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Abstract  

Due to the strong relationship between desired molecular activity to its structural core, screening of 

focused, core sharing chemical libraries is a key step in lead optimisation. Despite the plethora of 

current research focused on in silico methods for molecule generation, to our knowledge, no tool 

capable of designing such libraries has been proposed. In this work, we present a novel tool for de 

novo drug design called Lib-INVENT. This is capable of rapidly proposing chemical libraries of 

compounds sharing the same core while maximising a range of desirable properties. To further help 

the process of designing focused libraries, the user can list specific chemical reactions that can be used 

for the library creation. Lib-INVENT is therefore a flexible tool for generating virtual chemical 

libraries for lead optimisation in a broad range of scenarios. Additionally, the shared core ensures that 

the compounds in the library are similar, possessing desirable properties and can be also synthesized 

under the same or similar conditions. The Lib-INVENT code is freely available in our public 

repository: https://github.com/MolecularAI/Lib-INVENT. The code necessary for data preprocessing 

is further available at: https://github.com/MolecularAI/Lib-INVENT-dataset. 

Introduction 

With the recent advances in deep learning techniques, such techniques are becoming increasingly 

popular tools in a range of areas – from automated vehicles to medicinal chemistry1,2. This is especially 

true for drug discovery where the symbiosis between machine learning models and human experts has 

the potential to significantly speed up the process of early drug discovery3. Due to their generalisation 
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abilities, deep generative models have become the core engine in most recent de novo design tools4,5. 

Despite the progress in the field of deep learning such tools are still in the early stages of development 

as they are adapting to satisfy the more specific needs of drug design6. 

 One of these specific requirements is in the lead optimization stage when aiming to use focused libraries 

of small molecules to identify a promising lead compound7,8. Generally, the purpose of lead optimization 

is to retain the favourable properties of the compound while optimizing properties which still prevents 

the compound from becoming a drug candidate9. Since the desired activity is normally tied up to a given 

scaffold10, this use case boils down to retaining a certain molecular core and varying only specific 

moieties to satisfy the complex demands on the properties of the candidate molecule7. In practice this 

can be addressed by screening very focused libraries that share the same core11. As an ideal scenario 

when creating such a library in the lab, it should be possible to introduce the proposed moieties via the 

same or similar reactions to ensure that they can be carried out under the same conditions. Related 

investigations have been conducted on a much smaller scale in the works on matched molecular pairs12 

and fragment linking7; the explorations have however not been previously extended to library generation 

nor considered chemical reactions.  

For the purpose of this paper, we define a chemical library as follows: 

Definition 1: Given a scaffold s, library is a set of molecules with conditions:  

1. All include substructure s  

2. All molecules are accessible by the same sequence of synthetically relevant chemical 

transformations. 

 

In this paper, we propose a solution based on de novo generative model capable of addressing the use 

cases outlined above. Building on the REINVENT framework13, we extend the objective from a single 

compound design to a library design. Specifically, the model can suggest moieties to decorate an input 

scaffold with a variable number of attachment points for these decorations. In addition, the model can 

be put in a reinforcement learning (RL) scenario in order to learn to maximise a user defined set of 
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objectives. The resulting ideas will therefore be focused according to specific lead optimization goals. 

In contrast with prior work on scaffold decoration, these goals may include a set of reactions assigned 

to each attachment point of the scaffold so that the model learns to produce moieties attachable to that 

specific attachment point in agreement with the given reactions. This way of generating chemical 

libraries gives the user a significant level of control over the output, enabling them to focus the model’s 

creativity and leverage prior knowledge14. Satisfying condition 2 of the library definition further means 

that the generated library is more suitable for automation in the design and execution stage by reducing 

the number of reagents and reactions required in synthesis. It further allows the chemist to optimally 

select reactions with a desired profile, which includes but is not limited to considerations of efficiency, 

literature coverage, or safety. Thus, the number of DMTA (design-make-test-analyse) cycles required 

in the drug discovery process decreases, improving the productivity of the incorporation of a generative 

model in the lead optimisation pipeline. 

The original REINVENT algorithm15 proposes optimal compounds solving a specific user-defined 

objective and the recent GraphINVENT extends this to work to molecular graphs16. The algorithm 

introduced here, called Lib-INVENT, takes the work further and closer towards utilization of chemistry 

automation platforms by building focused, easy synthesisable libraries. Related models have appeared 

in the literature over the recent years, focusing both on scaffold decoration itself or on the usage of 

reinforcement learning to guide the decorative process14,17,18. The major enhancement Lib-INVENT 

brings to these methods lies in the volume and diversity of its output within a focused chemical space. 

Crucially, the fact that the generated libraries can be produced from the same starting scaffold using 

specific chemical reactions facilitates the uptake of the ideas in a wet lab environment and contributes 

to the possibility of automation of the drug design process. By focusing on designing and synthesize 

libraries instead of single molecules the learning in each Design-Make-Test-Analyse cycle can be 

increased and accordingly there is a need for fewer cycles to reach a clinical candidate. 
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General workflow 

This section gives a high level overview of the individual steps of data preparation, model training and  

the usage of the algorithm to optimise various user-defined objectives. Figure 1 shows an overview of 

the workflow.  Specific technical details will be further discussed in the section Methods. The motivation 

for the choices made in both data preparation and model design is further explained in the Discussion. 

The model is a recurrent neural network (RNN) which takes a scaffold as an input and returns complete 

compounds obtained by attaching decorations to the input scaffold. There are two stages to the training: 

firstly, a general model is trained to learn the syntax of the SMILES language. We shall henceforth refer 

to this model as the prior and stress that the training of the prior is not specific to a particular task and 

thus only occurs once. The second step corresponds to the general usage of this model and is analogous 

to the usage of the past REINVENT models: the prior is focused to solve a user defined objective. In 

the case of Lib-INVENT, this is achieved through reinforcement learning and may involve a requirement 

of fulfilment of specific chemical reaction types.  Starting from a scaffold of interest, the general prior 

thus rapidly adapts to propose a focused chemical library consisting of thousands of compounds sharing 

Figure 1: The general workflow of the model. 
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a scaffold and chemical properties. Importantly, the generated compounds are collected during the RL 

process and not after, meaning that the model is typically no longer used after completing the RL run.  

Data preparation  

Compounds from the publicly available ChEMBL Database, version 2719, represented by SMILES 

strings, were used to train the prior model. This choice of representing the chemical compounds by 

sequences of characters has several advantages and is common in the cheminformatics literature20. 

