 CSW voltammograms (for library construction) or estimated (for compound 
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identification). Bolded terms are vector quantities containing all N  data points in the 

voltammogram, and the index j  refers to the j th entry of each vector. As a result, maximizing 

Equation (7) is equivalent to minimizing the sum of the magnitude of the exponential arguments 

by adjusting   for either electron transfer model; namely, 

( )( )
2

1

,

1

ˆ arg max arg min ( , )
N

exp, j m j j j

j

f I I
 

  −

=

= = −  , where ̂  is the optimal set of parameters. 

The most likely electron transfer mechanism was then chosen using binary hypothesis testing and 

Bayesian inference (vide infra), the former of which was catalogued as a descriptor for the 

compound being assessed. Optimal parameters corresponding to the selected electron transfer 

mechanism were subsequently recorded as the remaining descriptors, all of which are reported in 

the SI (Table S3). We note that the reported optimal parameter set may be nonunique,3,50 but 

degenerate sets describe similar voltammetric curves, meaning the uniqueness of the parameters 

is not expected to impact the ability of the protocol to differentiate compounds. The construction 

of each library entry (i.e., individual compounds) was performed on the MIT Supercloud 

supercomputing resource49 using 80 or 100 cores, taking 7-10 days to complete. We note that less 

intensive computational resources (e.g., the local computing resource listed above) may be able to 

output sufficient (although perhaps not as accurate) descriptors in a shorter time frame (ca. 1 h) by 

using a coarser time mesh and fewer initial guesses. We do not anticipate the predictive power of 

the library to be adversely affected by such a change provided the same mesh is used throughout 

the entire process. 

 

2.4 Library-data fitting 

Once a library is constructed, it can be applied to new experimental data to estimate how much 

of each species is present and, ultimately, to label an electrolyte. To achieve this, the information 
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from the library is first combined with the same input waveform used to acquire the new 

experimental dataset to simulate a concentration-normalized current for each compound (Figure 

1). These normalized simulated voltammograms are then regressed to the experimental data by 

adjusting the concentration weights to maximize the likelihood function (Equation (7)), which is 

equivalent to the boxed optimization in Figure 1b. This fitting procedure yields a vector of best-

fit concentrations for all the library constituents, where each vector entry estimates the 

concentration of the corresponding compound. However, this vector can include compounds that 

are not actually present in the electrolyte due, in part, to random errors whose effects are 

challenging to physically quantify (e.g., random heterogeneities generated from electrode 

polishing39). Consequently, it is necessary to evaluate the inclusion of every compound by 

assigning to each a probability of existence. 
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Figure 1. Procedure used to estimate the concentration of each catalogued library compound in an 

experimental dataset using CSW voltammetry as an example technique. (a) An example two-

compound library is used to simulate the concentration-normalized difference current 

( ;  ,i i A B = ) using the catalogued list of descriptors ( i ) and the same input waveform used to 

acquire the experimental dataset. (b) The resulting concentration-normalized difference current is 

compared with the experimental data ( expI ) using weighted linear least squares fitting to estimate 

the concentrations, ,A bestC  and ,B bestC , in the electrolyte. The concentration-normalized difference 

current is linearly proportional to the bulk concentration, enabling rapid optimization. 
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2.5 Compound identification 

Once the simulated voltammograms are fit to experimental data, candidate compounds are 

culled by evaluating models for two hypotheses ( 0H  and 1H ): the null hypothesis, in which all 

compounds except the one of interest are included (“exclusion”, 0H ), and the alternative 

hypothesis, where all library compounds—including the compound of interest—are considered 

(“inclusion”, 1H ). We note that this framework is also used to estimate the electron transfer 

mechanism of a compound during library development (Section 2.3); there, 0H  and 1H  may 

respectively represent a diffusion and kinetic rate-limited electron transfer (or vice versa). The 

probabilities for these hypotheses are calculated using Bayesian inference; the hypothesis with a 

probability of greater than 50 % is the accepted state based on the Maximum a Posteriori 

probability (MAP) rule.34 This process is detailed in Equations (8) and (9) (for further details, see 

Equations S1-S4). 

