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ABSTRACT 

Oxidized tannic acid (OTA) is a useful biomolecule with a strong tendency to form complexes 

with metals and proteins. In this study we open the possibility to further the application of OTA 

when assembled as supramolecular systems, which typically exhibit functions that correlate with 

shape and associated morphological features. We use artificial intelligence (AI) to selectively 

engineer OTA into particles encompassing 1-dimensional (1D) to 3-dimensional (3D) constructs. 

We employed Bayesian regression to correlate colloidal suspension conditions (pH and pKa) with 

the size and shape of the assembled colloidal particles. Fewer than 20 experiments were found to 

be sufficient to build surrogate model landscapes of OTA morphology in the experimental design 

space, which were chemically interpretable and endowed predictive power on data. We produced 

multiple property landscapes from the experimental data, helping us to infer solutions that would 

satisfy, simultaneously, multiple design objectives. The balance between data efficiency and the 

depth of information delivered by AI approaches testify to their potential to engineer particles, 

opening new prospects in the emerging field of particle morphogenesis, impacting bioactivity, 

adhesion, interfacial stabilization and other functions inherent to OTA. 

 

INTRODUCTION 

Tannic acid (TA) is an abundant and versatile bio-based material, which readily affords synthetic 

pathways for the isolation of its elementary building blocks. TA contains many hydroxyl groups, 

allowing it to form complexes with different macromolecules via hydrogen-bonding, hydrophobic 

and cation-π interactions [1,2]. Abundant hydroxyl groups make TA highly soluble and stable in 

aqueous solutions. In alkaline conditions, TA undergoes oxidation [3,4] and produces oxidized 
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tannic acid (OTA) followed by oligomerization. Concomitant oligomerization of OTA leads to the 

formation of compounds with higher molecular weight and thereby decreases the solubility of the 

substance [4]. In this form, OTA can interact with different molecules and serve as coatings [3,5], 

surface modifiers [1,6] and emulsion stabilizers [1,3,6,7], or act as stabilizing and reducing agents 

to aid in inorganic nanoparticle growth [8–10], all the while imparting beneficial biological 

functionality [11,12]. For instance, tannic acid has recently been shown to suppresses SARS-CoV-

2 as a dual inhibitor of the viral main protease [13]. All these favorable aspects of OTA and other 

phenolic particles have fueled research into a wide spectrum of applications [14]. 

OTA can also be crystallized into particles with structural properties that are highly sensitive to 

the experimental synthesis. Previously, Bhangu et al. [10] developed a sonochemical method to 

chemically transform amorphous tannic acid into nano/micro-sized crystalline particles without 

the use of reagents or organic solvents. They obtained OTA particles of different size and shape 

by simply varying ultrasonic parameters. Kämäräinen et al. [4] further presented a facile and 

scalable protocol to prepare OTA of varying morphologies by altering the TA oxidation 

conditions. The dimensions, shapes and the yield of these crystalline particles were highly sensitive 

to initial TA concentration, reaction time, initial pH and pKa of the base.  

While OTA particulate constructs can facilitate a range of new applications, particle morphology 

is a key consideration. In many high surface area systems that incorporate particulate matter, 

particle morphology and size are major contributors to their overall performance through, e.g., 

relationships between morphology and packing [15], percolation [16], rheology [17] and 

bioactivity [18]. Consequently, morphological concerns have been recognized to play an important 

role in many applications ranging from heterogeneous catalysts [19] and electrochemical cells 

[20,21] to drug delivery systems [22], among others. 
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In this work, we employ artificial intelligence (AI) to explore the morphology landscape of OTA 

particles in the chemical design space of processing conditions. As illustrated in Figure 1, we start 

with OTA synthesis experiments and digitalize them into data points for particle morphology. We 

apply Gaussian Process Regression (GPR) [23], an AI tool for supervised learning, to compute a 

surrogate model for OTA morphology. Based on the morphology model in the design space of 

chemical synthesis, we consider which particle shapes are achievable, and learn how to tune the 

processing conditions to achieve an optimal outcome for a targeted application.  

