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Abstract

The quantum mechanical bespoke (QUBE) force field approach has been devel-

oped to facilitate the automated derivation of potential energy function parameters

for modelling protein-ligand binding. To date the approach has been validated in the

context of Monte Carlo simulations of protein-ligand complexes. We describe here

the implementation of the QUBE force field in the alchemical free energy calculation

molecular dynamics simulation package SOMD. The implementation is validated by

demonstrating the reproducibility of absolute hydration free energies computed with

the QUBE force field across the SOMD and GROMACS software packages. We further

demonstrate, by way of a case study involving two series of non-nucleoside inhibitors

of HIV-1 reverse transcriptase, that the availability of QUBE in a modern simulation

package that makes efficient use of GPU acceleration will facilitate high-throughput

alchemical free energy calculations.

2



Introduction

Accurate prediction of protein-ligand binding affinity is invaluable in the early stages of

drug discovery. High-throughput alchemical free energy calculations are an attractive tool

for this task, enabling rigorous calculation of binding free energies. However, accuracy re-

mains limited by the description of interatomic interactions and sampling of conformational

space.1–5 The potential energy surfaces of protein-ligand complexes are almost always de-

scribed by molecular mechanics (MM) force fields, of which AMBER,6 OPLS,7 CHARMM8

and GROMOS9 are popular examples. These transferable biological force fields employ

similar functional forms and their parameters are typically fit to reproduce the quantum

mechanical (QM) and/or experimental properties of small organic molecules. Some alterna-

tive force fields, such as AMOEBA10 and QMDFF,11 have a greater focus on fitting to QM

data, including symmetry-adapted intermolecular perturbation theory models,12 but typi-

cally have a more complex functional form and their use in protein-ligand binding studies

are not routine.

Recently, an alternative approach to biomolecular force field design has been proposed,

named the QUantum mechanical BEspoke (QUBE) force field, in which virtually all force

field parameters are derived specifically for the molecule under study directly from a small

number of QM calculations. QUBE shares its functional form with the OPLS force field, and

so is rapid to evaluate in the context of alchemical free energy calculations. Full details may

be found elsewhere.13,14 In brief, non-bonded (charge and Lennard-Jones) parameters of the

QUBE force field are derived from atoms-in-molecule partitioning of the ground state QM

electron density,15,16 in particular, employing the Tkatchenko-Scheffler relations for van der

Waals interactions.17 QUBE bond and angle parameters are derived from the QM Hessian

matrix, using the modified Seminario method,18,19 while anharmonic dihedral parameters are

fit to relaxed QM torsion scans.13 Small molecule QUBE force fields may be derived using

the QUBEKit python package, and they have been extensively validated against experimen-

tal liquid properties.13 Atoms-in-molecule protocols are available as part of the ONETEP
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linear-scaling density functional theory (DFT) software,20 and hence QUBE non-bonded pa-

rameters may be readily derived for entire proteins comprising thousands of atoms. These

parameters have been supplemented by compatible libraries of bonded parameters, and simu-

lations of protein dynamics using the resulting QUBE force fields have been validated against

experimental NMR observables.14

To date, the QUBE force field has been used to compute absolute binding free energies of

a series of benzene derivatives to the L99A mutant of T4 lysozyme21 and relative binding free

energies of several flexible inhibitors of p38α MAP kinase.22 In both cases, mean unsigned

errors in protein-ligand binding free energies under 1 kcal/mol were reported. Such accuracy

was shown to be broadly similar to that of the OPLS-AA force field in these cases.21,22 In

the initial development of QUBE, the OPLS functional form has been retained for compati-

bility with existing MM software (for example, these studies used the MCPRO software23).

However, now that a baseline accuracy has been established, future development will target

rapid and systematic evolution of the force field functional form. These strategies involve

identifying key mappings between QM observables (such as the electron density) and force

field parameters. Examples include automated addition of off-center charges to account for

anisotropic electron density,13 which has not yet been thoroughly explored in protein–ligand

binding studies,15 and higher-order dispersion terms to move beyond the dipole–dipole r−6

interaction.24,25

For rapid testing of new force fields, it is desirable to interface with free energy software

that can be readily adapted to new force field functional forms whilst achieving efficient

performance on modern computing hardware. Options for high-throughput alchemical free

energy simulations include Schrödinger’s commercial FEP+ package,26 as well as AMBER6

and GROMACS.9 However it is not trivial to modify functional forms in such packages that

feature highly optimized routines for efficient evaluation of forces. For this reason, here we

implement QUBE in the Sire molecular simulation framework,27 which includes the SOMD

molecular dynamics engine for free energy calculations. SOMD interfaces with the OpenMM
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toolkit for GPU acceleration, which provides efficient energy evaluation routines whilst allow-

ing flexible definition of force field functional forms via a C++ API.28 To aid the preparation

of QUBE inputs, we make use of the BioSimSpace library, which already facilitates system

setup and interoperability between a range of biomolecular simulation packages, such as

