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Abstract. 21 

The COVID-19 pandemic and related shutdowns have caused changes in everyday activities for many 22 

people, and signs of those changes are present in the chemical signatures of sewage sludge produced during 23 

the pandemic. We analyzed primary sewage sludge samples from a wastewater treatment plant in New 24 

Haven, CT USA collected between March 19 and June 30, 2020. This time period encompassed the first 25 

wave of the COVID-19 pandemic, the initial statewide stay at home order, and the first phase of reopening. 26 

We used liquid chromatography coupled with high resolution mass spectrometry and targeted and suspect 27 

screening strategies to identify contaminants in the sludge. We and found evidence of increasing opioid, 28 

cocaine, and antidepressant use, as well as upward trends in chemicals used in disinfectants and sunscreens 29 

during the study period. Benzotriazole, an anti-corrosion chemical associated with traffic pollution, 30 

decreased through the stay-at-home period, and increased during reopening. Hydroxychloroquine, a drug 31 

that received significant attention for its potential to treat COVID-19, had elevated concentrations in the 32 

week following the implementation of the United States Emergency Use Authorization. Our results directly 33 

relate to nationwide reports of increased demand for fentanyl, antidepressants, and other medications, as 34 

well as reports of increased drug overdose deaths during the pandemic. Though wastewater surveillance 35 

during the pandemic has largely focused on measuring SARS-CoV-2 RNA concentrations, chemical 36 

analysis can also show trends that are important for revealing the public and environmental health effects 37 

of the pandemic.  38 

 39 

Significance Statement. 40 

Wastewater surveillance is a promising strategy to monitor a variety human behavioural changes during the 41 

COVID-19 pandemic that have public health consequences. Our findings on the dynamic temporal trends 42 

of opioid, antidepressant medication, and other chemical concentrations relate strongly to trends in public 43 

and environmental health worldwide. Understanding behaviours related to drug abuse, mental illness, and 44 

use of over-the-counter medications, can be difficult even without pandemic related restrictions in place, 45 

and sewage sludge represents a unique information source on community level trends without the privacy 46 

concerns that come with identification of individual persons.  47 
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Introduction 48 

The COVID-19 pandemic has dramatically increased the practice of wastewater-based 49 

epidemiology, with scientists and public health practitioners worldwide monitoring levels of SARS-CoV-50 

2 RNA in untreated wastewater (1). Measurements of SARS-CoV-2 in wastewater and sludge are associated 51 

with daily case rates from testing and COVID-19 related hospitalizations, and can provide early information 52 

about potential clusters and outbreaks of COVID-19 (2, 3). Historically, wastewater-based epidemiology 53 

has focused primarily on chemical contaminants, which can provide information about the habits of the 54 

population within the catchment area of a treatment plant. Chemical analysis of wastewater has been used 55 

to track use of licit and illicit drugs and pharmaceuticals such as antidepressants, benzodiazepines, opioids 56 

and asthma medications, as well as exposure to pesticides and plasticizers (4–6). Wastewater analysis can 57 

be a highly efficient way to gather information about topics such as use of illegal drugs and psychoactive 58 

medications, without identification of individual persons. Additionally, wastewater analysis has been used 59 

to track antiviral and antibiotic use during influenza pandemics throughout the world (7–9). 60 

The COVID-19 pandemic has affected many aspects of daily life beyond the direct effects of the 61 

virus, and we hypothesized that some of these changes would be visible in the organic chemical signature 62 

of wastewater. Our objectives were to characterize temporal variation of chemical contaminants in sewage 63 

sludge during the COVID-19 outbreak and associated lockdown and to relate our findings to the health and 64 

activities of local residents and broader global trends. Samples were taken at the East Shore Water Pollution 65 

Abatement Facility, New Haven, CT USA, where SARS-CoV-2 concentrations and cased data have already 66 

been measured and published (2). Daily collection of primary sludge samples and analysis for SARS-CoV-67 

2 RNA began March 19, 2020 and has continued through 2020 (2). 68 

  69 



4 

 

Results and Discussion 70 

 We identified chemicals in wastewater primary sludge and analysed their trends over time in daily 71 

samples from March 19 to April 15, 2020, and weekly composite samples from March 19 to June 30, 2020. 72 

Figure 1 shows the sampling timeline relative to key dates for the pandemic and related shut down. 73 

Compound identifications were performed using both targeted and non-targeted strategies, and each 74 

compound was assigned a confidence level. All identifications based on standards are referred to as 75 

“confirmed” while confident screening results are “probable” and screening results where more ambiguity 76 

remains are listed as “tentative” (10) (more details available in Methods, sections S.1.4-7, and section 77 

S.2.2). Table 1 shows the full list of identified compounds, their uses, their detection information, and the 78 

observed trends over time.  79 

 80 

Figure 1. Timeline showing key pandemic related events and 

the timing of sample collection. We analyzed daily samples for 

four weeks during the initial increase in local COVID-19 cases. 

