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Abstract

In this study, we developed two machine learning models, support vector ma-
chine (SVM) and artificial neural network (ANN), to correlate ionic conductivity
of pure ionic liquids based on the imidazolium cations using the data acquired
from the NIST ILThermo database. Both models were shown to successfully
capture the entire range of ionic conductivity spanning six orders of magnitude
over a temperature range of 275-475 K with relatively low statistical uncer-
tainty. Due to slightly better performance, ANN was used to predict the ionic
conductivity for 1102 ionic liquids formed from every possible combination of
29 cations and 38 anions contained in the database. The procedure led to the
generation of many ionic liquids for which the ionic conductivity was estimated
to be greater than 1 S/m. The ionic liquid dimethylimidazolium dicyanamide,
not present in the original dataset, was identified to exhibit the ionic conductiv-
ity of 3.70 S/m, roughly 30% higher than the highest conductivity reported for
any ionic liquid at 298 K in the database. The ANN model was also found to
accurately predict the ionic conductivity for several ionic liquid-ionic liquid mix-
tures, for which experimental data are available. Encouraged by this result, we
calculated ionic conductivity for all the possible binary ionic liquid-ionic liquid
mixtures based on the cations and anions contained in ?he dataset. The model
predictions revealed a large number of ionic liquid mixtures systems exhibiting
nonideal behavior where a maximum or minimum in the ionic conductivity was
observed as a function of composition, similar to trends seen in binary ionic
liquid mixture of water or conventional solvents with ionic liquids.

Keywords: Ionic liquids; ionic liquid-ionic liquid mixtures; ionic conductivity;
machine learning; artificial neural network; support vector machine

∗Corresponding author

April 21, 2021



1. Introduction

Room temperature ionic liquids are a class of salts that are liquid at room
temperature consisting exclusively of ions. They are currently one of the most
studied solvents because of several unique properties such as negligible volatil-
ity, electrochemical stability, low melting point, and high thermal and chemical
stability [1]. Because of all of these desirable properties, ionic liquids are in-
vestigated for various industrial applications such as potential solvents to break
minimum/maximum boiling azeotropes [2, 3, 4, 5], extracting agent in LLE sep-
arations [6, 7, 8, 9], electrolytes in electrochemical devices [10, 11, 12, 13], and
solvent for gas-capture [14, 15, 16, 17]. Despite the various favorable attributes
inherent in an ionic liquid, high viscosity and low ionic conductivity of many
ionic liquids, especially at low temperatures, is a bottleneck for the application
of ionic liquids as electrolytes in batteries. [18]

A widely adopted approach to mitigate potential drawbacks for using ionic liq-
uids is to tune the properties of an ionic liquid by altering functional group(s)
attached to the cation, changing the cationic core (e.g. from aromatic to cyclic),
and/or modifying the chemical composition of the anion. Developing new ionic
liquids this way requires considerable chemical intuition, expertise in synthesis,
and subsequent measurements of properties. Given the breadth of the chemical
space for cations and anions, it is practically impossible to study every possible
combination of the cation and anion. The explosion in the chemical space is
further exacerbated by the increasing popularity of exploiting ionic liquid-ionic
liquid mixtures for tailoring properties of these solvents. [19, 20, 21] One esti-
mate projects that there are as many as one billion ionic liquid systems. [22].
Although daunting from an experimental or molecular simulation viewpoint,
the vast chemical space of cations and anions also offers a unique opportunity
to leverage machine learning and data analytics-based techniques to search and
design ionic liquids with properties suited for a given application.