AMBER, GROMACS, and CHARMM.29 SOMD has been used within the Sire molecular

simulation framework and successfully applied to alchemical free energy studies on a range

of drug-like fragments, carbohydrates and host-guest systems.30–40 The automated setup

and processing of alchemical free energy calculations using Sire, BioSimSpace, SOMD and

OpenMM has recently been implemented in Cresset’s Flare package,41 and benchmarked

against 220 ligands bound to 14 protein targets, with accuracy comparable to previous re-

ports.3,9,26

Thus, the SOMD framework provides a promising basis for implementation and future

benchmarking of alchemical transformations using the QUBE force field. In this paper, we

develop and distribute the file parsers that allow users to run QUBE simulations of protein-

ligand complexes in the Sire and OpenMM molecular simulation frameworks. Following

validation of the computational approach, we further demonstrate the use of the QUBE

force field in alchemical protein-ligand binding free energy simulations using the protein

target HIV-1 reverse transcriptase (RT) as a case study.

Computational Methods

Here, we present an overview of the QUBEKit/Sire workflow for molecular modelling (Fig-

ure 1), and to demonstrate its use, we have chosen as a case study, two sets of non-nucleoside

inhibitors of HIV-1 RT (NNRTIs). HIV-1 RT has been extensively studied both computa-

tionally and experimentally, and indeed free energy calculations have been crucial to driving

improvements in the potency of NNRTI scaffolds (further background and structural details

are provided in the Supporting Information).42–46 Here, we chose 10 compounds from a
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Figure 1: Overview of a) small molecule and protein parameterization using QUBEKit, and
b) creation of the molecular systems in Sire for free energy calculations.

series of catechol diethers that incorporate a 7-cyano-2-naphthyl substituent,43 and 12 com-

pounds comprising indoles, indolizines, and benzofurans from the earlier literature,42 which

we refer to as groups 1 and 2, respectively (full chemical structures are provided in Figure 4

and Table 1). We focused on these two datasets as group 1 exemplifies small side chain

transformations, whilst group 2 covers a much wider potency range, including heterocyclic

substitutions.

Ligand Preparation with QUBEKit

QUBEKit13 interfaces with the Gaussian0947 and ONETEP20 QM software packages to per-

form bond, angle, torsion, charge and Lennard-Jones parameter derivation. BOSS/MCPRO

style z-matrices, and the corresponding PDB files, of the 22 NNRTIs were generated using

the LigParGen web server.48 Gaussian09 input files were prepared using QUBEKit. Struc-

tural optimizations and Hessian matrix calculations were performed with the ωB97X-D49

functional and a 6-311++G(d,p) basis set. Harmonic bond stretching and angle bend-

ing parameters were derived using the modified Seminario method.18,19 Non-bonded pa-

rameter derivation was performed with the linear-scaling density functional theory code,

ONETEP,20 using previously reported protocols.13 Density derived electrostatic and chem-

ical (DDEC) electron density partitioning, as implemented in ONETEP, was used to assign

atom-centered point charges and atomic volumes.13,16,50,51 Lennard-Jones parameters were
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derived by QUBEKit from the atomic volumes using the Tkatchenko-Scheffler method.15,17

Torsion parameter fitting on core fragments of the ligand sets followed the general methods

used in previous studies,13,22 though here we employ an interface between QUBEKit and

the TorsionDrive package,52 which improves the quality of both QM and MM torsion scans

through its recursive wavefront propagation algorithm. Final force fields were output in xml

format. Further descriptions of parameters used in force field derivation may be found in

the Supporting Methods.

Protein Preparation with QUBEKit and Sire

Simulations for groups 1 and 2 were based on the initial x-ray crystal structures with PDB

codes 5ter and 4mfb, respectively.42,43 The proteins were truncated and underwent parame-

terization using the QUBE force field (Supporting Methods). ONETEP calculations were

performed to obtain the ground state electron density, atomic charges and atomic volumes,

in the same way as the ligands, as previously described.22

To facilitate set-up of QUBE simulations for proteins, the software QUBEKit-pro has

been developed and is used here to generate OpenMM xml files from pdb and ONETEP

output files. Using QUBEKit as a base has the advantage that most features can be eas-

ily applied to the protein, allowing for charge checking and symmetrization, for example.