We analyzed weekly composite samples for a total of 15 weeks 

which covered the early stages of the pandemic and shut down 

as well as the initial stages of re-opening. All dates are within 

the year 2020. 
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Table 1: Compounds identified in daily and weekly sludge samples 

  Compound Use 
Confidence 

Level 

Trends   

m/z 

measureda 

Δ mass 

(ppm)a,b 

Retention 

Time 

(min)a 

RSDc 
Daily 

Samples 

(3/19/20-

4/15/20) 

Weekly  

Samples 

(3/19/20-

6/30/20) 

C
O

V
ID

-1
9

 d
ru

g
s 

an
d

 d
is

in
fe

ct
an

ts
 

Hydroxychloroquine antiviral Confirmed increased    336.1835 -0.72 6.17 9 

Azithromycin antibiotic Confirmed   down 749.5152 -0.74 12.58 5 

Acetaminophen analgesic Confirmed   increase 152.0706  -0.28 5.22 7 

Triclocarban disinfectant Confirmed increase  314.9849 -1.34 32.98 35 

Didecyldimethylammonium disinfectant Confirmed     326.3778 -0.86 40.98 60 

Cetrimonium disinfectant Probable     284.3308 -1.18 38.56 46 

Dioctyldimethylammonium  disinfectant Probable   increase 270.3154 -0.64 37.8 73 

Dodecyltrimethylammonium 

(A) 
disinfectant Tentative     228.2685 0.11 30.88 45 

Dodecyltrimethylammonium 

(B) 
disinfectant Tentative   increase 228.2686 0.15 27.32 15 

O
p

io
id

s 
an

d
 D

ru
g

s 
o

f 
A

b
u

se
 

Fentanyl opioid Confirmed   increase 337.2273 -0.45 16.06 25 

Levorphanol opioid Confirmed decrease decrease 258.1853 0.03 10.2 19 

Methadone opioid Confirmed   increase 310.2164 -0.45 20.3 17 

Codeine opioid Confirmed     300.1594 -0.17 6.18 2 

Hydromorphone opioid Confirmed   --e increase 286.1439 0.53 4.05 9 

Oxycodone opioid Confirmed  --e   316.1543 -0.22 7.07 5 

Tilidine opioid Probable     274.1791 -3.71 41.26 24 

Tramadol opioid Probable     264.1957 -0.32 10.18 11 

Cocaine cocaine Confirmed   increase 304.1542 -0.35 12.16 6 

Benzoylecgonine cocaine Probable   increase  290.1386  -0.43  9.54 10 

Ecgonine methyl ester cocaine Probable   increase  200.1278  -1.38  2.30 28 

Anhydroecgonine cocaine Probable   decrease 168.1019 -0.25 7.08 20 
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THC cannabis Probable   decrease  315.2315  -1.20  40.67 31 