Indeed, several studies over the years have used artificial neural network ANN to
model and predict ionic liquid properties such as density, [23] viscosity [24, 25],
melting point [26], toxicity [27], solubility of gases, such as CO2 [28, 29] and
SO2 [30] in ionic liquids, surface tension [31], investigating ionic liquid-solvent
mixtures, [32, 33, 34, 35], and prediction of rate constants in ionic liquid-organic
mixtures [36]. Additional examples involving the application of ANN for various
properties for ionic liquids can be found in a recent review article by Yusuf et
al. [37] ARecently, Beckner and Pfaendtner have demonstrated that it is possible
to combine machine learning and genetic algorithm to develop new ionic liquids
with high thermal conductivity. [38] Some advances have also occurred for corre-
lating ionic conductivity, an extremely useful property for selecting electrolytes
in electrochemical applications and the topic of the present article. Krossing et
al. used the concept of free volume and derived an empirical equation based
on Cohen-Turnbull free volume theory to correlate transport properties such as
ionic conductivity and viscosity for imidazolium based ionic liquids that were
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in good agreement with experimental data at high temperature range, while
some deviations were noted in the low temperature regime. [39] Passerini et al.
found that the molar conductivity of pyrrolidinium based cations paired with
sulfonylimide anions showed a high correlation (R2 = 0.9942) with the sum of
cation and anion volumes obtained from electronic structure calculations. [40]
The observation suggested that the molar ionic conductivity decreased with an
increase in the combined volume. However, no such monotonicity existed for
imidazolium-based ionic liquids, which is the focus of the present study. Beichel
et al. used volume-based thermodynamics (VBT) approach to correlate ionic
conductivity of ionic liquids based on parameters such as molecular volume and
surface area calculated using COnductor-like Screening MOdel(COSMO). [41]
The authors reported an overall root mean square error of 0.04-0.06 log(σ).
Group contribution (GC) methods have also been found useful for developing a
correlation between the ionic conductivity and various chemical features of ionic
liquids. For example, Gharagheizi et al. employed a least-squared support vec-
tor machine GC method to estimate ionic conductivity consisting of a dataset
with 54 different unique ionic liquids with an absolute average relative deviation
(AARD) of 3.3% [42]. Tochigi et al. developed a polynomial-based quantitative
structure-property relationship (QSPR) to predict ionic conductivity for eight
different cation families and sixteen different anions [43]. The authors reported
an overall R2 of 0.91 and standard deviation of 0.12 S/m for 139 data points.
Coutinho et al. used a three-parameter GC method equation similar to Vogel-
Tammann-Fulcher (VTF) for the estimation of ionic conductivity for pure ionic
liquids. [44]. Wooley et al. applied a four-parameter GC-based approach to
estimate ionic conductivity of ionic liquids. [45] An attractive feature of GC
methods is that chemically intuitive groups are usually selected as inputs to the
model prior to optimizing model parameters. However, for billions of ionic liq-
uids with vastly different chemical functionalities, identifying and enumerating
all the relevant groups can pose significant difficulties to eventual automated
screening of ionic liquids.

In this article, we explore a different approach rooted in the framework of ma-
chine learning techniques such as artificial neural network and support vector
machine to correlate the ionic conductivity of pure ionic liquids. We assess the
performance of the two models and examine if the model can be extended to
predict ionic conductivity of all possible combinations of unique cations and an-
ions in the database and binary ionic liquid systems. As such the next section
provides details on the data collection and processing, model formulation, and
model validation. In the subsequent section, the models, trained with the ionic
conductivity of pure ionic liquids, are compared. The model with better accu-
racy is identified and is extended to predict the ionic conductivity for in silico
ionic liquids obtained by enumerating possible combinations of cations and an-
ions contained in the dataset. We will demonstrate that such a procedure leads
to the discovery of the ionic liquid with the highest conductivity, which matches
with the experimental data at 298 K. The predictive capability of the model will
be discussed in terms of the level of agreement for ionic conductivity for several
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binary ionic liquid systems. The possibility of obtaining enhancement in the
ionic conductivity by formulating binary ionic liquid mixtures will be presented
followed by a summary of findings and the direction for future research.

2. Methodology

2.1. Data Collection and Processing

A total of 2895 ionic conductivity data for pure component imidazolium-
based ionic liquid were downloaded from the online ILThermo database main-
tained by NIST [46, 47] using the pyILT2 [48] utility. Majority of the ionic con-
ductivity data were measured using alternating current cell with electrodes [49,
50], while a small number of data were acquired using direct current cell with
electrodes [51, 52], while a small number of articles reported the ionic conduc-
tivity obtained with capillary cell, electrochemical (EC) cell [53], impedanceme-
try [54, 55] and conductivimeter [56].The downloaded data were processed (see
below) and formatted with an in-house Python script. The datapoints con-
tained the ionic liquid name, temperature (K), pressure (kPa), reference from
which the data was extracted, and the uncertainty in the measurement. Ap-
proximately 89% of the data represented ionic conductivity in the liquid state,
while ∼10% of the data for crystals, and a small fraction of the data with ionic
conductivities for metastable liquids were discarded from the training set.