Firstly, despite losing a certain level of chemical information11, this representation is significantly more 

memory efficient than the use of molecular graph data while implicitly retaining the molecular graph 

structure. Moreover, the SMILES strings are compatible with the chemical reactions expressed using 

the SMARTS language. This is crucial in the context of this work which focuses on incorporating 

knowledge of chemical pathways directly into the generative model.  

As is standard for computational applications in drug discovery, the first step of the data preparation 

process involves data purging and sanitisation21. The purpose of purging is to remove undesirable 

compounds and outliers from the dataset6. This among others includes molecules containing rare 

SMILES tokens or elements which the model is unlikely to be able to learn and thus merely pollute the 

model’s vocabulary, molecules with extremely large or low molecular weights or salts, which are neither 

drug-like nor chemically friendly. Approximately 25 % of the compounds present in the database have 

been removed at this stage. For details on the implementation and filter criteria, see the supporting 

information.  
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The second pre-processing step necessary to train a scaffold decorating model is compound slicing. 

There are many ways of slicing a molecule to obtain scaffold-decoration pairs for training a decorator 

model22. Recently, exhaustive slicing of single-bonds according to RECAP23 rules has been 

explored17,18. While this approach appears natural at a glance, it is not always effective for a wet lab 

chemist attempting to synthesise the proposed compounds24. The ability to follow real chemical 

reactions when decorating the scaffold is crucial; our experiments demonstrate that training on data 

sliced according to RECAP rules does not teach the prior to understand these chemical principles. This 

means that the model is unable to satisfy reaction requirements when designing chemical libraries. 

Practical synthesis and chemical considerations should thus be taken into account when slicing the 

molecules to ensure that the reverse process (forward synthesis) is synthetically valid25. In their recent 

paper, Horwood and Noutahi26 propose incorporating chemical synthesis routes directly into the model 

by designing a de novo generator based on chemical reactions. Given starting reactants, their model 

proposes drug-like molecules by selecting other appropriate reactants as well as specific reactions used 

to transform and connect the molecules into a resulting compound. This novel approach significantly 

improves the synthesisability of the proposed molecules; it however still lacks the ability to design 

libraries as well as the degree of flexibility and generality desirable in de novo generators. Specifically, 

Figure 2: An example of a sliced molecule resulting in a scaffold with two attachment points and the 

corresponding decorations. 
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training has to occur on a dataset relevant to the final task at hand and there is limited capacity for 

knowledge transfer and extension to more specific tasks without retraining. 

In this work, a novel data pre-processing approach is proposed to build a knowledge of chemical 

reactions directly on the training dataset comprised of the filtered ChEMBL  database. Reaction based 

rules are used to slice the training compounds into scaffolds and decorations so that each split is a result 

of a known, easily implementable chemical reaction. We demonstrate that this method enables the 

generative model to propose decorations according to the chemical reactions used in training. The output 

therefore benefits from high validity and better likelihood of being synthetically feasible. An illustration 

of the process is provided in Figure 2. 

Model training 

The prior model is trained using the teacher forcing algorithm27 to maximise the conditional likelihoods 

of the generated compounds given the scaffolds. Even a single pass through the dataset teaches the 

model to generate chemically valid SMILES strings; the optimal state balancing the coverage of 

chemical space and overfitting is however reached after approximately eight epochs. At each epoch, a 

different randomised representation of the training and validations SMILES is used as this further 

prevents overfitting28. As mentioned previously, it is crucial to note that this training only needs to 

happen once since the prior can be reused for a wide range of tasks without additional transfer learning 

stages often required in previously introduced models29.  

Case specific usage: Focusing a prior via Reinforcement Learning 

Case specific usage of the model involves focusing the prior on a specific task. This finetuning is 

efficiently achieved by setting up a reinforcement learning loop in which the prior iteratively proposes 

compounds receives task-specific rewards for its output. During the run, all high scoring compounds are 

stored in a virtual chemical library called scaffold memory; the production of the library therefore begins 

instantaneously once a RL run is set up and continues throughout the training of the RL agent. 

The rewards are shaped by a scoring function defining desirable chemical or structural properties and 

guide the model towards producing compounds of interest8. However, since the objective is to explore 
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a rather narrow space of solutions (molecules) designed for a given scaffold, this may lead to an mode 

collapse30. To achieve a stable RL process we introduce a mechanism that relies on Diversity filters (DF) 

previously described by Blaschke et al.15. Diversity filters and prior likelihoods of the proposed 

compounds can be included when calculating the reward. Diversity filters penalise the RL agent for 

repeatedly generating the same compound, which significantly reduces the risk of mode collapse 

towards a single high scoring solution (molecule). The prior likelihood serves as an additional 

regulariser, anchoring the agent to the previously learnt chemical space and ensuring that the SMILES 

syntax is not forgotten13.  

Another reward modifying factor are the reaction filters (RF). The introduction of reaction filters to the 

learning process means that the proposed libraries can be synthesised using selected reactions, 

facilitating the creation of focused libraries. RFs are designed to be selective, so that a reaction or a set 

of reactions can be specified for each attachment point of the scaffold. This gives the user significant 

control over the output of the model and enables leveraging prior chemical knowledge.  The full practical 

implementation of the RL procedure is described along with its mathematical background in the section 

Focusing the prior via reinforcement learning. A number of reaction definitions is further published in 

our public repository. 

We emphasize that focusing the pretrained prior using reinforcement learning makes the Lib-INVENT 

decorator model widely applicable in a variety of real world scenarios with a range of reactants. Libraries 

containing thousands of high scoring, synthesisable molecules can be obtained within minutes or tens 

of minutes while the more expensive training of the prior model does not need to be repeated for new 

libraries.  

Methods 

Model architecture 

The architecture of the model is analogous to the scaffold decorator introduced by Arús-Pous et al.17. 

The decorator model uses an encoder-decoder architecture where both the encoder and decoder are 



10 

 

RNNs with three hidden layers of dimension 512 and the embedding is of size 256. During training, 

dropout at rate 0.1 has been used. 

We refer to the collection of tokens recognized and used by the model as the vocabulary. This is 

composed of all the SMILES characters present in the pruned training dataset and enriched by the special 

‘END’ and ‘START’ tokens determining the beginning and ending of a SMILES string. The length of 

the vocabulary corresponds to the dimension of the multinomial distribution over which the tokens are 

sampled. For details of the tokens included,  see supporting information. 