Cannabidiolf cannabis Probable      315.2315 -1.2  36.81 27 

11-Hydroxy-δ(9)-THC cannabis Probable     331.2264 -1.11 33.25 13 

Nor-9-carboxy-9-THC cannabis Probable     345.2059 -0.45 33.53 22 

THC-A cannabis Tentative  increase increase  359.2211  -1.70  42.66 27 

Methamphetamine amphetamine Confirmed     150.1277 -0.08 7.49 13 

TFMPP party drug Tentative    decrease  231.1106  1.01  2.00 46 

A
n

ti
d

ep
re

ss
an

t 
an

d
 A

n
ti

se
iz

u
re

 D
ru

g
s 

Doxepin antidepressant Confirmed   increase 280.1696 -0.16 17.04 25 

Amitriptyline antidepressant Confirmed   increase 278.1903 -0.1 20.49 19 

Citalopram antidepressant Confirmed   increase 325.171 -0.31 17.4 17 

desmethyl-citalopram antidepressant Probable   increase 311.1553 -0.47 17 10 

Sertraline antidepressant Confirmed increase   306.081 -0.3 21.47 10 

Trazadone antidepressant Probable     372.1584 -0.44 14.87 19 

Venlafaxine antidepressant Probable     278.2114 -0.15 14.28 18 

Clozapine antipsycotic Probable   increase 327.137 -0.26 14.3 22 

Carbamazepine anticovulsant Probable     237.1022 -0.8 18.93 11 

Gabapentin anticonvulsant Probable     172.1331 -0.5 6.89 4 

Pregabalin anticonvulsant Tentative      160.133  -1.11  1.99 5 

P
h

ar
m

ac
eu

ti
ca

ls
 -

 o
th

er
 

Propafenone antiarrythmic Probable    342.2061 -0.8 34.23 23 

Trimethoprim antibiotic Probable     291.1450  -.63  8.02 8 

Diphenhydramine antihistamine Confirmed   increase 256.1695 -0.43 17.04 19 

Fexofenadine antihistamine Probable     502.295 -0.36 20.53 12 

Raltegravir antiviral Probable     445.1629 -0.32 20.87 12 

Darunavir antiviral Probable     548.2424 -0.13 24.21 5 

Zalcitabine antiviral Tentative   decrease  212.1027  -.130  2.02 8 

Losartan ARB inhibitor Confirmed  decrease decrease 423.1693 -0.4 20.47 7 

Valsartan ARB inhibitor Probable     436.2341 -0.42 25.38 18 
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Atenolol acid beta-blocker Probable     268.1542 0.6 7.79 5 

Carvedilol beta-blocker Probable     407.1963 -0.5 19.19 17 

Labetalol beta-blocker Probable     329.1858 -0.4 14.33 23 

Metoprolol beta-blocker Probable     268.1906 -0.33 11.55 50 

Propranolol beta-blocker Probable     260.1645 -0.08 15.69 44 

Verapramil blood pressure Probable     455.2902 -0.48 20.6 22 

Warfarin blood thinner Probable      309.1120  -0.42  24.72 22 

Metformin diabetes Tentative      130.1086  -0.76  1.83 7 

Raloxifine estrogen regulator Probable     474.1733 -0.1 17.41 51 

Cinchophen gout Probable   increase 250.086 -0.89 42.24 18 

Cyclobenzaprine muscle relaxant Probable     276.1746 -0.16 19.76 22 

Tolycaine pain - injection Probable   decrease 279.1702 -0.52 13.02 28 

Pramocaine pain - topical Probable   increase 294.2063 -0.2 18.77 18 

Edaravone stroke and ALS Probable decrease decrease 175.0865 -0.25 10.59 40 

Berberine supplement Confirmed     336.1229 -0.44 16.17 20 

Piracetam supplement Tentative      143.0814  -1.03  1.90 12 

Betanechol urinary retention Tentative  decrease decrease  161.1283  -0.72  1.71 7 

P
er

so
n

al
 C

ar
e 

P
ro

d
u

ct
s Oxybenzone UV-filter Confirmed decrease increase 229.0859 0.06 29.96 16 

Avobenzone UV-filter Probable   increase 311.1636 -1.92 41.52 28 

Octocrylene UV-filter Probable   increase 362.2111 -1.01 42.25 18 

Galaxolidone fragrance Tentative    273.1847 -0.79 35.95 15 

Nicotine tobacco Probable     163.1228  -1.36  2.16 11 

Caffeine stimulant Probable   increase  195.0876  0.16  7.81 5 

O
th

er
 

ch
em

ic
al

s Benzotriazole anti-corrosion Confirmed decrease increase 120.0559 2.08 9.51 5 

Levamisole veterinary drug Probable     205.0793 -0.66 7.48 44 

Ipronidazole veterinary drug Tentative decrease decrease  170.0922  -1.08  1.71 4 

Imazalil pesticide Probable increase decrease  297.0555  -0.26  18.67 10 
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Piperonyl-butoxide pesticide Probable  decrease    356.2427  -1.35  35.60 24 

Dinotefuran-metabolite-UF pesticide Tentative  --e    159.1126  -1.33  1.83 10 

Nithiazine pesticide Tentative    decrease  161.0377  -1.28  1.90 22 

a Detailed description provided in section S.2.1 

b Difference from theoretical m/z  

c Relative standard deviation of concentration or peak area for replicate extractions of an unspiked sample (n=3 or n=6)  

d Elevated in week 3 only 

e Multidirectional changes in multivariate analysis 

f In daily (but not weekly) solvent blanks at high levels 

 81 

 82 

Trends over time for each identified compound in daily and weekly samples were determined using two types of analysis: linear regression 83 

and multigroup analysis. Multigroup statistical tests used were determined based on the normality and homoscedasticity of each dataset. Trends 84 

listed as “increase” in Table 1 indicate a statistically significant positive linear regression (p ≤ 0.05) or a multigroup analysis where there were 85 

statistically significant differences between groups (p ≤ 0.05) and an increase in average compound levels in the sludge. Trends listed as “decrease” 86 

in Table 1 indicate a statistically significant negative linear regression (p ≤ 0.05) or a multigroup analysis where there were statistically significant 87 

differences between groups (p ≤ 0.05) and a decrease in average compound levels in the sludge. Concentrations based on an external calibration 88 

curve were used for trend analysis where available (for a portion of the “confirmed” compounds); peak area was used for all other trend analyses 89 