 
( | ) ( )

( | )
( )

obs i i
i obs

obs

f O H P H
P H O

f O
=  (8) 

In Equation (8) (Bayes’ Rule), P  is a discrete probability, f  represents a PDF, iH  is the i th 

hypothesis, and obsO  is an observation. ( )iP H  is the prior probability (i.e., the probability that 

iH  is true before the observation was made)—assumed to be equal for all hypotheses (50 %) in 

this work— ( )|i obsP H O  is the posterior probability (the probability that iH  is true given the 

observation), and ( )|obs if O H  is the likelihood PDF of observing obsO  given that iH  is true. 

( )obsf O  is the PDF of obsO  occurring across all hypotheses considered. We note that 

1

( ) ( | ) ( )
M

obs obs q q

q

f O f O H P H
=

= , where q  is a counter for M  total hypotheses. 
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In the context of this work, ( )iP H  is the probability that hypothesis i  (either the presence of 

a single compound or an electron transfer model) is true before evaluating experimental data, 

( )|obs if O H  is a continuous PDF that evaluates for both the goodness of fit and the number of 

model parameters to prevent overfitting, and ( )|i obsP H O  is the probability of hypothesis i  being 

true after considering the experimental data.34 

In compound identification, there is also a possibility that the measured currents arise from 

background non-faradaic processes independent of the presence of a redox-active compound. As 

such, the probability of a peak resulting from background noise (expressed as 
backgroundP ) must also 

be evaluated to yield the final probability (Equation (9)). 

 ( | ) ( | ) (1 )f i obs i obs backgroundP H O P H O P=  −  (9) 

In Equation (9), ( | )f i obsP H O is the final probability reported for a given compound. Note that 

this formula assumes that ( | )i obsP H O  and 
backgroundP  are independent of each other. This 

assumption is reasonable, as the background current is expected to negligibly influence 

( | )i obsP H O . However, there theoretically may be instances where the presence of a redox-active 

compound affects the response of the background current; such dependencies are not captured in 

scans of blank electrolyte and thus are not captured by Equation (9). In this work, the probability 

that an identified peak resulted from background processes was nearly zero (all the probabilities 

were zero within the working precision of MATLAB® R2020a). Nevertheless, this feature may 

become important in future scenarios, such as electrolytes containing μM or nM electroactive 

species. 

The probability for each compound is evaluated individually via binary hypothesis testing 

according to Equations (8) and (9). Compounds with probabilities greater than 50 % are assumed 
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to be present in the electrolyte—in line with the MAP rule—and vice versa; the workflow for this 

process is illustrated in Figure 2. 

 

 

 

Figure 2. Schematic of procedure to assign probabilities for all compounds in the electrolyte one 

at a time via binary hypothesis testing. X  is the compound of interest; 0H  and 1H  refer to null 

(exclusion) and alternative (inclusion) hypotheses, respectively; and obsO  is the experimental 

observation (i.e., the experimental voltammogram). 

 

Within the workflow depicted in Figure 2, the first model ( 0H ) represents the exclusion of the 

compound in question. In it, CSW voltammograms for every catalogued compound except the 

compound of interest are simulated and fit to the same experimental dataset. The second model 
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(
1H ) represents the inclusion of the compound in question. In it, CSW voltammograms for every 

compound are simulated; the resulting fit has already been evaluated when finding the vector of 

best-fit concentrations (Figure 1). These two models are then compared, and the probability of 

existence is determined using Equations (8) and (9). This procedure is repeated for every 

compound under consideration, and the resulting probabilities can then be assessed to determine 

which compounds are present. The process outlined in Sections 2.4 and 2.5 take ca. 1 min to 

complete using two cores in MATLAB® R2020a with the local computational resource previously 

mentioned. This process is considerably faster than library construction because only a single set 

of voltammograms is simulated to fit models and data using the linear relationship between 

concentration and current observed in this work (Section 2.4). In comparison, library development 

requires many sets of voltammograms to be simulated because of the highly non-linear relationship 

between the current and relevant electrochemical parameters (Section 2.3). 