 

Figure 1. Workflow for AI-guided morphology control of synthesized OTA particles 

GPR has been employed in materials science for experimental materials design [24–30], often 

in combination with Bayesian optimization [31–33]. Given data within the phase space of N design 

parameters, GPR produces the statistically most likely N-dimensional landscape, which serves as 

a surrogate model of a target property [23]. Gaussian processes (GPs) are capable of good data 

interpolation, allowing us to build good quality surrogate models with relatively few data points. 

They produce smooth and continuous landscapes, that reflect the continuous chemical process 

underpinning the data, and can account for experimental uncertainties as data noise. All these 

characteristics makes GPR well-suited to experimental applications.  

The previous study of OTA particle synthesis employed principal component analysis [34,35]  

(PCA, an AI tool for unsupervised learning) on experimental data to ascertain that pH and pKa 

used in the OTA solution correlate most strongly with particle shape. We proceed to consider OTA 

morphology in the 2-dimensional search space of pH and pKa. Sample characterization was 
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performed by scanning electron microscopy (SEM) imaging. To digitalize the particle shape 

information, we quantified the physical dimensions allowed by OTA simple crystalline habits and 

took note of experimental uncertainties. 

While PCA is a versatile tool, it was unable to offer further insight into morphology types, nor 

indicate optimal processing conditions. Conversely, GPR allowed us to visualize OTA particle 

morphology as a function of pH and pKa and delivered a chemically interpretable model. Based 

on the morphology landscape, our objective was to drive the morphology of particles from one-

dimensional (1D) to three-dimensional (3D) shapes. Moreover, by extracting particle yield and 

volume from each experiment we were able to generate surrogate models for multiple experimental 

properties at no further cost, allowing us to pursue multi-target tuning of OTA particulate 

structures. In this manuscript, we present the entire workflow necessary to carry out supervised AI 

applications on experimental data, with the aim to motivate similar work in the community. Data-

efficient AI tools from computer science have the potential to renew experimental practices in 

chemical engineering and boost the search for advanced sustainable materials. 

 

MATERIALS AND METHODS 

Oxidized tannic acid (OTA) particle synthesis. Oxidized tannic acid particles were 

synthesized using the protocol reported previously [4]. Briefly, aqueous tannic acid solution (2% 

w/v) was prepared by adding tannic acid powder (1701.20 g/mol, Sigma-Aldrich) into Milli-Q 

water and rigorously stirring (magnetic bar) until completely dissolved. The pH of the solution 

was adjusted to a desired pH value with either 1 M KOH, 45 % (CH3)3N, 1 M NaOH, 0.5 M 

Na3PO4 or 25 % NH4OH (see Figure 2a). All chemicals were reagent-grade and purchased from 

Sigma-Aldrich.  Solutions were covered with perforated Parafilm and were shaken continuously 
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with an orbital shaker for 14 h. All reactions were carried out at room temperature. The grown and 

precipitated OTA particles were collected and stored at room temperature for further 

characterization. Despite the simplicity in particle synthesis, multiple experiments were needed to 

accurately define the conditions that resulted in the given morphology. This required arduous 

experimentation as well as time since each setup gave specific morphology, depending on the 

reaction conditions.  

 

Figure 2. Schematic illustration of the experimental protocol used for data acquisition: a. OTA 

colloidal particle synthesis; b. SEM image analysis and particle dimension according to 

characteristic lengths d1, d2 and d3. 

Scanning electron microscopy image analysis. The synthesized OTA particles were imaged 

using a field-emission SEM (Sigma VP, Zeiss, Germany) with Schottky emitter at 1.5 kV without 

stage bias. For this purpose, aqueous suspensions of the OTA particles were cast onto pre-cleaned 

silicon wafers, dried in ambient laboratory conditions and sputter-coated with 4 nm Pd/Au. All 
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imaging was performed on the same day with the OTA suspensions freshly prepared. Collected 

SEM images were then analyzed using ImageJ software [36] to measure the dimensions of the 

particles (Figure 2b). We measured the length, width and height of OTA particles as d1, d2, and 

d3, such that d1 > d2 > d3. Measurements were made for at least 10 different particles visible in the 

SEM image. The average values are reported here as the best estimate of particle dimensions. 