(for all other compounds). Detailed statistical methods and results for trend determination are available in sections S.1.8 and S.2.2. Table 1 also 90 

includes the relative standard deviation (RSD) of each compound concentration or peak area (from replicate unspiked samples, n  ≥ 3) as an estimate 91 

of measurement error.  92 
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COVID-19 drugs and disinfectants. 93 

In the early days of the pandemic the drug combination of hydroxychloroquine and azithromycin 94 

received consideration as a potential treatment for COVID-19. The US FDA issued an emergency use 95 

authorization (EUA) on March 28, 2020 (week 2 of our data), which remained in effect until June 15, 2020 96 

(week 13) (11). As shown in Figure 2a, hydroxychloroquine concentrations increased in daily sludge 97 

samples in the third week of our study. While an overall hydroxychloroquine trend was not observed during 98 

the time that weekly samples were collected, a clear increase in concentration occurs in week 3 (Figure 99 

2b). Hydroxychloroquine has an elimination half-life in the human body of approximately 22 days for oral 100 

doses and over 40 days for intravenous doses (12, 13), thus the increase in sludge concentrations is not as 101 

immediate or drastic as it would be for a drug with a shorter half-life. Our data indicates that the EUA and 102 

the large amount of publicity generated around hydroxychloroquine had significant impact on the amount 103 

used in the New Haven area, which includes two major hospitals. Hydroxychloroquine is normally used to 104 

treat malaria, lupus and rheumatoid arthritis (13), which are unlikely to have changed during the pandemic. 105 

Azithromycin concentrations decreased over the study period (weekly samples, Figure 2b). Azithromycin 106 

is only sometimes used in combination with hydroxychloroquine (14) and is more frequently used to treat 107 

bacterial respiratory infections which typically decline in the spring (15). Acetaminophen, which can be 108 

used to treat COVID-19 symptoms such as fever and headache, had limited availability during the 109 

pandemic, likely due to increased demand (16). Correspondingly, acetaminophen sludge concentrations 110 

increased in our weekly sample analysis (Table 1, Table S8). 111 

Disinfectant use for cleaning both hands and surfaces has grown during the pandemic (17). Previous 112 

studies have shown pandemic related increases in concentrations of quaternary ammonium disinfectants in 113 

household dust (18), and higher risk of health effects due to increased exposure (19). Levels of two 114 

quaternary ammonium disinfectant chemicals increased in sludge during the overall study period (weekly 115 

samples, Figure 1d, Table S8). Triclocarban, an antibacterial compound used in consumer and medical 116 

grade handwashes increased in concentration in our daily sampling period (Figure 1c). Triclocarban was 117 
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previously banned in medical grade hand washes (2017) and rubs and consumer hand washes (2016) for its 118 

endocrine disruption potential and other negative health effects (20–22). However, the most recent ruling 119 

against triclocarban (regarding consumer antiseptic rubs) took place in 2019, with an effective date of April 120 

13, 2020 (23). Thus, it is likely that triclocarban products use had not yet been fully phased out during our 121 

study period. Additionally, the pandemic is likely to have prompted increased use of soaps and hand 122 

sanitizers that were previously stored.  We identified an additional 3 disinfectant compounds for which 123 

there were no trends detected during the study period (Table 1). 124 

 125 

Figure 2. Trends for COVID-19 related drugs and disinfectants detected in daily and weekly primary sewage 

sludge samples. (A) boxplot showing a significant increase in hydroxychloroquine concentrations in week 3 

samples based on daily sample concentrations (ANOVA with Tukey’s HSD post-hoc analysis). (B) Scatter plot 

showing hydroxychloroquine and azithromycin concentrations in weekly composite samples. (C) Scatter plot 

showing increasing triclocarban levels in daily sludge samples. (D) Scatterplot showing data for two quaternary 

ammonium disinfectants in weekly composite sludge samples. Though p > 0.05 for dodecyltrimethylammonium-