Validation set 

As in any machine learning model, a good validation set is required in order to fairly evaluate the 

performance31. The objective of the prior model training is to learn to decorate scaffolds so that the 

resulting compounds lie in the drug-like chemical space spanned by the training dataset. This nature of 

the modelling objective affects the choices made when preparing the validation set. While it is common 

to randomly hold out a portion of the training data and use these for evaluations32, the sliced dataset used 

here does not lend itself well to this approach. To be able to fairly judge the generalisation ability of the 

model on previously unseen scaffolds, it is necessary to ensure that the validation scaffolds are not 

present in the training dataset. Optimally, even compounds structurally similar to these need to be 

removed from the training set to validate the performance of the model fairly33. At the same time, the 

general distribution of the validation scaffold properties should mimic that of the training set to evaluate 

how well the model learns to follow the data distribution. 

With these considerations in mind, the training-validation split was handcrafted by selecting one scaffold 

with each number of attachment points at random. Then, all scaffolds sharing a Murcko scaffold34 with 

one of the four validation ones have been removed from the training set and added to validation. The 

choice to consider only the molecular cores consisting of ring structures stripped of side chains is 

motivated by the fact that  the removed sets of compounds resemble the concept of ‘chemical series’ as 

used by medicinal chemists10. Removing entire chemical series based on a specific Murcko scaffold thus 

naturally reduces the bias in model evaluation and objectively tests its generalisation ability.  
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Table 1: The held out validation scaffolds. 

Library scaffold Bemis-Murcko scaffold 

 

 

[*]N1CCN(c2ccccc2OC)CC1 

 
 

[*]CCCOc1cc2nccc(Oc3ccc(N[*])cc3F)c2cc1OC 

 

 

[*]N1CCN(c2cc([*])nc([*])n2)CC1 

  

[*]Cn1c([*])c([*])c2cc(C(=O)[*])ccc21 

 

 

Because the aim of our experiments is to showcase some of the capabilities of the Lib-INVENT 

generative model against publicly known and commonly discussed DRD2 target17,18,  we remove all 

compounds sharing a scaffold with compounds found in the dataset obtained by slicing the DRD2 

scaffolds according to the set of reactions previously used to slice ChEMBL35. This way, the training 
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and validation sets are kept independent and the subsequent validation on the DRD2 target remains 

unbiased. 

Representative scaffolds for the held out compounds used for validation are shown in Table 1 along with 

their Bemis-Murcko representations. The resulting validation set excluding the DRD2 data contained 

241,137 unique entries. The training set contained the remaining 23,080,572 entries. These numbers 

show that the consideration of Bemis-Murcko scaffolds filters out a non-negligible number of 

compounds very similar to the original held out scaffold. At the same time, the size of this dataset means 

that despite the validation representing only about 1 % of the data, sufficient information is still included 

in order to assess the generative ability of the decorator. 

Up until now, all SMILES have been canonicalized to ensure uniqueness. However, using different 

SMILES representations during training of deep learning models, leads to improvements of 

generalizability, both in activity modelling36, representation learning37 and SMILES generation. Before 

training the generative model, a different randomised representation of the training dataset is obtained 

for each epoch of teacher forcing training. The same is applied to the validation set. 

Pretraining the prior via teacher forcing 

As mentioned before, the training process of Lib-INVENT resembles the training of REINVENT 2.015. 

First, teacher’s forcing38 is used to train the prior model capable of creating chemically valid compounds 

containing a given scaffold. In our case, the prior is an RNN taking a scaffold as an input and returning 

relevant decorations to connect to all available attachment points of the scaffold, much like the model 

recently introduced by Arús-Pous et al17. The number of outputted molecules corresponds to the batch 

size. 

The generation process can be seen as a sequential conditional likelihood maximisation problem. The 

output of the model represents a probability distribution over the token space containing all the possible 

SMILES tokens present in the training dataset enriched by the ‘START’ and ‘END’ tokens, given the 

scaffold and previously generated tokens in the decoration. The objective function to be maximised can 

this be written as: 
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J(θ|𝑆 = 𝑠) = ∏ {P(𝑋1|𝑆 = 𝑠, θ) × ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑋𝑖−1 = 𝑥𝑖−1, … , 𝑋1 = 𝑥1, 𝑆 = 𝑠, θ)

𝑇

𝑖=2

}

𝑑𝑒𝑐𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

(1) 

Here, θ represents the network parameters to be determined, 𝑋𝑖 , i = 1, … , T are the random variables 

corresponding to the tokens while the 𝑥𝑖 are the observed (or in this case previously generated) tokens. 

Analogously, S and s refer respectively to the random variable corresponding to the input scaffold and 

the specific scaffold itself. In this work, the scaffold is given a priori and the distribution is therefore 

deterministic. Finally, T is another random variable determining the length of the decoration SMILES 

string. In practice, we do not sample its distribution. Instead, the process ends when the ‘END’ token is 

sampled. 

The implementation and training details are described in the supporting information. 

Focusing the prior via reinforcement learning 

Motivation 

Due to the vastness of chemical space, it is typically not sufficient to be able to produce drug-like 

molecules; indeed, depending on the specific design objective, exploration of a narrower chemical 

subspace is many times desirable, especially in lead oprimization39. Specific focusing is thus a crucial 

step in developing a generative model capable of proposing compounds useful in a context like lead 

optimization. To achieve this, the parameters of the pretrained prior network need to be modified to 

target a narrower chemical subspace. At the same time, it has been observed that deviating too far from 

the prior can have catastrophic consequences where the model loses its knowledge of valid SMILES 

syntax13,39. 

In order to focus the model, a RL agent is initialised as a network with weights and architecture identical 

to those of the pretrained prior. To define the task, a reward function is constructed to guide the agent’s 

learning, taking SMILES strings as input and returning scores in the range [0, 1]. The function rewards 

compounds with desirable properties, promotes varied output through diversity filters and specifies 

desired reactions to be used via reaction filters. Then, standard policy iteration RL is applied: In 

successive iterations, the agent proposes decorations for the scaffold and updates its parameters in a 
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gradient ascent fashion based on the rewards these decorations receive. During the training, all 

syntactically valid compounds (SMILES strings) with a score exceeding a user defined threshold are 

stored in the scaffold memory and made available to the user at the end of the run. A successful run 

results in a large and diverse scaffold memory since the model produces new relevant output at each 

step during the run. In an optimal scenario, the scaffold memory increases linearly with the number of 

steps, with the gradient corresponding the batch size. This motivates the following definition of a yield 

metric used to evaluate the degree of success of the runs: 

 

yield =
|Scaffold memory|

Batch size×Number of steps
(2) 

The consideration of yield as opposed to the raw number of molecules produced is important since the 

produced numbers ultimately depend on the selected batch size. A model trained with a batch size of 32 

returns twice as many compounds at each epoch as one with batch size 16. The important question, 

however, is how many of the 32 compounds are relevant and unique. 