Standard deviations were recorded to estimate the experimental uncertainty on particle 

dimensions. All data points, error analysis and the SEM images are presented in the Supplementary 

Material (SM) document. 

Gaussian Process Regression (GPR) algorithm. GPR is a kernel-based algorithm for 

supervised regression that relies on Gaussian Process (GP) models to represent black box 

functions.[23] Given data and the GP prior, Bayes’ rule is applied to compute the GP posterior. 

The GP posterior mean serves as the surrogate model, the statistically most likely form of the 

unknown function. The GP posterior variance supplies a local measure of confidence in the model, 

typically rising in regions of search space where data is scarce and decreasing in well-explored 

regions. 

For GPR fitting we used an uninformative zero mean GP prior and the radial basis function 

(RBF) kernel to obtain smooth and continuous landscapes. Data noise was Gaussian-distributed 

with zero mean. To make the model more robust, we applied inverse gamma priors on the 

hyperparameters of the kernel, the length scale and variance. During regression, the two 

hyperparameters were fitted in an automated way by maximizing marginal likelihood: this 

standard GPR procedure ensures that the results do not depend on manual hyperparameter choices 

[23]. 
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To compute the surrogate model, we carried out GPR implemented in the Bayesian Optimization 

Structure Search (BOSS) code. BOSS is an open-source Python code [37,38] for performing GPR 

and Bayesian optimization (BO) tasks to solve problems in materials science [39–42]. It can read 

pre-recorded datasets or acquiring data on-the-fly with acquisition functions. BOSS post-

processing capabilities allowed us to construct surrogate model landscapes and analyze their 

features. 

 

RESULTS AND DISCUSSION 

We employed 10 experimental data points on crystallized OTA particles collected by 

Kämäräinen et al.[4] to initialize the GPR model. In a departure from earlier work, the prospect of 

supervised learning required us to carry out experimental data analytics and consider different 

experimental outcomes, as well as measurement uncertainties. Supervised learning calls for a clear 

outcome, or label, so samples with ill-defined morphologies were not included into the AI model. 

Another key part of data digitalization was the conversion of experimental observations into 

customized descriptors for OTA particle morphology.  

We started by analyzing the OTA particle morphology landscapes obtained in the 2-dimensional 

search space of pH and pKa for shape predictions. To test the predictive power of the model, we 

performed 7 more experiments in key regions of the design space. The additional data also served 

to refine the morphology model. We validated the morphology landscapes against all experimental 

data collected, including the samples which were not employed in building the model. Lastly, we 

demonstrated how additional property models for particle yield and volume were built from the 

same set of experiments and consider multi-objective materials design.  

Experimental dataset 
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The experimental dataset was adapted for GPR supervised learning by presenting each point in 

[x, y] pair format. Here x is the location in the design space of OTA particle processing conditions, 

and y is the label, the morphology design objective for which we construct the surrogate model. 

Depending on the number of design parameters, x can be N-dimensional. In this work, x = (x1, x2) 

with x1 assigned the pH of the solution and x2 the value of base strength pKa. We limited the design 

space of the processing conditions (pH, pKa) to the range of ([7.0, 12.2], [9.0, 15.5]), thereby 

avoiding extreme conditions, where experiments may not have been successful. 