B, our multi group analysis showed a significant trend (Table S8). All scatterplot error bars show the RSD for each 

compound, calculated from one set of replicate samples.  
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Opioids and drugs of abuse 126 

The ongoing epidemic of legal and illicit opioid abuse across the US has included the State of 127 

Connecticut (24). Additionally, there are pandemic-related increases in legal use of opioids; in April of 128 

2020, the U.S. Drug Enforcement Agency authorized increased production quotas for fentanyl, morphine, 129 

hydromorphone, codeine to meet COVID-19 treatment needs, as well as for methadone, to ensure 130 

addiction treatment centers are adequately supplied (25). Sludge concentrations of fentanyl, methadone, 131 

and hydromorphone increased during our study period (weekly samples, Figure 3a). Fentanyl and 132 

methadone are commonly used both legally and illegally. Hydromorphone is itself a drug, but it is also a 133 

metabolite of morphine, codeine, and other opioids, thus its increasing levels are an indication of overall 134 

increase in opioid concentrations (26). Levorphanol, an opioid used for pain management and as a 135 

preoperative drug (27), decreased in both daily and weekly sludge samples (Figure 3a, Table 1). This 136 

decrease is potentially due to the reduction in elective procedures during the study period (28). We did not 137 

observe trends over time for an additional four opioids (Table 1). We note that our method was not capable 138 

of measuring heroin at these low concentrations (section S.2.1).  139 

Concentrations of cocaine and two of its metabolites (ecgonine methyl ester and benzoylecgonine) 140 

also increased in the weekly samples (Figure 3b, Table S8).  Anhydroecgonine, a metabolite specific for 141 

crack cocaine (29), decreased in the weekly samples, suggesting the possibility of a shift in local cocaine 142 

use patterns (Figure 3b). We saw no trends for methamphetamine, though the party drug TFMPP decreased 143 

during the study period (Table 1, Table S8). Cannabis related compounds did not show a consistent trend. 144 

Interestingly THC-A, the non-psychoactive precursor to THC found in raw plant material increased, 145 

whereas THC (transformed from THC-A by decarboxylation during heating above 105⁰C for example in 146 

cooking or smoking) decreased across the study period (Table 1, Table S8).  147 

 The pandemic has increased risk factors for the development of substance abuse disorders and 148 

overdoses, such as isolation and economic distress. High COVID-19 related worry has been shown as a 149 

predictor of beginning substance use during the pandemic (30), and increasing numbers of overdoses have 150 
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been reported nationwide (31). An increase in the amount of emergency responses necessary for opioid 151 

overdoses has occurred in some locations (32). Locally, there were 36 fatal overdoses during the study 152 

period in the towns/cities served by the East Shore Water Pollution Abatement Facility in New Haven (New 153 

Haven, East Haven, Woodbridge, and Hamden) (33). Thirty-two of these overdoses involved opioids, 154 

including 28 where fentanyl was detected. Cocaine was involved in 17 of the overdose deaths. Most cases 155 

included multiple drugs (33). Additionally, the COVID-19 pandemic has caused many changes in 156 

treatments for both pain and substance abuse disorders, which usually depend heavily on in-person 157 

interactions and carefully controlled access to medications. New systems for opioid distribution and 158 

telemedicine appointments have been developed but there is continued concern over their effectiveness 159 

(34–36). 160 

 161 

Antidepressants and other medications 162 

 Many people have struggled with mental health challenges during the COVID-19 pandemic and 163 

incidence of depression has increased in the US during the pandemic (37). Additionally, there is evidence 164 

Figure 3. Trends for opioids and cocaine related 

compounds detected in weekly composite primary 

sewage sludge samples. (A) Scatter plot showing opioid 

concentrations. (B) Scatter plot showing levels of 

cocaine and cocaine metabolites. All scatterplot error 

bars show the RSD for each compound, calculated from 

one set of replicate samples.  
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that people with psychiatric disorders are at increased risk for COVID-19 infection (38), and that COVID-165 

19 infection is associated with new diagnoses of psychiatric illnesses (39). Increased demand for the 166 

antidepressant drug sertraline has caused shortages throughout the U.S. (40, 41). Sertraline levels increased 167 

in our analysis of daily sludge samples (Figure 4a). In our weekly sample analysis, the levels of three 168 

additional antidepressants (citalopram, amitriptyline, and doxepin), one antidepressant metabolite 169 

(desmethylcitalopram), and the antipsychotic drug clozapine increased (Figure 4b, Table 1, Table S8). No 170 

trend was observed for an additional 3 antidepressants and 3 anticonvulsant drugs (Table 1, Table S8). 171 