Mathematical Background 

The starting point for a mathematical description of the RL procedure is defining a state space 𝑆𝑡 and 

the corresponding action space 𝐴𝑡(𝑠𝑡) as well as rewards 𝑟𝑡  ≔ 𝑅(𝑎𝑡) for all 𝑠𝑡 ∈ 𝑆𝑡 , 𝑎𝑡 ∈ 𝐴𝑡. In the 

context of molecule decoration, an action is a proposed decoration (or decorations) for the scaffold while 

the state contains information about all previously proposed decorations and the rewards assigned to 

these, i.e. 𝑠𝑡 = ∑ 𝑟τ
𝑡−1
τ=1 . Note the reward function R is fixed throughout the training. 

At each step, the RL agent randomly samples an action (i.e. proposes a decoration) according to its 

policy πθ. The aim is to find the value of the parameters θ leading to an optimal policy πθ∗ maximising 

the expected cumulative rewards across the whole run. In other words: 
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θ∗ = argmaxθ ∑ 𝔼A∼πθ
(R(A)|St=st)

T

t=0

(3) 

The expected value is maximised at each time step in a greedy manner. The RL objective function at 

each step can therefore be written as:  

J(θ) = 𝔼𝐴∼πθ
(𝑅(𝐴)|𝑆𝑡, θ), (4) 

where the expectation is taken over the distribution of the actions.  

Gradient ascent methods are typically used to maximise the objective. Exploiting the fact that 

∇ log 𝑓(𝑥) =
∇𝑓(𝑥)

𝑓(𝑥)
, the gradient of eq 4 at step t + 1 can be written as: 

∇θ𝐽(θ) = ∑ 𝑅(𝑎)∇θ log π(𝐴 = 𝑎|𝑆𝑡 = 𝑠𝑡 , θ)

𝑎∈𝐴𝑡+1

. (5) 

Equation 5 is the basis of many popular RL algorithms such as REINFORCE40. If the goal is to maximise 

cumulative rewards across N training epochs, it suffices to add an extra summation over all the timesteps, 

which results in a similar expression – the key feature of which is the fact that it is sufficient to compute 

the gradients of the log likelihoods to obtain a gradient ascent update step.  

Without further regularisation or adjustments, these methods are known to suffer from high variance 

and instability41. In the case of molecular generation, however, the aim is to produce a large number of 

varied, interesting molecules26. This means that a certain level of variance is desirable to promote 

exploration of the chemical space and prevent mode collapse towards a single, high scoring solution. 

Our experiments show that with an appropriate choice of the reward function, high variance does not 

hinder the models from producing relevant output.  

Policy Iteration Rewards 

A crucial requirement for a successful set-up of a RL run is a good definition of the reward. In our case, 

this has to guide the agent in the right direction to solve the specific practical task and promote diversity. 

Similar to Blaschke et al.15, we investigate rewards assembled from a combination of two elements: A 

scoring function S(𝑎) ∈ [0, 1] quantifying how well the proposed compound solves the task and prior 
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likelihood π θ𝑝𝑟𝑖𝑜𝑟
(𝑎) = π(𝑎, θ𝑝𝑟𝑖𝑜𝑟). Since the agent and prior share architecture, their likelihood 

functions differ only in the values of the parameters θ. 

The Scoring Function 

The S(𝑎) itself is composed of multiple weighed elements which are summed or multiplied; the final 

score is then normalised to lie in the unit interval [0, 1]. A range of components is supported, from 

molecular descriptors such as molecular weight, topological polar surface area (TPSA), pretrained 

predictive models,  docking42 and ROCS similarity43. As mentioned previously, diversity and reaction 

filters may be imposed to further restrict the space of relevant output and promote diversity. 

Diversity filter works by penalising the model for producing an identical compound multiple times in a 

single batch. This is beneficial in preventing the agent from repeatedly proposing the same, high scoring 

compound multiple times, which can lead to mode collapse44. A well selected diversity filter therefore 

balances exploration and exploitation of the chemical space. 

Finally, reaction filters are a tool giving the user greater control over the generated compounds. Two 

types of reaction filters are implemented: general filter determining what reactions should occur to 

decorate the scaffold, and a selective filter assigning the specific reactions to the individual attachment 

points. This requires chemical understanding of the nature of the problem to avoid the situation where a 

non-feasible reaction is required for a given attachment point; it is nevertheless a novel and efficient 

way of generating libraries of similar drug like compounds which are readily synthesisable.  

Different Reward Strategies 

The motivation for the use of the prior likelihood in the reward function is identical to the one of 

Olivecrona et al.13. The pretraining ensures that the model is capable of generating valid SMILES of 

drug-like molecules. This serves as an anchor; it is desirable to discourage the agent from deviating too 

far from its prior state since a strong focus on maximising the score alone can lead to either a mode 

collapse or to a loss of the generative ability altogether. Once the agent moves to a parameter space 

which does not lead to valid SMILES syntax, it does not receive any rewards at all and cannot continue 

learning through gradient ascent.  
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Based on the discussion above, we follow previous work in defining the augmented log likelihood 

log π𝐴(𝑎) = log πθ𝑝𝑟𝑖𝑜𝑟
(𝑎) + σS(𝑎). Here, σ is a constant hyperparameter scaling the output in the same 

range. We note that log likelihood is a monotonic increasing function taking values in (−∞, 0), which 

means that the reward is a monotonic increasing function in (−∞, σ). In experimental setups, this 

likelihood is shown to serve well as a directional guide, leading the agent to more focused and interesting 

chemical spaces. The intuitive rationale for this is that the augmented likelihood balances the prior 

anchor with the task-specific objective. 

Finally, four different RL learning strategies are proposed based on four different reward functions:  

1. R(𝑎) = S(𝑎). This method, henceforth referred to as MASCOF (Maximise Scoring Function), 

is a simple implementation of the standard REINFORCE algorithm where the scoring function 

directly serves as the reward 40. This standard approach to solving a RL problem by maximising 

the scoring function without anchoring it to the prior is a natural first step and can be seen as a 

baseline for the other methods. Our experiments however demonstrate that the RL agent 

struggles to remain in the valid chemical space without the anchor. Similar observations have 

been made in the past, typically arguing that the initial sparseness of rewards leads to the model 

struggling to begin learning44.  