The next step involved a careful examination of the dataset. First, we elimi-
nated any entries with missing values for the ionic conductivity or ”NaN” in the
dataset. To accomplish the removal of inconsistent data or typographical errors,
we graphed ionic conductivity data as a function of temperature to identify out-
liers in the dataset. Some of the ionic conductivities were extremely low, in the
range of 10−9 S/m belonging to ionic liquids comprised of natural amino acids
as the anions combined with 1-ethyl-3-methylimidazolium [C2mim]+ cation at
298.0 K. [57] We eliminated these points due to very low values of ionic con-
ductivity and the fact that the model derived from an artificial neural network
(ANN, see below) could not be extended to such small values. We also found
that ionic conductivities for the pure 1-n-hexyl-3-methylimidazolium [C6mim]
bromide Br and 1-n-octyl-3-methylimidazolium [C8mim]Br were reported to be
144.1 S/m and 116.4 S/m, respectively at 333.15 K. [58] These values are two
orders of magnitude larger than those for many imidazolium-based ionic liquids.
For example, ionic liquids with shorter alkyl chain length such as [C2mim]Br
and 1-n-butyl-3-methylimidazolium [C4mim]Br have been reported to possess
ionic conductivities of 1.06 S/m at 335.6 K [50] and 0.734 S/m at 373.1 K. [59]
The visualization of the ionic conductivity as a function of the alkyl chain length
also showed that the ionic conductivity decreases with the increase in the alkyl
chain. Thus, the inconsistency led us to remove the seemingly high ionic con-
ductivity datapoints. We pruned the dataset further by identifying duplicate
ionic liquid fields (same cation, anion, temperature, and pressure) and keeping
only the entry with the lowest uncertainty in the ionic conductivity measure-
ments.
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We further reduced the number of points for model development by visualizing
the data to obtain a clue into the appropriate ranges for the ionic conductivity,
temperature and pressure along with chemical identities of the ionic liquid in
the database. We observed that a large fraction of the measurements have been
conducted in the temperature range spanning 275-475 K (Figure S1). Thus, we
removed all the data points outside this temperature range. As there were only
a limited number of points present at pressures other than 101 kPa, we decided
to restrict the model development by fixing the pressure at 101 kPa. The result-
ing dataset contained a total of 1323 data points with ionic conductivities over
six orders of magnitude from 4.1x10−5 S/m to 19.3 S/m as seen in supporting
information. To assess the variability in the chemical identities of the cations
and anions represented in the data set, we generated Figure 1 for every ionic
liquid for which more than five data points were present; the size of the marker
in the figure is proportional to the number of points reported for each of the
ionic liquids. It is clear that a large fraction of the ionic conductivity measure-
ments cover the cations [C2mim]+ and [C4mim]+ paired with a broad variety of
anions, while the remaining cations, on an average, are combined with two to
three distinct anions. Overall, we found that the dataset contained 29 unique
cations and 38 unique anions. There were a total of 111 ionic liquids, approxi-
mately 10% of the ionic liquids that could be formed by combining cations and
anions from the dataset.

Figure 1: The number of ionic liquids for a given cation-anion combination with more than
five data points in the NIST ILThermo database is shown.
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2.2. Feature Generation and Elimination

We translated the identities of the cations and anions to simplified molecular-
input line-entry system or SMILES format using an open-source online website
Open Parser for Systematic IUPAC Nomenclature OPSIN. [60, 61] One of the
anions in the dataset [tetrakis(isothiocyanto)cobaltate(2-)] could not be con-
verted to SMILES format, therefore we removed the anion and corresponding
ionic liquids from further consideration. We used an open-source cheminformat-
ics package RDKit [62] to generate descriptor features for the input to the ANN.
RDKit produced a total of 196 descriptors for each of the cations and anions.
A complete listing is available in the supporting information. Prior to utilizing
these features in the model development, we examined the correlation among
features to reduce the dimensionality of the input and increase the speed of
learning algorithms by calculating cross correlation coefficients for every feature
with every other feature. Comparing the correlation coefficients sequentially,
we eliminated any feature that showed either a positive or negative correlation
coefficient of greater than 0.9 with any of the previous features. This process
brought the aggregate number of cation and anion features down to 38 and 59,
respectively, for a total of 99 chemical features including temperature and pres-
sure for a given ionic liquid. The final set of features used below for the model
development is included in the supporting information.