The morphology of particles was quantified from their measured dimensions (d1, d2, d3). To 

facilitate comparison between data points, the particle dimension data was scaled by the magnitude 

of the leading dimension (normalizing the longest dimension to 1.0 for each data point). We 

defined the morphology label y as: 

 
𝑦 =

𝑑2

𝑑1
+

𝑑3

𝑑1
; 

 

(1) 

 𝑑1 = 1.0  →   𝑦 = 𝑑2 + 𝑑3 

This label allows us to distinguish between 1D and 3D morphology conditions as follows: 

 

𝑦 =  {

 0, 𝑑1 ≫ 𝑑2, 𝑑3;       1𝐷
 1, 𝑑3 ≪ 𝑑1, 𝑑2;       2𝐷
 2, 𝑑1 ≅ 𝑑2 ≅ 𝑑3;   3𝐷

 

(2) 

While the 1D-3D signal difference across the realistic particles may be considerably lower than 

the ideal [0, 2] range, the choice of a physically meaningful property as label y allowed us to 

formulate interpretable surrogate models and gain immediate insight from GPR applications. 
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Figure 3. SEM images of precipitated OTA particles: a. no precipitate; b. ill-defined 

morphologies; c. regular morphology, suitable for parametrization; d. dual morphology. 

Next, we review the range of experimental outcomes and discuss their suitability as input for AI 

application. Unlike in computational research where a numerical result is guaranteed, any 

experimental data point may result in one of the following outcomes of experimental synthesis, 

illustrated in Figure 3: a. no particle precipitate, b. non-quantifiable, ill-defined particle 

morphology, c. good quality precipitates with quantifiable dimensions, and d. multi-morphology 

precipitates. Too many experimental observations in the first two categories would suggest that 

the chosen design variables are not the key drivers of the chemical synthesis, and that the 

experimental design space needs further consideration. 

In our work, 74% of experiments (17 points) resulted in quantifiable sample morphology. A 

further 22% (5) data points featuring ill-defined particle morphology could not be employed in 

building the model, but served to verify the model predictions. In one case, we observed OTA 

samples that featured two distinct particle morphologies in comparable yields (Figure 3d). Such 

a case indicates a saddle-point in the chemical design space, a two-phase region where both 

morphologies are in coexistence, and should be approached with caution. Here, we characterized 

the two morphologies and computed their arithmetic average label y: such treatment reflected the 

dichotomy in the design space and was supplying this information in the model.  
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Experimental uncertainties are common in any practical work, and must be carefully considered. 

In our efforts, there were uncertainties associated with both OTA sample synthesis and 

characterization. While we made every effort to fix all aspects of OTA particle synthesis apart 

from pH and pKa, unaccounted differences in ambient conditions such as relative humidity could 

influence the evaporation rate during the experiments, affecting particle yields and morphologies. 

Changes in impurity content could also affect the observed morphologies. OTA particle 

dimensions were measured based on visual assignment of particle boundaries: these may introduce 

minor uncertainties into the mapping from design space to experimental outcome that are difficult 

to quantify. Irregular particle sizes in our experiments allowed us to perform a statistical analysis 

of particle dimensions (and thus morphologies). The standard deviations per particle dimension 

were combined to compute the overall uncertainty ∆ on the morphology label y. Since this quantity 

reflects the knowability of data, it was adopted to represent all sources of experimental error and 

served as data noise in the GPR surrogate model (see SM for full details). For the precipitate yield, 

a conservative estimate of 5 % variation was assumed. 

Morphology landscapes in the design space 

Based on GPR, we computed the initial surrogate model for OTA particle morphology in the 2-

dimensional pH-pKa design space shown in Figure 4a. The continuous morphology landscape 

features areas of interest associated with low y signal (1D) and high y signal (3D) structures. It 

also indicates that there are regions of design space where no data has been collected and where 

the model may be less reliable. 
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Figure 4. GPR surrogate models for morphology label y in pH-pKa design space fitted with a. 10 

and b. 17 experimental data points. Chart color reflects the value of the morphology label y, with 

yellow color denoting 3D and dark blue reflecting 1D particle outcome. Magenta circles indicate 

the loci of the actual experimental data. The red star indicates the processing conditions that 

produced OTA particles with the most pronounced 1D character (minimum y value in the surrogate 

model). 

The minimum of the surrogate model in Figure 4a. suggests that high-pH combined with high-

pKa produced OTA particles with the most strongly pronounced 1D character (𝑑1 ≫ 𝑑2, 𝑑3 ). 