2. R(𝑎) = log πA(𝑎). Since the augmented likelihood attempts to balance the prior likelihood and 

the scoring function, it can be seen as a reward itself. We call this method MAULI (Maximise 

Augmented Likelihood. 

3. R(𝑎) = log πA (𝑎) − log πθ (𝑎). This approached, dubbed DAP (Difference between 

Augmented and Posterior), can be shown to be equivalent to the strategy introduced by 13. Their 

work frames the RL slightly differently, focusing on loss minimisation of the square loss 

between the augmented and posterior log likelihoods: ℒ(θ) = (log πA (𝑎) − log πθ (𝑎))
2
. 

While not a standard policy iteration approach, it does perform well in focusing the agent. For 

a full derivation of the equivalence of these two approaches, we refer the interested reader to 

the appendix.  
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4. R(𝑎) = −(log πA (𝑎) − log πθ (𝑎))
2

. Noting that the rationale behind the DAP strategy is 

minimization of the difference between the two likelihoods, the fact that the likelihoods are 

unbounded means that with the formulation in 3., the reward may in theory keep increasing 

infinitely as the posterior probability approaches zero. In practice, this is rarely observed. For 

mathematical rigour, however, we define a final strategy called SDAP (Squared Difference 

between Augmented and Posterior). The negative of the squared loss is used directly as a reward 

function here, meaning that the agent is always encouraged to approach the augmented 

likelihood; maximizing the reward is equivalent to minimizing the square loss. 

 

Experiments 

Lib-INVENT represents a novel approach to drug discovery through scaffold decoration based on 

specific chemical reactions. This approach was designed to improve the productivity in the DMTA cycle 

through proposing a library of compounds that can be synthesized though the same chemical reactions. 

Thus more compounds can be synthesized with the same effort in an DMTA cycle and accordingly each 

DMTA cycle will be more informative45. We therefore introduce a range of experiments with the aim to 

demonstrate the potential of our proposed models to improve the productivity. Specifically, we focus on 

promoting diversity of output, generating molecules readily synthesizable by a given reaction and 

determining R-group substitutions for lead optimization projects. 

The objectives of the experiments are the following: 

• Determine the optimal learning strategy for the reinforcement learning loop. 

• Demonstrate the ability to follow specified reactions to decorate a given scaffold and contrast 

this with a model trained on a dataset obtained using RECAP rules as opposed to reaction based 

slicing. 

• Demonstrate the ability to decorate scaffolds with various numbers of attachment points. 

A baseline objective for the experiments is the creation of novel ligands for the DRD2 target. Two sets 

of tasks, based on two approaches to steer the model towards the desirable chemical space, have been 
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executed.  In the first set of experiments, a QSAR predictive model for the activity of the generated 

compounds is used as a component of the scoring function. This model is subsequently replaced by a 

3D shape and pharmacophore similarity ROCS scoring component to promote 3D similarity of the 

output to haloperidol, a known DRD2 active ligand. The details of the implementations can be found in 

our public repository. In all the experiments, a diversity filter is further added to the scoring function to 

promote variation in the output, along with custom alerts preventing the agent from proposing 

compounds with too large rings and non-drug-like groups. 

Figure 3 displays the testing scaffold. The choice is motivated by it being a good starting scaffold for 

generating DRD2 actives. Further, it has two attachment points, which is common in real world 

applications. While we demonstrate the ability of the Library Design decorator to work with scaffolds 

with up to four attachment points, library synthesis is most commonly executed on fewer attachment as 

this gives a better balance between the flexibility and complexity of the library production step. 

 

Figure 3: The testing scaffold. We note that in SMILES syntax, the decoration points are labelled by 

[*:0] and [*:1], which correspond to R2 and R1, respectively, in the molecular graph. 

Evaluation metrics 

The complexity of the task of molecule generation means that the choice of a metric for model evaluation 

needs to be considered carefully to ensure that all relevant issues are addressed. For library generation, 

it is desirable to produce libraries based on user defined criteria. Within these criteria, however, the 

libraries still differ in size, diversity and scores achieved according to the scoring function. We have 

previously defined the yield metric which helps evaluating what fraction of the generated ideas are 
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scored above a given threshold. This alone is nevertheless not sufficient to give a fair comparison of the 

libraries.  

We address the question of diversity of the output via two approaches as appropriate in the given 

scenario. To determine the effect of a change in the scoring function, the overlap between the outputs is 

evaluated. This would show whether the methods produce significantly different results. When testing 

the effect of specific reaction filters, it may be more interesting to analyse the variation in the chemical 

properties of the proposed decorations for each attachment point. This smaller-scale view offers a more 

fine grained picture of the level of control the user has over the design of their specific library. 

Results 

Comparison of the learning strategies 

For each of the four learning strategies, two experiments are set up to contrast their abilities of proposing 

molecules according to a given set of criteria. In the first experiment, only a QSAR predictive property 

is used. The motivation for this experiment is to benchmark the abilities of the models to generate 

compounds when unconstrained by chemical reactions. The results of the experiments are displayed in 

Table 2, which gives an overview of the average results over three individual runs. For a detailed 

breakdown over the runs, refer to the supporting information.  

Table 2: Comparison of the four learning strategies for a QSAR model with no reaction filters. The 

uncertainty boundaries correspond to the largest deviation from the mean observed over the three runs. 

We note these are very low, showing a strong consistency between the trials. The Yield metric is 

calculated as previously defined in eq 2. 

 
Number of 

compounds 

found 

Yield 

Average 

mean score 

in scaffold 

memory 

DAP 10510 ±69 0,821±0,005 0,722±0,005 

MAULI 8573±271 0,670±0,021 0,658±0,015 

MASCOF 4432±50 0,346±0,004 0,657±0,022 

SDAP 4755±153 0,372±0,012 0,695±0,011 
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In a second experiment, a selective reaction filter is added to the scoring function. Attachment point R1 

should be decorated using amide coupling while the second attachment follows the Buchwald reaction. 

The exact implementation and SMIRKS definitions of the corresponding equations can be found in our 

public repository. The results of the experiment are shown in Table 3. 

The numerical results show that, in agreement with past observations13, the DAP learning strategy is the 

most successful one on multiple counts. Firstly, the high average score of the compounds in the scaffold 

memory for both runs indicates the ability of this model to produce high scoring molecules consistently 

throughout the run. This is further supported by the size of the output and a correspondingly high yield: 

even when selective reaction filters are applied, over 80 % of the proposed compounds had a score 

higher than the threshold of 0.4 chosen as the condition for inclusion in the scaffold memory. Moreover, 

nearly 90 % of the scaffold memory compounds satisfy both of the reaction filters, which gives strong 

support for using this strategy in virtual chemical library creation. 