2.3. Data Normalization

Data normalization is a standard technique in improving the model perfor-
mance and minimizing biases in a multivariate regression with feature values
varying over a wide range. For instance, the RDKit feature ‘hydrogen count’
would possess a considerably smaller range of values for the cations and anions
in comparison to those for the ’molecular weight’ feature, which will likely in-
fluence the weightage assigned to these features. On the output side, the ionic
conductivity data varied over six orders of magnitude as pointed out earlier.
Therefore, we decided to use MinMaxScaler implemented in Scikit-learn [63] to
normalize each input feature and the output by the difference in the maximum
and minimum values, which led to any feature or output value to fall between
0 and 1. We preserved the scaling employed during the model generation for
later use in the prediction.

2.4. Model Development

In this work, we used a total of 1323 experimental data points with a focus
on cations exclusively from the imidazolium family to build machine learning
model. The training set consisted of 90% of the total data, while the remaining
10% of the data was used as test case to evaluate the model’s performance. The
model was constructed using two of the most popular machine learning methods,
support vector machine for regression (SVR) and feed-forward artificial neural
network (FFANN).
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Support vector machine (SVM) is a supervised machine learning framework used
for classification and regression problems. [64, 65, 66] The regression version of
SVM is called support vector regression (SVR) with the central objective of
finding the best fit line in the hyperplane that touches a maximum number of
points. Hyper-parameter tuning of SVR parameters is extremely important to
improve the model’s accuracy for regression analysis. Similarly, feed-forward
artificial neural network (FFANN) is also a supervised learning technique with
a mapping function y = f(x; θ) where θ is the parameter set that the model
learns to provide the most optimal approximation of the function based on the
input feature vector x. The FFANN consisted of three layers: an input layer,
a hidden layer and the output layer. The input layer consisted of chemical fea-
tures along with the state points temperature T and pressure P.

Hyper parameters for both the models were tuned using GridSearchCV im-
plemented in Scikit-learn [63]. GridSearchCV exhaustively searches all the
hyper-parameter combination listed in the parameter search space to identify
the best performing hyper-parameters. The search space for both the models
along with the final hyper-parameters are provided in the supporting informa-
tion. The GridSearchCV method is combined with 10 K-Fold cross validation to
avoid any overfitting during the hyper-parameter search. The best performing
model architecture with the highest accuracy during this hyper-parameter tun-
ing process was selected as the final model with a further evaluation conducted
on the test case set aside earlier. The workflow for cross-validation and testing
of the model is depicted in Figure 2.

Figure 2: Description of model development followed in this study.

3. Results and Discussion

3.1. Model Validity

In this work, we developed machine learning model to predict ionic conduc-
tivity of imidazolium ionic liquids using two different techniques. The best-
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performing model produced the lowest statistical uncertainty and captured the
trends in the data such as the lowest ten and the top ten ionic conductivity
measurements. During the model development, we observed that the models
based on MinMax scaling as discussed earlier performed extremely well for pre-
dicting conductivity values in the higher magnitude range, but the predictive
capability greatly diminished in the lower conductivity region. For instance,
the experimental value of [C6mim] tetrafluoroborate [BF4] is 6.7 x 10−4 S/m at
298 K; however, the predicted value was 3.3 x 10−2 S/m - an error of two or-
ders of magnitude. We noted this behavior for many other ionic liquid systems
with ionic conductivity values on the lower end. The observation prompted us
to convert the ionic conductivity values on a logarithm scale (base 10) before
applying the MinMax scaling, which led to a dramatic improvement in the pre-
diction of low ionic conductivity values. For example, the ionic conductivity
prediction for the ionic liquid [C6mim][BF4] was 7.2 x 10−4 S/m in comparison
to experimental measurement of 6.7 x 10−4 S/m.

Table 1: Comparison of the predictions results for FFANN and SVR for the training set, test
set and the entire dataset. MSE is the mean squared error, MAE is the mean absolute error,
RMSD is root mean square deviation and R2 is the squared correlation between experiment
and predicted data. log10 scale refers to ionic conductivity scaled to log10, while normal scale
refers to ionic conductivity data without any scaling in S/m.