 

3. Results and Discussion 

3.1 Case study description 

This protocol was validated with a case study involving phenothiazines, a class of redox-active 

organic compounds used for overcharge protection in Li-ion batteries25,26,51 and, more recently, as 

positive electrolyte materials in redox flow batteries.8,52 For this study, five different N-

functionalized phenothiazine derivatives (PT, MPT, EPT, iPrPT, and PhPT), whose structures are 

depicted in Figure 3, were synthesized. Importantly, these compounds are stable in their neutral 

and singly-charged forms on the CV time scale (ca. 1 min).25 We restrict ourselves to a single core 

for simplicity; different molecular classes are anticipated to be more easily differentiable based on 

variations in exhibited properties. We also anticipate that for more extensive applications (e.g., 
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samples without entirely deterministic preparation), additional consideration will be needed to 

create a manageable library representative of possible compositions by vetting candidate 

compounds using intuition (e.g., excluding infeasible or unlikely compounds) and using a priori 

observation, such as eliminating a compound from contention if no voltammetric peak is recorded 

at its predicted redox potential. We also note that judicious library selection is important, as the 

output probabilities for each species are dependent on the compounds present in the library. 

 

 

 

Figure 3. Structures and abbreviations of phenothiazines used in this study. Dashed, dotted, or 

dash-dotted lines indicate the line style used to plot data pertaining to each phenothiazine. 

 

First, the phenothiazine library was constructed according to the procedure in Section 2.3; the 

generation process and library contents are described in detail within the SI (see Section S.2). This 

library was then applied to three identical electrolytes of known composition (containing 1 mM 
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PT, 1 mM MPT, and 0.1 M TBAPF6, all in dichloromethane) probed using both CSW voltammetry 

and CV. Dichloromethane, used previously for electroanalytical studies,25 is a non-nucleophilic 

solvent and is naturally anhydrous, creating favorable conditions for phenothiazine stability.53 

Additionally, we assumed that, under dilute conditions, the dissolved phenothiazines do not 

interact during the electrochemical experiments, and thus, the voltammetric response was a 

superposition of the two individual species,5 as illustrated in Figure S3. 

Note that the methodology outlined in Figure 2 allows for the identification of all 32 possible 

compound combinations by evaluating each phenothiazine individually; as such, a successful case 

study will demonstrate that this protocol can deconvolute voltammograms comprised of multiple 

electroactive compounds while exhaustively considering all possible electrolyte combinations. We 

note that while the experimenter knew the electrolyte composition (ground truth), the protocol had 

no knowledge of the electrolyte makeup prior to evaluating the experimental dataset; the routine 

was only offered the phenothiazine library, the raw experimental data, and additional parameters 

not linked to compound identities, such as working electrode radius, voltammetric waveform 

parameters, etc. 

 

3.2 Protocol validation 

After its construction, we used the phenothiazine library to simulate concentration-normalized 

voltammograms for each derivative, shown for CSW voltammograms in Figure 4a. These were 

fit to the experimental data to yield a vector of concentrations that best fit the data. Figure 4b 

illustrates the data for a representative single experimental trial (one of 18 CSW voltammetry 

trials), the corresponding best-fit voltammogram, and the resulting concentration estimates. 
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Figure 4. Generation and fitting of concentration-normalized CSW voltammograms to a single 

experimental dataset. (a) Concentration-normalized CSW voltammograms of the phenothiazines, 

extracted from the library used in this study. Anodic / oxidative currents (denoted by the subscript 

a ) are positive in sign, cathodic / reductive (denoted by the subscript c ) are negative in sign, and 

the initial potential sweep is from negative to positive potentials. This convention holds for all 

voltammograms depicted in this work. (b) Contribution of each phenothiazine to the best total fit 

of the experimental data and the corresponding best-fit concentrations (listed in the same order 

and color scheme as the legend). 

 

The vector of best-fit concentrations ( C
best ) in Figure 4b contained the estimated 

concentrations of each compound in solution for a single trial. Across six CSW voltammetry and 

three CV trials from a single electrolyte (nine total trials), the concentration estimated for 

unsubstituted PT had a 9.52 % error (Equation S13) with a standard deviation of 27.6 10− mM 

(Equation S14), and the concentration of MPT had a 8.06 % error with a standard deviation of 
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11.8 10− mM—further details and discussion are found in the SI (Section S.3). We also note that 

the estimated concentrations of EPT and iPrPT were greater than zero, even though neither were 

present in the electrolyte. Specifically, in Figure 4b, the overall best fit was achieved by including 

EPT and iPrPT at estimated concentrations of 0.042 mM and 0.004 mM, respectively. However, 

in all nine cases, the second inferential step successfully excluded both EPT and iPrPT from 

consideration (vide infra). 