Table 3: Results for the four learning strategies when a QSAR predictive model and a selective 

reaction filter are employed. 

 

Finally, to understand the training of the four respective strategies, we plot the average scores achieved 

at each step. It is crucial to note that thanks to the pretraining of the prior, it is not expected to observe 

a steeply increasing training curve since the choice of the starting scaffold is task specific and typically 

leads to high scores from the first iteration. The comparison is nevertheless a useful aid in the 

comparison as it explains the process further. 

 
Number of 

compounds 

found 

Yield 
Average mean 

score in output 

Ratio of fully 

satisfied reaction 

filters 

DAP 10454±192 0,817±0,015 0,729±0,008 0,892±0,032 

MAULI 5179±518 0,405±0,012 0,564±0,009 0,230±0,027 

MASCOF 2846±854 0,222±0,067 0,574±0,030 0,297±0,076 

SDAP 4033±302 0,315±0,024 0,622±0,019 0,457±0,136 
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a: No reaction filters 

 

b: Amide coupling and Buchwald reaction filters 

Figure 4: The average score across a generated batch of compounds per epoch for each of the running 

strategies 

The evolution of the average scores across the runs is displayed in Figure 4. In both scenarios, the DAP 

strategy clearly outperforms the remaining optimisation methods, quickly increasing from the starting 

point and then plateauing at the highest level. When reaction filters are introduced, this dominance 

becomes even more significant. As displayed in Figure 5, the DAP strategy is the only strategy capable 

of rapidly adapting to this requirement and satisfying these filters. The SDAP strategy also demonstrates 

learning, but is much slower in adapting to the specific task.  Both MASCOF and MAULI, on the other 

hand, decline slightly from the initial point as they struggle to retain the prior knowledge of the chemical 

space, which is demonstrated by the dropping validity. No evidence of learning to follow the required 

reactions is apparent. 
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Figure 5: The validity of the output and reaction filter scores per learning strategy. 

In both of the figures above, the shaded area corresponds to minimum and maximum values achieved 

over the three runs while the solid lines represent the mean. Besides the expected stochasticity arising 

from the randomness in the optimisation procedure, the plots indicate that the general behaviour of the 

strategies is consistent across runs. This observation is in agreement with the previous analysis of 

numerical data. In the subsequent experiments, we therefore restrict all in depth analysis to a single run 

per model only as the stochasticity does not significantly affect the output, justifying the low levels of 

variance between runs by numerical tables. Moreover, since the analysis above shows a clear dominance 

of the DAP learning strategy, this is our method of choice in all the subsequent experiments. 

Comparison of slicing strategies 

Reaction based slicing used to pre-process the dataset is one of the key novel contribution of this work. 

We therefore design a second set of experiments aimed at evaluating the effect of pretraining on data 

sliced according to chemical reactions as opposed to RECAP rules when tackling reaction filters. To 

this end, we use the model of Arús-Pous et al. as an alternative to benchmark against17. This model 

provides a fair comparison since it’s architecture and training procedure are exactly equivalent to our 

Lib-INVENT prior, with the crucial difference in data preparation. 
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Figure 6: The ROCS shape and pharmacophore query definition for haloperidol  

Two experiments are conducted with these two priors. In both, the same reaction filters as before are 

imposed, decorating attachment point 1 by amide coupling and attachment point 2 through the Buchwald 

reaction. The difference lies in the scoring function component, which remains the QSAR predictive 

model in the first experiment and is replaced by ROCS 3D similarity scoring in the second task. The 

purpose of this change is to uncouple the effect of the scoring function from the reaction filter and 

evaluate the effect of the pre-processing method as accurately as possible. The definition of the shape 

and pharmacophore ROCS query based on haloperidol is displayed in Figure 6. 

Table 4: Comparison of reaction based slicing and RECAP slicing rules. 

 

Numerical comparison of the experiments is displayed in Table 4. The key difference in the results is 

the ratio of high scoring molecules capable of satisfying the imposed reaction filters. While the model 

trained on data sliced according to reaction rules consistently scores very highly and therefore produces 

Pre-processing 

method 
Model 

Number of 

compounds found 
Yield 

Average mean 

score in scaffold 

memory 

Ratio of fully 

satisfied 

reaction filters 

Reaction 

Based Slicing 

QSAR 10454 0,817 0,729 0,892 

ROCS 10326 0,807 0,597 0,890 

RECAP 

Slicing Rules 

QSAR 8388 0,655 0,506 0,154 

ROCS 8339 0,651 0,462 0,000 
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libraries synthesisable via these two reactions, the model trained on data pre-processed using RECAP 

rules struggles to fulfil these criteria. With the exception of one run, the model fails to learn to follow 

the reaction routes. This gives clear evidence for the positive effect of this novel data slicing method for 

applications involving specific chemical reactions. 

It can be further noted that the ROCS task seems to be more difficult for the models to learn. 

Interestingly, both the yield and the ratios of compounds satisfying the reaction filters are not 

significantly changed by the change between QSAR and ROCS scoring components; the difference lies 

in the average scores achieved by compounds in the scaffold memory. As the training plots in Figure 9 

show, this is due to the fact that the scores start relatively low and gradually increase throughout the 

runs as the agents learn to satisfy the ROCS input.  

To understand the diversity of the compounds proposed by agents trained with these two different 

scoring function components, we further contrast molecular properties of the decorations proposed by 

the respective methods when trained on a dataset obtained using reaction based slicing. Figure 7 

demonstrates that the change in a scoring function component guiding the training affects the proposed 

decorations. On the example of attachment point 2, we see that while the groups proposed by an agent 

trained using ROCS are generally lighter, they tend to contain more rings and have more hydrogen bond 

acceptors. In some cases, we can further note that the reaction filter have not been satisfied for a share 

of the output – for example in the cases where the Buchwald reaction fails to propose a compound 

containing an aromatic ring. This demonstrates the need for a careful consideration of the scoring 

function design along with the reaction filters to achieve optimal results for a given task. Sample 

compounds proposed by each of the methods are plotted in Figure 8 for comparison. We can observe 
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the formation of the amide bonds as required by the reaction filters as well as the previously noted 

tendency of the ROCS guided model to propose decorations with multiple rings. 