Scale Metric Train Test Entire

SVR FFANN SVR FFANN SVR FFANN
log10 scale R2 0.995 0.993 0.976 0.99 0.993 0.994

MSE 0.002 0.003 0.012 0.004 0.0032 0.003
MAE 0.014 0.036 0.038 0.044 0.017 0.037

RMSD 0.047 0.057 0.111 0.071 0.057 0.059
Normal scale R2 0.999 0.995 0.997 0.996 0.999 0.996

MSE 0.003 0.021 0.023 0.024 0.005 0.022
MAE 0.027 0.079 0.059 0.086 0.031 0.081

RMSD 0.061 0.148 0.153 0.016 0.075 0.149

Table 1 details the statistical assessment of the two models for the training set,
test dataset and the entire set. The performance metrics is further divided into
log10 scale on which the model was trained and the normal ionic conductivity
scale to examine the deviation between experiment and predicted data. Both
the models not only perform well for the training set, but they also have very
high R2 and low MSE, MAE and RMSD for the test set. Surprisingly, the
performance metrics for the normal scale are equivalent or in some cases better
than the log10 scale despite the model not being trained on the normal scale.
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Figure 3: (a) Comparison of FFANN model predictions with the experimental data on a
log10 scale for the training set. A perfect prediction would fall on the y = x dotted line;
(b) comparison for the test set (c) Residual deviation on the log-10 scale calculated as(
σexperiment − σprediction

)
where σ refers to the ionic conductivity for the training set; (d)

Residual deviation for the test set.

Figure 3(a) demonstrates that the FFANN model is able to capture the training
data on the base-10 logarithmic scale spanning six orders of magnitude with
a high accuracy in the low conductivity range. Figures 3(c) and (d) show the
residual deviation calculated by taking the difference in experiment and pre-
dicted value vs the experimental data. It is important to note that the residual
deviation stays within ±0.5 log unit for the training set and the test set over
the entire range of the experimental data.
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Figure 4: (a) Comparison of SVR model predictions with the experimental data on a log-
10 scale for the training set. A perfect prediction would fall on the y = x dotted line;
(b) comparison for the test set (c) Residual deviation on the log-10 scale calculated as(
σexperiment − σprediction

)
where σ refers to the ionic conductivity for the training set; (d)

Residual deviation for the test set.

Similarly, Figure 4(a) depicts that the ionic conductivity correlation using the
SVR model for the training set and test set. In contrast to FFANN, SVR seems
to have more deviation from the y=x line for both sets at low ionic conductivity
values. This is also reflected on the residual deviation plot Figure 4(c) and (d)
where the maximum deviation reaches as high as ±0.6 log unit for the train-
ing set. The normal scale ionic conductivity correlation using FFANN and SVR
are provided in the supporting information as seen in Figure S7 and Figure S8.

The overall accuracy of both the model outputs is encouraging, especially when
considered in the context of the ionic conductivity calculated from molecular
simulations. Transport properties such as ionic conductivity are quite challeng-
ing to accurately predict from atomistic simulations requiring long simulation
times and optimization of force field parameters. The problem is further exac-
erbated for sluggish ionic liquids possessing extremely low ionic conductivity as
probed here. In such scenarios, the simulation results of ionic conductivity can
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differ by a factor up to 10 (by 1 unit on log10-scale) from the corresponding
experimental observations. An added advantage of the proposed model is to
provide guidance, at almost no computational cost, on the ionic conductivity
values for in silico generated pure ionic liquids and mixtures of binary ionic
liquids obtained from possible combinations of cations and anions studied here.
However, we submit that the machine learning model cannot provide molecular-
level insight that is inherent in molecular simulations. For the discussion below,
we focus on FFAAN as the accuracy of the model is slightly better for the entire
data set.

We also probed the accuracy with which the FFAAN model captured trends.
For this, we chose the data at 298 K as there were only a few systems for which
the data was available over the entire temperature window. In Figure S9, we
compare the predictions of the FFANN model for the ten lowest ionic conduc-
tivity values reported in the NIST ILThermo Database at 298 K. We observe
that the model accurately predicts the ordering of the ionic liquids while the
ionic conductivities are also in very good agreement. The plot also reveals that
long alkyl chains or amino acid-based anions tend to produce low conductivity
ionic liquids. Similarly, Figure S10 represents a comparison between the FFANN
model predictions and experimental measurements for the ten largest conduc-
tivity values at 298 K. It is evident that the predictive capability of the model is
excellent. It is also important to highlight that not only does the model capture
the quantitative trend accurately, but it is also performs correctly in terms of
taking into account the cation and anion properties and behavior. For exam-
ple, [BF4]− when paired with a long alkyl chain cation [C12mim]+ yields one of
the lowest ionic conductivity ionic liquids, while its combination with [C2mim]+

generates an ionic liquid with five orders of magnitude higher ionic conductivity
than that for [C12mim][BF4]. We also point out that the change in the identity
of the anion can dramatically affect the ionic conductivity as exemplified by 1-
allyl-3-methylimidazolium [AMIm][Benzoate] and [AMIm][Formate], the latter
with the ionic conductivity four orders of magnitude higher than that for the
former; the model successfully predicts the trend.