QUBEKit-pro builds the xml by first reading the PDB file to obtain the full topology of

the protein or fragment. This provides atomic positions, connectivity, and the amino acid

sequence. At this stage, certain groups of atoms are picked out for symmetrization such as

hydrogen atoms on the same methyl or amine groups.

With the structure read in, a parametrization step is performed. A stored, general protein

xml file contains bond, angle and torsion parameters, which have been generated specifically

for compatibility with the QUBE force field14 and are available for all atoms in standard

residues, including NME/ACE caps. This general xml is used to map parameters to the

protein in question, using the now stored structure. As described above for the ligands,
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atomic charges and volumes are extracted from the ONETEP output file, symmetrized (if

required), and used to calculate the Lennard-Jones parameters.15 QUBEKit is then used to

write pdb and xml files for use with OpenMM. Since each atom in the protein is in a unique

environment, and therefore has unique charge and Lennard-Jones parameters, each atom in

QUBEKit-pro is assigned a unique type.

Molecular systems in Sire can be loaded from AMBER-style input files. The molecule is

described primarily with two files: the prmtop (or prm7) file that holds all the parameters

and the inpcrd (or rst7) that contains the coordinates of the atoms. Functionality in Sire

has been extended to include new features that support parsing of the QUBE pdb and xml

input files and that support the OPLS-type potential energy functional form (Figure 1(b)).

For the former, an algorithm was implemented that reads the parameters and the coordi-

nates from the xml and pdb input files respectively, and returns formatted AMBER files

(prm7/rst7) that contain exactly the same information and can be parsed by SOMD. Geo-

metric combination rules have also been implemented in SOMD to support OPLS-style force

fields. Further information and comparison of single point energies between OpenMM and

SOMD are provided in the Supporting Methods.

Free Energy Simulations

BioSimSpace was used to generate files for free energy calculations of the ligands in bound

and unbound states. Free energy simulations were run with SOMD using both QUBE and

AMBER/GAFF force field parameterization methods for comparison. Perturbation maps

for each HIV-1 RT data set were constructed manually (Figure S3). Each perturbation

was carried out with two independent simulations, one in each direction. Each bound and

unbound simulation was divided into 11 regularly spaced λ windows. The energy of the

system was minimized for 1000 cycles by using the steepest descent method and each λ

window was run for a total of 4 ns, using a time step of 2 fs. The first 5% of each simulation

trajectory was discarded as equilibration. Table S2 shows that the transformation of 2a to
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2c (and the reverse) in group 2 varies by less than 0.3 kcal/mol with respect to changes in

simulation time (in the range 2–4 ns). Free energy changes were calculated from the output

using MBAR, and processed by the software FreeEnergyWorkflows30 to produce the free

energy estimates, and associated errors, reported in this manuscript. Further details may be

found in the Supporting Information.

Results

Validation: Hydration Free Energies

Having set up the computational workflow, and confirmed that single point energies of molec-

ular systems are consistent between SOMD and OpenMM, we turn now to validation of free

energies using the QUBE/Sire molecular system. A recent investigation of the reproducibility

of (relative and absolute) hydration free energy calculations across contemporary molecu-

lar simulation packages (including SOMD and GROMACS) has provided benchmarks and

package-specific protocols that serve as a validation test of new free energy procedures.53

Using the same benchmark test set used in this previous study, we therefore test the agree-

ment between absolute hydration free energies computed using the QUBE force field, as

implemented in GROMACS and our new Sire interface. Small molecule input files were

prepared using QUBEKit and Sire in the same way as the NNRTI compounds (Computa-

tional Methods). GROMACS force field files were generated from the corresponding AM-

BER input files using BioSimSpace. Free energy protocols were as previously described53

(Supporting Methods) and a tutorial is provided (https://github.com/cole-group/QUBE-

SOMD-paper/tree/main/HFE). Figure 2 compares the absolute hydration free energies for

nine molecules, computed using SOMD and GROMACS. The mean absolute deviation in

the computed hydration free energies is 0.15 kcal/mol which is consistent with the level of

reproducibility reported between other packages.53 Thus we can be confident of our imple-

mentation of QUBE in the Sire molecular simulation framework.
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Figure 2: Comparison between absolute hydration free energies computed using the SOMD
and GROMACS software packages. Error bars are standard errors in the mean from duplicate
runs.