 

Figure 7: Example molecular properties of decorations for attachment point 2 when the Buchwald 

reaction filter is imposed. 
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Figure 8: High scoring compounds proposed by a model guided by a QSAR predictive property (left) 

and by a ROCS scoring component (right). All of these compounds satisfy both the amide coupling 

and Buchwald reaction filters. 

As mentioned previously, when training the model on a dataset obtained using RECAP slicing rules, we 

observe one successful run of the model optimising QSAR. This likely reason for this success is that the 

model has learnt to satisfy the reaction filters after randomly producing a compound which scored high 

on them. The experiments demonstrate that while the reaction based prior satisfies reaction filters 

systematically and consistently, successful runs for the RECAP based prior occur with a lower 

probability. This is further illustrated in Figure 9 and gives a compelling argument for the use of reaction 

based slicing in data pre-processing. 
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Figure 9: Comparison of the two learning strategies. 

 

Following specific reactions 

Table 5: Comparison of varying reaction filters for a QSAR and ROCS model. 

Pre-

processing 

method 

Model 

Number of 

compounds 

found 

Yield 

Average 

mean 

score in 

scaffold 

memory 

Ratio of fully 

satisfied reaction 

filters 

QSAR 

model 

Buchwald-Amide 10454 0,817 0,734 0,892 

Buchwald-Sulphonamide 10083 0,788 0,688 0,847 

SNAr--Amide 9809 0,766 0,585 0,359 

SNAr--Sulphonamide 9228 0,721 0,641 0,577 

ROCS 

model 

Buchwald-Amide 10326 0,807 0,596 0,890 

Buchwald-Sulphonamide 10207 0,797 0,592 0,871 

SNAr--Amide 9837 0,768 0,545 0,551 

SNAr--Sulphonamide 9560 0,747 0,552 0,541 

 

Using the optimal learning strategy and the prior model pretrained on data sliced using reaction rules, 

we propose a new set of experiments to demonstrate the effect of selective reaction filters on the 

produced libraries. For each of the attachment points, we select a relevant plausible chemical reaction 

that can serve for introducing desirable moieties. Specifically, sulphonamide coupling is used as an 

alternative to amide coupling for attachment point 1 and the Buchwald reaction of attachment point 2 

may be replaced by a nucleophilic heteroaromatic substitution (SNAr). We experiment with each of the 
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four possible combinations of these reaction filters to demonstrate the effect of these filters on the 

produced compounds. For illustrative purposes, a high scoring compound discovered for each of these 

combinations of reaction filters by a QSAR-guided predictive model is plotted in Figure 10. The reaction 

filters have a clear effect on the proposed molecules, enforcing the formations of appropriate bonds. 

 

Figure 10: Comparison of compounds proposed by models optimising for various reaction filters. 

 

All of the sets of reaction filters are applied to the two different setups of the scoring function as in the 

previous experiments – using either the QSAR predictive model or ROCS similarity component to direct 

the model towards the target chemical subspace of compounds active on the DRD2 dataset. The reason 

for using different scoring functions in this experiment is to demonstrate the effect the scoring function 

has on the output and decouple this with the effect of reaction filters. The numerical results of these 

experiments are displayed in Table 5.  
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The performance of the ROCS model when reaction filters are exchanged is more stable than for QSAR, 

showing similar patterns and an ability to learn to follow different reaction routes. This is presumably 

caused by a lower degree of inductive bias built into the model through this scoring component. The 

consistently lower average scores in the scaffold memory can be attributed to the greater difficulty to 

learn this component in general; it is more difficult to score highly the structural similarity (and match) 

requirements of a ROCS component. This does nevertheless not mean that the model performs badly; 

on the contrary, the high yields show that it is an effective guide towards a desirable area of the chemical 

space. Moreover, the highest achievable scores of the ROCS component are typically lower than for a 

QSAR model and commonly lie around the value 0.8. 

Figure 11: Continuous molecular descriptors of decorations of attachment point 1 for each of the four 

reaction filters applied, trained using a QSAR model. This attachment point is decorated by either 

amide or sulphonamide coupling. 

 

To quantify the differences in the properties of the decorations arising from various reaction filters, we 

examine the distributions of key molecular properties of the proposed functional groups for each 

attachment point based on the applied reaction filters. A selection of molecular descriptors of 

decorations generated for attachment point 1, decorated via amide or sulphonamide coupling, is 
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displayed in Figure 11. A significant increase in the weight of the proposed decorations, caused by the 

presence of more heavy atoms, occurs when the sulphonamide coupling is introduced. Figure 12 further 

shows selected discrete properties of the decorations proposed for the second attachment point. In both 

plots, variation in the distributions can be observed across all four combinations of reaction filters; the 

effect of the reaction filters imposed for the given attachment point is nevertheless clearly notable. This 

is to be expected since the agent receives rewards based on the entire compounds proposed but each 

attachment point is strongly influenced by the prescribed reaction. 

As a final point of comparison of the reaction filters, Figure 13 displays the distribution of selected 

molecular properties for each of the two attachment points using the original reaction filter composed 

of amide coupling and the Buchwald reaction. In general, amide coupling produces somewhat smaller 

and lighter decorations. The distributions moreover tend to be less peaked and centred around the mode, 

Figure 12: Discrete molecular descriptors of decorations of attachment point 2 for each of the four 

reaction filters applied. Note that this attachment point is decorated using either via the Buchwald 

reaction of the SNAr substitution; the differences observed in this plot therefore primarily arise as a 

result of this reaction filter.  
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which is to be expected for this reaction as it is more general. Once again, we further note that not all 

proposed compounds satisfy the Buchwald reaction filter since decorations missing an aromatic ring are 

proposed for attachment point 2.  

Scaffolds with varied numbers of attachment points 

So far, all experiments focused on a two-attachment point scaffold. To give a fair picture of the 

decorator’s abilities, we additionally introduce tasks working with scaffolds containing one to four 

decoration points. Since the purpose of this section is primarily proof of concept, we restrict our attention 

to simple experiments aiming to force the model to start growing large enough decorations to satisfy 

molecular weight requirements. Reaction filter is not implemented here for simplicity. The experiments 

Figure 13: Comparison of the properties of the decorations proposed for each attachment point. The 

first attachment is decorated using amide coupling, the second via the Buchwald reaction. 
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nevertheless demonstrate that the decorator is capable of working with these scaffolds to produce unique 

and valid compounds. 

For the purpose of these simple experiments, we use two scaffolds from the DRD2 dataset with one and 

three attachment points. In both cases, the weight requirement on the final compound is for it to lie 

between 450 and 650. These values have been chosen to force the original scaffolds to grow significantly 

without leaving the domain of chemically reasonable compounds in the output since there are no other 

constraints to guide the model. The scaffolds are displayed in Figure 14. 