Conversely, low pH solutions most likely produced 3D particles. To verify these predictions, we 

sampled further data points at the edges of the design space at pH<7.8 and pH>11, and also at low 

pKa values, where data had been sparse. The GPR model that was re-trained with 7 additional 

experimental points is presented in Figure 4b. 

The refined surrogate model for OTA particle morphology retains many of the features of the 

previous GPR fit in Figure 3a. The predicted high-pH and high-pKa conditions for 1D particles 

remain unchanged. However, the region specific to 3D structures (high y values) is now enhanced, 

shifting to lower pKa values. The refined landscape suggests that only low-pH and low-pKa 
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processing conditions give rise to 3-dimensional particles. The relatively low value of the 

morphology signal y throughout the design space indicates that many experimental outcomes are 

1D-like. Particles that are 2D-like may form only in the region of chemical space that neighbors 

the 3D structural conditions. 
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Model validation and predictive power 

To extract predictions from the surrogate model, we 

coarse-grained the landscape into several categories 

assuming linear progression from 1D to 3D. As illustrated 

in Figure 5, this allows us to define regions of design 

space where experiments would reliably produce 1D, 2D 

and 3D OTA particles. We observe that 1D and 3D 

regions of design space are clear and well separated. The 

model predicts that solution pH and pKa are directly 

correlated: 1D particles are obtained when their values 

are both high, and 3D when they are both low. In contrast, 

the 2D particle region spans a limited non-convex area in 

design space that conforms to the 3D particle region. This implies that 2D particles are difficult to 

synthesize. The greatest portion of design space was associated with 1D-type structures. The 

resulting model prediction is that when pH and pKa are inversely correlated, 1D-like or 1D-2D 

mixed morphology particles are expected to occur.  

In the next step, we validate our model predictions by cross-referencing SEM images of OTA 

particles with the particle morphology landscape. Figure 6 portrays the landscape overlaid with 

SEM image data from the area of design space where the OTA particle synthesis was carried out. 

Images outlined in red represent cases of non-quantifiable particle dimensions (ill-defined 

morphology), which were not included in the model construction. The case of dual particle 

morphologies is indicated in green.  

Figure 5. OTA particle morphology 

prediction by particle dimensionality, 

indicating mixed 1D-2D/2D-3D regions 
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It is immediately clear that the predictions regarding 1D and 3D particle formation were correct. 

1D landscape regions are associated with very long needle-like particles (up to 0.1 mm), where 

the design condition 𝑑1 ≫ 𝑑2, 𝑑3  is best satisfied. 1D-like regions exhibit a different 1D 

morphology where the particles are short and matchstick-like. In some cases, the short 1D particles 

agglomerate into a larger mass where the morphology is not easily identified. These data were not 

included into the surrogate model, and yet they correlate well with the mixed morphology 1-2D 

and 2-3D regions of the landscape. The same is true of the dual morphology data points, which 

correctly occur in the mixed 1D-2D section of the landscape.  

Figure 6. Surrogate model of OTA morphology validated against experimental SEM images. 

Images with red borders indicate experiments with ill-defined morphology while those in green 

indicate mixed morphologies. 

SEM images reveal few examples of 3D particles obtained in these experiments, about 25% of 

the total. Even fewer are the 2D particle cases, which present mostly as domino-like platelet 
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structures. As predicted by the surrogate model, 1D particles dominate the design space: short 

matchstick-like structure are the most common experimental outcome.  At intermediate pH and  

pKa values, there is a risk of particle aggregation: matchsticks combining into disordered bundles 

and coral-like growth is observed. 

 

OTA particle yield and functional properties 

Having demonstrated that GPR surrogate models for OTA particle morphology have good 

predictive power, we turn our attention to other experimental information. With each synthesis 

data point, we recorded the yield of the dried OTA colloidal content. The measurement of particle 

dimensions further allowed us to analyze and engineer other functional properties such as particle 

size, volume or surface area.  The leading particle length in experiments varied in the range 0.4–

130 µm, suggesting that experimental conditions can be used to tailor the particle size to diverse 

applications. We focus on the ratio of particle surface area to its volume: surface-based chemical 

processes underpin many technological applications, so maximizing surface area per volume 

(A/V) complements particle morphology control as an important design objective. 