Once the best-fit vector of concentrations was estimated for a single dataset (Figure 4b), the 

probability of each phenothiazine being present was calculated according to the procedure outlined 

in Figure 2. For each phenothiazine studied, two models were examined: one considering every 

phenothiazine except the one currently being examined (representing exclusion— 0H ), and 

another considering all five phenothiazines in the library (representing inclusion of the interrogated 

phenothiazine— 1H ). The results from this analysis are depicted in Figure 5. 
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Figure 5. Graphical illustration of the best fits used in the labeling workflow when (a) PT, (b) 

MPT, (c) EPT, (d) iPrPT, and (e) PhPT are excluded from consideration ( 0H , dashed lines) and 

when all phenothiazines are considered in the library ( 1H , black line). Part (f) shows the 2-norm 

of the errors when each phenothiazine is excluded from consideration. 

 

In Figure 5, the exclusion model fit ( 0H , dashed lines) estimates whether a compound is 

present. If the fit is poorer, then the species is likely to be present in the electrolyte because its 

inclusion is necessary to better fit the experimental data, and vice versa. From this, our preliminary 

conclusion—which will be evaluated more rigorously—is the protocol should label PT and MPT 

as present and EPT, iPrPT, and PhPT as absent. Figure 5f depicts the 2-norm error (Equation 

(10)) when phenothiazines are excluded from consideration to quantify the illustrations in Figures 

5a-e. 
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The 2-norm error will also show that the protocol avoids overfitting by selecting models with fewer 

parameters (in this case, the exclusion model) if the error does not significantly increase compared 

to the inclusion model. Quantitative metrics on this balance between model simplicity and error 

are further discussed in the SI (Section S.1). 

To substantiate these preliminary conclusions, the probabilities of each phenothiazine being 

present in the electrolyte were calculated using Equations (8) and (9). To demonstrate the 

repeatability and the adaptability of this protocol across different techniques, this procedure was 

applied to 18 CSW voltammetry datasets (all acquired with the same input waveform) and nine 

CV datasets (three at 25 mV s-1, three at 50 mV s-1, and three at 100 mV s-1) across three 

electrolytes that were independently prepared. The probabilities were estimated for all 27 datasets, 

with the results depicted in Figure 6. To illustrate the worst-case scenario, the smallest 

probabilities for the sets of PT and MPT are reported, while the largest are reported for EPT, iPrPT, 

and PhPT. 
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Figure 6. Bar graph depicting the probability of each phenothiazine residing in the solution being 

examined, in agreement with the phenothiazines known a priori to be present in the electrolyte. 

To illustrate the worst-case scenario, the lowest probabilities for PT and MPT are plotted for both 

CSW voltammetry (written as “CSWV” in the figure) and CV data. Similarly, for EPT, iPrPT, and 

PhPT, the largest probabilities are plotted for both techniques. The reported value is the smaller of 

the two plotted probabilities for PT and MPT, and conversely, the larger of the two plotted 

probabilities for EPT, iPrPT, and PhPT. 

 

Higher probabilities indicate that the phenothiazine of interest is more likely to be present in 

the electrolyte, whereas the opposite is truth for lower probabilities. As expected from inspection 
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of Figure 5, this methodology found that for all 27 data sets considered, both PT and MPT were 

in solution while the other phenothiazines were not. Further, the accuracy and precision of the final 

concentration estimates (i.e., after culling the library) decreased and increased, respectively. 

Across the same nine trials previously mentioned, PT exhibited an error of 11.86 % (2.34 % 

increase) with a standard deviation of 24.3 10− mM ( 23.3 10−  mM decrease), while MPT exhibited 

an error of 10.27 % (2.21 % increase) with a standard deviation of 11.6 10−  mM ( 22.6 10−  mM 

decrease). As such, the protocol both determines the identities and estimates the concentrations of 

the phenothiazines in the probed electrolyte. 