 172 

 We also observed various trends for other pharmaceuticals identified in our analysis (Table 1, 173 

Table S8, Figures S3-S5). Some of these trends are likely related to pandemic-induced changes in 174 

behaviour, while others are not. For example, tolycaine, a local anaesthetic used in dental injections (42), 175 

decreased in the sludge samples, which corresponds to a decrease in dental appointments during the 176 

Figure 4. Trends for antidepressants detected in daily and 

weekly primary sewage sludge samples. (A) Boxplot 

showing a significant increase in sertraline during the 4 

weeks of daily sampling (ANOVA with Tukey’s HSD 

post-hoc analysis). (B) Scatter plot showing doxepin, 

citalopram, and amitriptyline levels in weekly composite 

samples. Scatterplot error bars show the RSD for each 

compound, calculated from one set of replicate samples. 
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shutdown (43). Pramocaine, a mild anaesthetic used in over-the-counter creams (44), had increasing levels 177 

in sludge which is more likely due to seasonal changes in exposure to insect bites and poison ivy than to 178 

pandemic related changes. Diphenhydramine, an allergy medication, also increased during the study period 179 

(Table 1, Table S8).  180 

Personal care product ingredients and other chemicals 181 

We found that benzotriazole, a corrosion inhibitor frequently used on cars and a known contaminant 182 

in road dust (45), had trends in sludge that corresponded to the shut down and phase one reopening that 183 

occurred during our study period (Figure 5a). There was a decrease in the daily and weekly composite 184 

sample concentrations at the beginning of the study period, and then an increase in weekly composite 185 

sample levels starting in the weeks before Phase 1 reopening. We hypothesize that the benzotriazole trends 186 

are due to changes in the amount of traffic. Doucette et al., found that traffic in Connecticut decreased 43% 187 

during the stay-at-home order that began in the first week of our study period (46). With fewer cars on the 188 

road, less benzotriazole washes off cars onto the road, and thus less is dissolved the in the runoff water that 189 

enters the combined sewer system. Benzotriazole is also used on aircrafts as a de-icer and corrosion 190 

inhibitor (47). There is one small airport in the study area that, like many other airports, experienced 191 

decreased traffic during the stay at home order. Benzotriazole is also used in household dishwasher 192 

detergents, which is likely a smaller source to combined sewer wastewater systems. 193 

All the UV-filter compounds that we detected increased in the weekly composite samples (Figure 194 

5b). This trend is likely due to the increase in sunscreen use that corresponds to the seasonal change that 195 

occurs in Connecticut between March and June. A slight decrease in oxybenzone levels was observed in 196 

the daily samples and the first weekly samples which may be reflective of decreased cosmetic usage during 197 

the stay at home order while there was still wintery weather. We suspect that the other trends we found in 198 

this category were not affected by the pandemic or stay at home order (Table 1, Table S8). 199 
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 200 

Broader relevance, limitations and future directions 201 

Though our results are specific to the New Haven, CT area, many of the trends that we found are 202 

more broadly relevant. We observed increased concentrations for medications whose demand increased 203 

during the pandemic (40) and increasing trends for illegal drugs that align with the increasing number of 204 

overdoses nationwide (31). Wastewater monitoring can be a way to monitor drug usage during this time 205 

when other monitoring strategies have been disrupted by the pandemic (48, 49). Moreover, if wastewater 206 

trends can be associated with public heath monitoring data, wastewater-based information can play an 207 

important role in providing real-time estimates or early warnings of a variety of infectious and non-208 

infectious disease. We note that our results on drugs of abuse differ from those reported by wastewater 209 

monitoring programs in Europe, where there has been an overall decrease in illicit drug use (50). 210 

Wastewater monitoring and drug use surveys in Australia have revealed record low levels of fentanyl and 211 

oxycodone, but regional increases in cocaine, heroin, methamphetamine, and cannabis (51). The differing 212 

trends may be related to differences in pandemic severity and local political responses, but are also 213 

Figure 5. Trends for additional chemicals detected in 

daily and weekly primary sewage sludge samples. (A) 