Case Study: Protein-Ligand Binding

To demonstrate the potential for the use of QUBE/SOMD in prospective drug discovery

efforts, we analyze the relative alchemical binding free energies of a series of NNRTIs with

HIV-1 RT. Crystal structures are available for compounds 1c,43 a catechol diether that incor-

porates a 7-cyano-2-naphthyl substituent, and 2a,42 where the 2-napthyl group is replaced

by an indolizine. Figure 3 shows overlays of compounds 1c and 2a from SOMD simulations

using the QUBE force field, with the corresponding crystal structures. In both cases, the

cyano group projects out below Trp229 into a solvent-exposed channel, while close aryl-aryl

contacts with Tyr188 and Trp229 are maintained. The orientation of residue Tyr181 shows

sensitivity to the identity of the ligand, which is consistent with previous simulations54 and

crystallography.42 In complex with compound 1c, Tyr181 switches orientation during MD

simulations, from a face-to-face interaction with the catechol diether ring of the ligand, to

form closer contact with the 2-napthyl group. Figure S4 reveals that Tyr181 is very flexible,

forming both edge-to-face and face-to-face interactions throughout the simulation that more

closely resemble the crystal structure. On the other hand, Tyr181 adopts a T-shaped stack-

ing interaction with the central catechol ring of 2a, which is stable during MD simulations

and in agreement with the X-ray crystal structure. A hydrogen bond between one of the

10



Figure 3: Overlay of (A) compound 1c (orange) with the crystal structure (PDB: 5ter,
grey/blue) and (B) compound 2a (orange) and the crystal structure (PDB: 4mfb, grey/blue).

carbonyl oxygens of the uracil group with the backbone of Lys103 remains stable throughout

both MD simulations.

Our implementation of the QUBE force field in SOMD now allows us to perform high-

throughput alchemical free energy calculations to investigate the effects on binding of small

changes to the ligand. A disadvantage of the chosen case study is that enzyme-based activities

are unavailable for these compounds. Following previous studies,54 we provide here EC50 data

measured using human T-cells infected by wild-type HIV-1 (MT-2 cell assays) for comparison

with our computational results. Although it has been demonstrated that cell- and enzyme-

based activities are well-correlated for several NNRTI series,55 we cannot guarantee that

experimental data are not affected by, for example, differences in cell permeability between

compounds. We therefore focus here on general observations and convergence studies, and

refer the reader to previous work where we benchmark the accuracy of QUBE in protein–

ligand binding.21,22
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Figure 4: Markush structures of group 1 (2-naphthyl analogs) and group 2 (indole, indolizine
and benzofuran analogs).42,43

Table 1: Experimental EC50 (nM) inhibitory activity in WT HIV-1 RT assays42,43 and
computed relative binding free energies (∆∆G / kcal/mol) for the NNRTIs studied here.
Uncertainties determined from cycle closure are shown in parentheses.30

R1 R2 R3 EC50 ∆∆G
1a F Cl H 5.0 0.8 (0.2)
1b F Me H 7.8 1.4 (0.2)
1c Cl Me H 6.2 0.4 (0.3)
1d Me Cl H 5.0 -0.2 (0.3)
1e Me Me H 3.5 0.0
1f Et Me H 6.0 -2.0 (0.8)
1g Pr Me H 21.0 -3.0 (0.8)
1h iPr Me H 16.0 -2.1 (0.8)
1i Me F F 58.0 -3.3 (0.3)
1j Me Me F 1.9 -2.4 (0.5)

R1 R2 X Y Z EC50 ∆∆G
2a H H - N - 0.38 -0.3 (0.3)
2b Me H - N - 0.9 0.1 (0.3)
2c Me F - N - 2.0 0.0
2d F F - N - 0.4 0.3 (0.1)
2e H F - N - 2.7 0.3 (0.4)
2f H Cl - N - 5.1 1.0 (0.3)
2g H F - - N 17 4.0 (0.4)
2h H F O - - 40 0.8 (0.4)
2i Me F O - - 260 0.9 (0.4)
2j H H NH - - 56 1.6 (0.4)
2k Me H NH - - 10 3.2 (0.4)
2m Cl H NH - - 340 2.3 (0.4)
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Table 1 displays the binding free energies of the 2-napthyl ethers (relative to compound

1e) computed using the QUBE force field, along with experimental assay data.43 For com-

parison, we also report relative binding free energies computed with the AMBER force field,

using the same free energy protocols (Table S4). Compounds 1a–1e incorporate a series of

small methyl and halogen transformations at the R1 and R2 positions. With R2 = Me, the

Me and Cl substitutions at R1 are favored over F (1e < 1c < 1b) in both computational free

energy studies with QUBE and in experimental assays. Experimentally, the two compounds

(1a and 1d) with R2 = Cl are equipotent and less strongly bound than 1e, while QUBE

slightly favors compound 1d.