 

Figure 14: The scaffolds with one and three attachment points used in the final experiment. 

As demonstrated in the plots below, the model does not struggle with any of these tasks, rapidly adjusting 

to the requirement and starting to generate compounds in the appropriate molecular weight range. 

Similarly, the validity of the proposed output is consistently over 90 %. These experiments clearly show 

that the use cases of the decorator model include working with scaffolds of varying numbers of 

attachment points. 

Figure 15: Satisfying weight requirements for varying number of attachment points. 
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Discussions 

We have designed and executed a range of experiments to establish the abilities of the newly proposed 

Lib-INVENT model. Most importantly, the results clearly demonstrate the model’s superiority in 

learning to follow specific chemical reactions, which is achieved by the introduction of a novel 

compound slicing strategy. The decorator model has proven to be capable of rapidly designing libraries 

of molecules synthesisable from a given scaffold by following a set of reactions as defined by the user, 

giving the user fine control over the output and making the model widely and readily applicable in a 

multitude of scenarios. This expands the capabilities of the REINVENT family of generative models 

from string and graph based compound design to library design. 

In contrast with prior work on scaffold decoration, which trained the models on data obtained using 

RECAP rules for slicing 17,18, Lib-INVENT has been trained on compounds sliced according to chemical 

reactions. This crucially affects the speed and reliability with which the model adjusts to reaction filter 

restrictions and is a significant step towards the automation of the symbiosis between in silico and in 

vitro library generation. The design of the reinforcement learning loop further introduces a rapid way to 

focus the model to a desirable part of the chemical space. As the experiments demonstrate, the learning 

is instantaneous and results in the design of varied and focused chemical libraries. 

The first task was to determine an optimal learning strategy for setting up the reinforcement learning 

rewards. Four different strategies have been proposed based on arguments discussed in the literature. 

While not immediately intuitive, the DAP learning strategy has proven to be the most successful one. 

The motivation for this reward setup is a “carrot on a stick” scenario. A combination of the prior 

likelihood and the scoring function is used to guide the agent towards a desirable subspace of the 

chemical space while ensuring that underlying chemical syntax is not forgotten. Two of the remaining 

strategies, on the other hand, attempted to maximise the score or a sum of the score and prior likelihood 

directly. Despite appearing more natural at a glance, this approach does not work as well since the 

models struggle to retain the ability to propose valid molecules as they start focusing on the score too 
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much. A possible rationale for this is the notoriously high variance typically observed for policy iteration 

RL; while we note that the generative model requires this variance to explore the chemical space, too 

much variation combined with a lack of anchor to the prior knowledge is detrimental to the performance. 

The final method explored in the paper minimises the square of the loss used for the optimal DAP 

strategy. This is more mathematically sound as the reward is bounded but does not appear beneficial in 

practice since the edge scenarios where unboundedness of the DAP reward could be an issue rarely 

arise. We therefore confirm the observations of Olivecrona et al. in selecting the DAP strategy as the 

method of choice13.  

Two different scoring components have been used to guide the model to propose new ligands for the 

DRD2 receptor. A simple QSAR property prediction model has the advantage of a faster execution and 

overall higher score but its stronger inductive bias restricts the model to a narrower domain46. As a result, 

a QSAR based model strongly favours certain decorations and therefore struggles to fulfil some reaction 

routes incompatible with these functional groups. In the second use case scenario, ROCS similarity 

measure was used to demonstrate that various scoring function components may be used to guide the 

model to a desirable chemical space. A certain degree of experimentation or user intuition is often 

required to determine the optimal combination of guidance for the model and freedom to explore to 

obtain the best possible libraries as each of the scoring components introduces its own biases and 

benefits. The results nevertheless confirm that Lib-INVENT is a flexible tool admitting a wide range of 

inputs and able to return appropriate output. 

An important note regarding the selective reaction filter is that the user is responsible for providing 

correct and valid reactions for correct attachment points in order to get a good result. While a range of 

reaction definitions is provided in the public repository, the reactions prescribed to a given attachment 

point have to be feasible. If an infeasible reaction is required, the model is not going to be able to fulfil 

this reaction filter and always receive a score of 0. Depending on the setup, this can lead to a failed run 

with a very small and irrelevant outputs as the low scores do not guide the agent in the right direction. 

It is therefore essential that the user is aware of this potential pitfall. A consistently low reaction filter 

score, plateauing at a value lower than one, is often an indicator of a wrong reaction requirement.  
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The observations from the experiments confirm the ability of Lib-INVENT to generate readily 

synthesisable virtual chemical libraries. The model offers a great level of flexibility, giving the user the 

option to determine not only the molecular properties of their output, but also the shape and chemical 

pathways to be followed in library synthesis. This functionality has a potential to bridge many of the 

current problems with incorporation of in silico design in drug discovery as the process to determine 

ways to produce the proposed molecules has been laborious in the past. Moreover, the existence of the 

pretrained prior along with the use of reinforcement learning enables rapid and efficient library 

generation by eliminating the need to use transfer learning to refocus on a new task. Besides the speed 

with which the model focuses on a new problem, reinforcement learning moreover offers the possibility 

to set up flexible objectives and combine various scoring components.  

Conclusions 

In order to achieve efficient and natural symbiosis between computation and traditional wet lab methods 

in drug discovery, it is essential to overcome a few prevailing bottlenecks. One of the key issues is the 

low efficiency in incorporating deep learning into the production pipeline caused by complicated lead 

synthesis and an unfocused output of generative models.  The objective of this work has been to provide 

a method to start bridging this gap between in silico and in vitro drug design by developing a tool taking 

the needs of real life synthesis into consideration and increasing the productivity by reducing the number 

of DMTA cycles performed. 

In this work, we have introduced a flexible generative model capable of proposing optimal decorations 

given a scaffold and a set of user-specified objectives. Thanks to a novel compound slicing method 

based on chemical reactions, these objectives can moreover include reaction filters. Lib-INVENT 

therefore enables rapid generation of focused virtual chemical libraries which can be used for lead 

optimisation and are readily synthesisable in vitro. Even when these filters are not specified, however, 

the output of the model benefits from high synthesisability. 

To the best of our knowledge, our model is the first one to be capable of following specific reaction 

constraints in designing entire chemical libraries within which the diversity is narrowly focused to a 
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domain determined by the user. This makes the decorator readily applicable in a broad range of 

scenarios. The model is released in our public repository along with the corresponding code. 
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