Scatterplot showing benzotriazole levels in daily and 

weekly samples.  (B) Scatter plot showing UV-filter 

levels in weekly composite samples. Scatterplot error 

bars show the RSD for each compound, calculated 

from one set of replicate samples (n = 6). 
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reflective of existing trends from before COVID-19; the opioid crisis that is prominent throughout the US 214 

has not affected Australia nor Europe to the same extent (50, 51). 215 

Our results also reveal trends in chemical releases that may affect the environment. Though our 216 

samples did not undergo the complete wastewater treatment process, many of the compounds we detected 217 

are not fully removed by standard treatment trains (52–54) and are released with the effluent water or 218 

sewage sludge. We detected endocrine disrupting compounds including triclocarban, oxybenzone, and 219 

sertraline that can have negative impacts on marine organisms and cycle back to humans via consumption 220 

of local seafood  (55, 56). 221 

While our analytical method was designed to include a wide range of chemicals, the scope of any 222 

analysis is inherently limited. We intentionally included both liquid and solid portions of primary sludge to 223 

measure both hydrophilic and hydrophobic chemicals. However, this prohibited the exact quantification of 224 

chemicals in either phase. We therefore are not able to use our data to back calculate per capita consumption 225 

as has been done in other wastewater studies (4). Additionally, we designed our sample preparation method 226 

for the relatively small volume of sample available from corresponding research on levels of SARS-CoV-227 

2 RNA in primary sludge; we could not use solid phase extraction to preconcentrate the liquid portion of 228 

our samples, as is common in wastewater studies (52, 53). This likely caused a decrease in the number of 229 

liquid phase contaminants we detected. Additionally, our unique method makes our quantitative results 230 

difficult to relate to other studies, though trends over time can still be compared. We note that our analytical 231 

methods were highly effective, and our sample collection and preparation method was simple, fast, and did 232 

not require specialized supplies. Sewage sludge is a well-mixed, concentrated source that doesn’t require 233 

complex sampling equipment.  The data presented in this manuscript represents only a small fraction of 234 

what was collected using our high-resolution mass spectrometry methods. We plan to conduct further 235 

investigation of chemicals in the sludge that were not easily identifiable using our databases. 236 
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Summary and conclusions 237 

 The first wave of the COVID-19 pandemic and the related shut down had a significant influence 238 

on the chemical fingerprint of primary sludge in New Haven, CT. We found upwards trends in 239 

hydroxychloroquine and disinfectant concentrations in sludge, reflecting increased use during the initial 240 

wave of the COVID-19 pandemic. We also saw increases in drugs of abuse and antidepressants, and 241 

seasonal changes for chemicals such as UV-filters that are used in sunscreens. Importantly, we found that 242 

benzotriazole concentrations showed different trends during and after the local stay at home order, a key 243 

indication that benzotriazole can be used as a marker for the influence of traffic on wastewater and sludge 244 

in combined sewer systems. Overall, our findings relate strongly to trends in public and environmental 245 

health worldwide and show specific trends that may not have been picked up in other types of analysis. 246 

Sewage sludge surveillance is a promising strategy to monitor a variety human behavioural changes during 247 

the pandemic that have public health consequences.  248 

Methods 249 

Primary sludge samples were collected daily from March 19 to June 30, 2020 between 8 and 10 am 250 

at the East Shore Water Pollution Abatement Facility, New Haven, CT USA, as described in Peccia et al., 251 

2020 (2). This treatment plant serves an estimated population of 200,000 in New Haven, Hamden, East 252 

Haven, and Woodbridge, CT, USA, and part of the service area contains combined sewers. Samples 253 

included both liquid and solid fractions (2 to 5% solids wt/wt) of sludge and were stored at -80°C until 254 

analysis. We analyzed daily samples from March 19 to April 15, and weekly composite samples from 255 

March 19 to June 30. Weekly sample extracts were further combined into 5-week composite samples, which 256 

were used for compound identification analysis only.  257 

Our analytical approach was based on long-term in-house methods used on food samples and other 258 

matrices. Our goal was to detect a broad range of contaminants. As we did not know what chemicals were 259 

present prior to sample analysis, we opted for minimal sample processing to avoid removing any unknowns.  260 

Briefly, liquid and solid fractions were separated via centrifugation. Solids were extracted with acetonitrile, 261 
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and equal amounts of the liquid fraction and acetonitrile extract were combined and filtered (method and 262 

materials details and recovery information available in sections S.1.1, S.1.2, and S.2.1). This type of method 263 

leads to complex sample matrix that requires high analytical sensitivity and selectivity, which are provided 264 

by the chosen instrumentation. 265 

Samples were analyzed using an Ultimate 3000 liquid chromatograph coupled with a Q-Exactive 266 

mass spectrometer (Thermo Scientific) and positive electrospray ionization. Mobile phases were 0.1% 267 

formic acid in water (A) and 0.1% formic acid in acetonitrile. We used an Agilent SB-C18 RRHD 1.8 µm, 268 