The GPR surrogate model for OTA particle yield is presented in Figure 7a. The irregular 

features in this landscape suggest that particle yield is strongly correlated with the base employed 

in the solution, rather than the pKa value. For example, applying LiOH (pKa 13.8) to OTA leads to 

relatively high yields, about 60%, but NaOH (pKa 14.8) causes the yield to drop below 10%. This 

observation suggests that particle yield may be better correlated with a different property of the 

base, such as its size. Solution pH does play a role in the particle yield, with largest yields observed 

in the pH range 8–11. 
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The OTA particle A/V landscape, illustrated in Figure 7b, presents a central region where the 

A/V ratio is very high. These mid-range pH and pKa conditions are associated with 2D particles, 

where experimental data is scarce. OTA particles synthesized in these conditions tend to produce 

2D-like lamellar forms that agglomerate into 3D structures (see Figure 6 for SEM images). It was 

difficult to measure the shape of these particles, so they were not included into the surrogate model. 

Nevertheless, such samples clearly had the highest A/V ratio, and this was correctly predicted by 

the A/V surrogate model despite the paucity of data.  

Figure 7. Surrogate models for OTA particle experimental properties, a. particle yield and b. 

particle A/V ratio, in the design space of pH and pKa processing conditions. Magenta circles 

indicate the locations of the experimental data points. 

Extracting several surrogate models from the same experimental data (at no additional cost) 

allows us to cross-reference different properties and infer the conditions that would satisfy several 

design objectives at once. For example, a high yield of 3D particles can be obtained with NH4OH 

in low pH=7 conditions. Highest yield of 1D OTA particles can be achieved with KOH at pH=10–

11, which also produces largest particles with most surface area exposed. 1D particles with high 



   
 

   
 

18 

A/V ratio could be produced at very high pKa, but at relatively low yields.  In further work, 

different label variables can be arithmetically combined into composite labels and landscapes.  

Discussion and Outlook 

The purpose of this work was to evaluate the predictive power of GPR on a small experimental 

dataset; therefore, we deliberately constrained the dimensionality of the problem, which also 

produced interpretable surrogate models. OTA particle morphology is certainly affected by other 

experimental parameters. Nevertheless, the good predictive power of surrogate models in the 

relatively simple 2D design space demonstrated that pH and pKa alone are sufficient to control 

particle morphology, in agreement with the earlier PCA result. Unfortunately, PCA was unable to 

provide insights into the morphology variation that could be achieved with surrogate models.  

The morphology landscape portrays a very clear synthesis trend, but we were unable to interpret 

it using scientific intuition. The bottom-up OTA particle synthesis is a result of complex self-

assembly where OTA particles coordinate into secondary supramolecular structures, which form 

tertiary nanofilaments and these assemble into quaternary mesoscopic crystals [43]. It is very 

difficult to develop any inkling about the outcome of such an intricate procedure, nor about how 

processing conditions might affect it. Instead, the data-driven landscape can guide further research 

into the chemical processes behind such outcomes and advance fundamental understanding. 

Surrogate models are of general value in materials design because they span all design space, 

are chemically intuitive and interpretable. It is difficult to establish the criteria for quantitative 

accuracy of surrogate models. Our work shows that qualitative accuracy already translates to good 

predictive power, marked by the good visual agreement between the morphology landscapes and 

the SEM images. OTA samples with ill-defined morphology (not included in the GPR) were 

particularly important in validating the model predictions. The correspondence of these mixed 
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morphology samples with the appropriate regions on the map demonstrates that good quality AI 

predictions can be achieved in areas where no experiments were previously performed, or included 

in the model. 