It has been hypothesized that bulkier groups at the R1 position in the 2-napthyl ethers

might be accommodated, and confer extra benefit in the common Y181C mutant viral strain

of HIV-1 RT.43 Hence, compounds 1f–1h were added to our benchmark data set. There

is evidence of a change in binding mode of these bulkier ligands (Figure S5), particularly

for 1g and 1h. Although we have investigated typical convergence of the free energies over

simulation time scales of 2–4 ns (Table S2), it may be that significantly longer simulation

times and/or enhanced sampling are required here.56 The two compounds (1i and 1j) with

R3 = F show high potency gains with the QUBE force field. Figure S6 shows significant

movement of the catechol diether group of compound 1j towards the space between Tyr181

and Lys103, which represents a larger change in conformation than was observed for the other

inhibitors. Table S3 reports a series of repeat runs for several transformations involving

compounds 1i and 1j. We do not observe very large differences between repeated runs, but

do see large hysteresis between forward/reverse transformations. Across the group 1 set,

the average hysteresis is 0.76 kcal/mol, which is dominated by transformations involving

compounds 1i and 1j, as well as 1f and 1h, which further supports sampling inadequacies

in these cases.

Similarly, Table 1 reports the relative binding free energies of each of the group 2 com-

pounds, along with EC50 data from available assays.42 Compounds 2a to 2f represent a series
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of indolizines, with methyl and halogen substitutions in the R1 and R2 positions. Compounds

2a, 2b and 2d are all sub-nanomolar inhibitors, and are predicted by our QUBE simula-

tions to be essentially equipotent, while the drop in potency of compounds 2e and 2f is

also reproduced. The isomeric indolizine (2g) was included in our test set to analyze the

effects of more subtle electrostatic aryl-aryl interactions on binding. QUBE recapitulates the

expected drop in potency, though (in agreement with Monte Carlo simulations performed

with the OPLS force field42) it likely over-estimates the magnitude of this change. Finally,

series of benzofurans (2h and 2i) and indoles (2j–2m) were investigated. The drop in po-

tency (relative to the indolizines) is successfully recovered, which is encouraging for future

prospective heterocycle scans. The average hysteresis in forward/reverse transitions is just

0.41 kcal/mol for group 2, indicating satisfactory convergence.

Discussion and Conclusions

We have described an interface between the QUBEKit force field engine, and the Sire molec-

ular simulation framework, for the calculation of alchemical relative binding free energies. As

an example application, we have retrospectively analyzed the binding of 22 small molecule

inhibitors of HIV-1 reverse transcriptase. With the significant caveat that EC50 is not a

direct measurement of binding, it appears that the QUBE/SOMD interface is capable of

providing a useful guide in design efforts. Where computational and experimental trends in

binding are not in agreement, the simulations tend to be characterized by high hysteresis.

We propose, in particular, that the present group 1 set may represent an interesting test

case for enhanced sampling protocols.

Importantly, our bespoke parameter derivation methodologies offer the potential for sub-

stantial improvements in accuracy. By deriving as many force fields parameters as practical

directly from QM, rather than fitting to experiment, the process of force field design be-

comes an exercise in accurately mapping QM data onto physically-motivated parameters
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and functional forms.13,57,58 In developing the QUBE non-bonded parameters for protein-

ligand complexes such as these, only seven parameters have been directly fit to experiment

(the van der Waals radii of seven elements), with the remainder being derived from QM.

Thus, future parameter and functional form updates should be relatively straightforward to

automate. Overall, this first generation interface between QUBE and SOMD offers a robust,

adaptable platform, with access to GPU-accelerated dynamics, that will substantially im-

prove our ability to validate and apply bespoke QM-derived force fields in computer-aided

drug design.

Data and Software Availability

Sire (https://github.com/michellab/Sire), BioSimSpace (https://github.com/michellab/BioSimSpace)

and QUBEKit (https://github.com/qubekit/QUBEKit) are freely available at Github. Data

and tutorials accompanying this paper are freely available at: https://github.com/cole-

group/QUBE-SOMD-paper.
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