 

3.3 Discussion 

This case study demonstrates that our methodology can identify multiple compounds and their 

estimated concentrations in an electrolyte using different voltammetric techniques. However, 

based on the relative positions of the phenothiazines in potential space, the observant 

experimentalist may conclude that PT is in the electrolyte via visual inspection, as its redox 

potential is ca. 100 mV more negative than the other phenothiazines. Thus, it may not be surprising 

that the protocol correctly identifies PT. However, the protocol can also differentiate between MPT 

and iPrPT, a differentiation more challenging to achieve visually, as their redox potentials are 

much more similar (Table S3). 

Although the protocol was successful in this case study, additional findings point to limitations 

and areas for improvement. We note that the protocol did not correctly label electrolytes at faster 

CV scan rates (200-1000 mV s-1), misidentifying MPT and iPrPT (results illustrated by Figure S6 

in the SI). This misidentification may arise from multiple factors. First, as already noted, the redox 

potentials of iPrPT and MPT are similar (ca. 30 mV separation), potentially frustrating 
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differentiation using voltammetry and necessitating the use of other techniques that can capitalize 

on contrasting compound properties. For example, the 1H NMR spectrum of iPrPT exhibits a 

multiplet at ca. 4.25 ppm, which is not present in the analogous spectrum for MPT (see Figures 

S10 and S12 for further details). Further, kinetic limitations manifest themselves to a greater extent 

at faster CV scan rates via increased peak-to-peak separation. If a compound (e.g., iPrPT in this 

study) is predicted to undergo an electron transfer with infinitely fast kinetics, as the diffusion rate-

limited model in this work assumes, the simulated peak-to-peak separation will be independent of 

scan rate; however, this separation for compounds predicted to undergo a kinetically rate-limited 

electron transfer (as is the case with MPT) will increase. Consequently, the modeled peak 

potentials for iPrPT will not change while those for MPT will, creating a greater opportunity for 

the protocol to confuse iPrPT and MPT. Relatedly, ohmic-induced potential losses distort 

voltammograms acquired at high scan rates in a similar fashion to that of kinetically rate-limited 

electron transfers, and as such, ohmic-driven distortions can be misinterpreted as kinetic 

limitations if appropriate care is not taken. Finally, increased experimental noise and contribution 

from background charging currents54,55 (see Figure S7) can further convolute the signal and thus 

analysis. Although data quality appears to impact the ability of the protocol to correctly identify 

compounds, quantitative metrics of sufficient data quality for accurate labeling were not identified 

in this study and are expected to be challenging to formulate; they are likely dependent on multiple 

factors, such as the similarity of the compounds in the library and the type of potentiostat used. 

Overall, this misidentification demonstrates that the experimental conditions and the validity of 

the physical models used must be carefully considered. 

To increase prediction accuracy, experiments should seek to acquire high-quality (i.e., high 

signal-noise) data, and the limitations of first-principle models should be actively considered. For 
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the electrolyte used in this study, results indicated that cyclic voltammograms should be acquired 

at a scan rate of ca. 100 mV s-1 or slower. CSW voltammetry, in turn, did not exhibit analogous 

limitations, and its threshold waveform inputs are not presently known. Moreover, despite the 

advantages physical models impart, the experimental conditions of the system being probed as 

compared to the training set must be evaluated; if there are significant deviations, modified or 

more detailed physical models may be needed. For example, at faster CV scan rates, double-layer 

capacitance can appreciably affect the observed current and thus may need to be considered in the 

physical model,5 while such effects may not significantly impact CSW voltammetry.20 More 

generally, it may not be possible to identify compounds with similar redox potentials using data 

from a single voltammogram; to this end, complimentary techniques (e.g., UV-Vis spectroscopy, 

NMR, or more sensitive voltammetric techniques35,56) could be integrated with the Bayesian 

workflow to increase labeling accuracy in these instances. Such expanded frameworks will be 

contemplated in due course. 

 

4. Conclusions 

In this work, a protocol combining voltammetry experiments and simulations, binary 

hypothesis testing, and Bayesian inference has been developed to enhance the capabilities of 

electrochemical composition analysis compared to only experiment alone, using experiment 

combined with simulation, and using black-box (physics-agnostic) machine learning methods. The 

procedure was outlined and applied to a test case involving five phenothiazines probed with two 

voltammetry techniques; there, an electrolyte containing PT and MPT was correctly labeled across 

various techniques (CV and CSW voltammetry). These results demonstrate that a voltammetric 

labeling protocol can characterize a multicomponent electrolyte using multiple techniques, 
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demonstrating a degree of versatility not yet observed in existing voltammetric identification 

protocols. Future work will aim to improve the detection accuracy of this methodology by 

integrating the results of additional techniques in an automated fashion. 