The sensitivity of OTA particles to their processing conditions made them an ideal test case for 

this study, but they remain a challenging material to work with. The composition as well as the 

molecular structure of tannins are dependent on the source they were extracted from [44,45]. In 

other words, the plant species and their physiological state dictate the polydispersity and molecular 

weight, giving rise to inevitable heterogeneity, which complicates the processing and 

characterization of the materials. The relatively high experimental uncertainties translated into data 

noise that amounted to 10% of the entire GPR model corrugation. Such noise did not impair the 

predictive power of the models in this study, but in other work experimental errors could lead to 

distorted models and less optimal fits. 

The convergence of GP models is an important concern in experimental work where dataset 

sizes are small. Typically, an iterative convergence procedure is followed. Here, the addition of 

further 7 data points intended to verify model predictions had a small effect on the qualitative 

features of the model, so we stopped short of additional experiments. The need for further data can 

be also evaluated from the values of the GPR posterior variance, which tends to decrease with 

more data included in the model. We considered the OTA morphology model variance after 10 

and 17 experimental points (see Figure S3). In this work, the relatively large experimental 

uncertainties translated into large values of GP variance, which remained unchanged with the 

addition of more data. This finding indicates that in GPR applications to experimental data, where 

large noise maintains high variance, GP posterior variance might not be a useful measure of model 

confidence. However, the variance could be used to guide additional experiments. 
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In further work, our GPR-based approach could be extended to active learning material design 

workflows. In Bayesian optimization (BO) [32,33], GPR variance is exploited by acquisition 

functions to select the sampling location that would most enhance the dataset. Acquisition 

functions balance data exploration (searching less-visited areas of phase space) with data 

exploitation (searching near optimum points in phase space) to attain search objectives with 

relatively few data points. Search objectives can be learning the entire landscape or minimizing 

and maximizing materials properties across the search space.  

By demonstrating that GPR performs well with experimental data related to OTA morphology 

design, this study opens the route towards BO with experimental data in engineering colloids. 

Integrating BO into experimental work is challenging [46–48], but there are many benefits [49,50]. 

With acquisition functions guiding the selection of experiments, good predictive power of machine 

learning could be achieved with fewer experimental data points, facilitating the study of complex 

N-dimensional design spaces with more design variables. Moreover, BO allows to drive 

experimental data collection towards materials with preferred functional properties 

(morphological, mechanical or chemical) within the search space. The AI-guided search can thus 

replace trial-and-error experimental approach in materials design.  

 

CONCLUSIONS 

Supramolecular OTA constructs present a prospect of novel applications for this versatile and 

bioactive material. Controlling particle morphology will help us purpose the OTA particulates 

towards certain functions and application areas. This study combined chemical engineering with 

GPR supervised machine learning to correlate the processing conditions of OTA colloidal solution 

with the morphology of the resulting dry OTA particles. The Bayesian surrogate model landscapes 
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revealed the variation of particle morphology in the design space, illustrating the synthesis 

conditions needed to achieve different particle shapes. The main finding from the OTA 

morphology landscape is that severe processing conditions (high pH and pKa) give rise to extended 

1D particles with high surface area per volume ratios. Reducing the severity of the solution 

produces smaller, compact 3D shapes.  

Despite the relatively small dataset size and large experimental uncertainty, the data-driven 

morphology landscape was in good agreement with OTA sample images. It exhibited considerable 

predictive power on samples that were not originally included in the model, marking the potential 

for predictive materials design. From the same set of experiments, we built surrogate models for 

OTA particle shape, yield, and surface-to-volume ratio, and cross-referenced them to demonstrate 

how multiple design objectives could be satisfied at once. 

 Mapping processing conditions directly to experimental properties of materials constitutes a 

practical approach to AI-led chemical engineering, free of human bias. Such procedures could 

supplant experimental trial-and-error approaches, but also guide further research into the 

mechanisms of crystallization and self-assembly in complex materials, opening innovative 

engineering routes towards new phases of matter. 
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produced and GPR posterior variance landscapes corresponding to the OTA particle morphology 

posterior mean. 
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