2.1 x 150 mm column and a 55-minute method with a gradient of 5% B to 95%B. Calibration points, blanks, 269 

and daily, weekly, and 5-week composite samples were analyzed using an alternating full MS and all ion 270 

fragmentation (AIF) method. Additionally, the 5-week composite samples were analyzed using data 271 

dependent MS2 (ddMS2) analysis with an iterative inclusion approach, which has similar advantages to 272 

previously reported intelligent acquisition methods (57, 58). Briefly, we used the full scan data to generate 273 

inclusion lists including all features after blank filtering to ensure ddMS2 spectra were collected for each 274 

peak in the three 5-week composite samples. Each 5-week composite was injected 10 or 11 times, each run 275 

with a separate inclusion list for ddMS2 data collection. Additional instrument method and iterative 276 

inclusion information is in sections S.1.2-3 and S.2.3. 277 

We used three separate data processing methods to identify and (semi-)quantify compounds in the 278 

samples. Full method descriptions, confidence levels for compound identification, and information on 279 

accuracy and variability are provided in sections S.1.4-7, S.2.1, and S.2.4. First, we used a targeted approach 280 

with TraceFinder software version 4.1 (Thermo Scientific) to conduct quantitative analysis based on 281 

standards for 62 compounds (listed in Table S1). Analytes included those in the ISO 17034 Custom 282 

Toxin//Poison spiking standard, a variety pharmaceuticals and illicit drugs known to be found in wastewater 283 

and/or sludge, and several compounds chosen for their relevance to COVID-19 treatment and prevention. 284 

Concentrations in the sludge extracts were determined based on a calibration curve that ranged from 0.1 285 

ng/mL to 100 ng/mL. We used a separate method in TraceFinder to screen our data using an in-house data 286 



19 

 

base of approximately 1800 compounds. The database contains exact MS1 and MS2 masses and retention 287 

times for many compounds that have previously been measured in house or by collaborators with the same 288 

(or very similar) instrument methods used in this project. The database also contains MS1 and MS2 masses 289 

that are provided in the Thermo Scientific EFS_HRAM database in TraceFinder (without retention times). 290 

Compound identifications using the screening method were based on exact mass matches for MS1 and MS2 291 

masses, isotope pattern matching, and retention time matching where available. Only the Full MS/AIF data 292 

was used in the TraceFinder methods. The third method used Compound Discoverer version 3.1 software 293 

(Thermo Scientific), and identified compounds based on the ddMS2 data for the 5-week composite samples 294 

and spectral matches with the mzCloud database. The full MS data for the daily and weekly samples was 295 

then screened for the identified compounds. Peak areas were used for semi-quantitative trend analysis for 296 

the compounds identified with Compound Discoverer and TraceFinder screening methods.   297 

Trend analysis was performed on both daily and weekly sample data. We used linear regressions 298 

and multi group analyses to investigate changes in contaminant levels over time in the sludge samples. 299 

Positive or negative trends found using any one (or more) of these methods were considered significant and 300 

are reported in Table 1. Detailed statistical methods and results of each method for each compound are 301 

provided in sections S.1.8 and S.2.2. 302 

Ten additional standards were purchased and analyzed after data analysis took place in an effort to 303 

improve annotation confidence for interesting results. We found that 9 of 10 compounds were correctly 304 

identified (amitriptyline, citalopram, diphenhydramine, triclocarban, didecyldimethylammonium, 305 

acetaminophen, benzotriazole, sertraline, and oxybenzone). Results for these compounds are reported as 306 

“confirmed”, but trend analysis is based on peak area due to lack of quantitative standards run alongside 307 

the samples. The misidentified compound is not included in our results. Detailed quality control and 308 

methodological results are available in sections S.2.1, S.2.3, and S.2.4. 309 
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Supporting Information 310 

Supporting information is available for this manuscript that includes: information on materials and 311 

analytical standards; detailed sample preparation, instrumental analysis, data analysis, and statistical 312 

methods; QA/QC results for method performance; detailed confidence annotations and statistical results; 313 

results specific to iterative inclusion functionality and compound annotation accuracy. 314 

Data sharing plans  315 

This manuscript and associated SI has been uploaded to the pre-print server ChemRxiv. The .RAW 316 

instrument data files used in this study are available as a dataset on MassIVE 317 

(ftp://MSV000086676@massive.ucsd.edu) along with the full peak list produced in our Compound 318 

Discoverer analysis and the filtered peak list that includes only the compounds listed in this manuscript. 319 

Additional files including all TraceFinder data, the internal database used for suspect screening, and the R 320 

scripts used for statistical analysis are available from the authors upon request. 321 
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