Overall, this protocol serves as a first step in extending the limits of electrochemical analysis 

via integration of probabilistic principles with high-quality experimental data (potentially in situ 

or operando) and simulations. While the compositions of the electrolytes examined in this study 

were of a known and unchanging composition, our protocol may ultimately examine more 

complex and dynamic electrolytes. If validation on these transient systems are promising, this 

protocol can be used in relevant fields that would benefit from enhanced in situ voltammetric 

labeling; examples include identifying electroactive decay products of degraded active species 

during organic redox flow battery operation57 and labeling potentially complex liquid product 

mixtures arising from carbon dioxide reduction,58 both almost in real-time. 
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6. Glossary 

Latin variables 

C  Vector of concentrations (mol m–3) 

bestC  Vector of best-fit concentrations (mol m–3) 

best,no XC  Vector of best-fit concentrations, excluding species X  (mol m–3) 

i,bestC  Best-fit concentration for species i  (mol m–3) 

iC  Concentration of species i  (mol m–3) 

,i bulkC  Concentration of species i  in the bulk (mol m–3) 

ic  Dimensionless concentration of species i   

iD  Diffusion coefficient of species i (m2 s–1) 

Od  Ratio of diffusion coefficients 1

O RD D−  

E  Applied electrode potential (V vs. reference redox event) 

0E  Formal redox potential for a species of interest (V vs. reference redox event) 

F  Faraday constant (96485 C mol–1) 

( )f  
Continuous probability distribution function, or abbreviation for likelihood 

function 

expI  Vector of experimental currents (A)* 

exp, jI  j th data point of the experimental current vector (A) 

iI  Current of species i  (A) 

mI  Vector of modeled currents (A) 

m, jI  j th data point of the experimental current vector (A) 

i  Indexing counter 
j  Indexing counter 

0K  Dimensionless heterogeneous rate constant 

0k  Heterogeneous rate constant (m s–1) 

N  Number of data points in a voltammogram 

( )P  Discrete probability mass function 

backgroundP  Probability that the current signal arises from non-faradaic processes 

( )fP  
The probability a compound is present in solution when considering background 

processes 
q  Indexing counter 

GR  Universal gas constant (8.314 J mol–1 K–1) 

er  Working electrode radius (m) 

T  Temperature (K) 
t  Time (s) 
x  Axial distance from the planar electrode surface (m) 
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Greek symbols 

  Dimensionless charge transfer coefficient 
  Vector of overpotentials (V) 
  Scalar overpotential (V) 

j  Overpotential at the j th data point (V) 

  
Generic vector of electrochemical and transport parameters or concentrations 

(multiple units) 

i  Vector of electrochemical and transport parameters for species i  (multiple units) 

̂  
Vector of optimal electrochemical and transport parameters or concentrations 

(multiple units) 

  Dimensionless position 

  Vector of the standard deviations for the experimental current (A) 

j  Standard deviation of the experimental current at the j th data point (A) 

  Dimensionless time 

a  Anodic concentration-normalized difference current (A m3 mol-1) 

c  Cathodic concentration-normalized difference current (A m3 mol-1) 

i  Vector of concentration-normalized difference currents for species i  (A m3 mol-1) 

  Matrix of concentration-normalized difference currents for all species (A m3 mol-1) 
*Note that the inclusion of “ ” before any form of the current or concentration normalized current indicates a 

difference current or the normalized analog (A or A m3 mol-1). 

 

Latin symbols 

A  Toy compound used to demonstrate the protocol methodology 
a  An anodic (oxidative) process 

B  Toy compound used to demonstrate the protocol methodology 
c  A cathodic (reductive) process 

iH  i th hypothesis 

M  Total number of hypotheses 
O  Oxidized form of a redox couple 

obsO  An observation 

R  Reduced form of a redox couple 

X  A generic species 

Y  A generic species 

Z  A generic species 
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