3.2. Unique Ionic Liquid Combination

Next we generated all the combinations of 29 unique cations and 38 anions
present in the dataset, which resulted into 1102 pure ionic liquids at 298 K for
which we predicted ionic conductivity at 298 K. Rather than using both SVR
and FFANN, we, first, tested the accuracy for such predictions using FFANN
and SVR model based on two test cases that were not part of the training
set. The first system is [C2mim] bis(fluorosulfonyl)imide [FSI]. The database
contained [C4mim][FSI] as the only ionic liquid containing [FSI]−. The model
prediction for the ionic conductivity of using FFANN was found to be 1.60 S/m
for [C2mim][FSI] at 298.15 K, in excellent agreement with the corresponding
experimental measurements of 1.61± 0.02 S/m compared to significantly under
predicted value of 0.189 S/m using SVR method. [67] The second system is rep-
resented by the ionic liquid [C1mim][DCA], which was predicted to possess the

11



highest ionic conductivity of 3.70 S/m at 298 K using FFANN, which is roughly
30% higher than the highest ionic conductivity of 2.83 S/m for [C2mim][DCA].
We found two experimental papers confirming that the ionic conductivity of
[C1mim][DCA] at 298.0 K is around 3.60 S/m, [68, 69] once again in excellent
agreement with the value obtained from our FFAN model. The SVR model,
however, suggested the ionic conductivity to be 0.061 S/m, a significant under-
prediction. These observations point to the fact that the FFANN model is well
suited to estimate ionic conductivity for ionic liquids as long as the constituent
ions are present in the training set and the features for the ions generated are
also present in the dataset. However that is not the case for SVR which seems to
perform poorly for ionic liquids beyond the training set. It is also worth pointing
out that we are able to obtain the ionic conductivity for [C1mim][DCA] higher
than the largest value of 2.83 S/m at 298 K because the model was fitted using
the ionic conductivity data up to ∼19 S/m (see Figure S7(a).)

The high accuracy of the FFAAN to model the experimental ionic conduc-
tivity data prompted us to generate ionic liquid predictions as seen in Figure 5
along with the experimental ionic conductivity values at 298 K. It is clear that
a large fraction (87.3%) of the ionic liquids exhibit ionic conductivity below
0.5 S/m. More interestingly, the procedure yielded a number of ionic liquids
(approximately 8.3%) with ionic conductivity between 0.5 S/m and 1.0 S/m
while 47 ionic liquids were predicted to possess ionic conductivity greater than
1.0 S/m. As a comparison, the original data contained a very few ionic liq-
uids crossing this threshold (five out of 73 data points). Cyano-based anions
such as dicyanamide [N(CN)2]−, tricyanomethanide [C(CN)3]−, tetracyanobo-
rate [B(CN)4]−, and thiocyanate [SCN]− accounted for the two thirds of the
ionic liquids with ionic conductivity greater than 1 S/m. As for the cation,
[C1mim]+, [C2mim]+, and [C3mim]+ were found in two thirds of the ionic liq-
uids for which the ionic conductivity is greater than 1 S/m.
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Figure 5: (a) Ionic conductivity comparison between experiment (open circle in red) and
model prediction(green) using FFANN for all those data at 298 K. (b) Unique ionic liquid
predictions using FFANN for 1102 ionic liquid obtained by combining 29 unique cations and
38 anions at 298 K. The ionic conductivity for these ionic liquids at 350 and 400 K appear in
the supporting information (Figure S14.)

One potential issue with the generation of ionic liquids by combining cations
and anions is the lack of knowledge concerning whether such ionic liquids would
exist in the liquid state at the temperature of interest. For example, Martino
et al. reported that the physical state of [C1mim][DCA] is a supercooled liquid
at room temperature. [70] In lieu of experiments, some clues into the physical
state of these ionic liquids can be gleaned from conducting molecular simula-
tions and analyzing the resulting radial distribution functions as performed by
Beckner and Pfaendtner. [38]. We decided not to purse such an approach as our
primary motivation here is to identify pure ionic liquids, and binary ionic liquid
mixtures bearing high ionic conductivity. In future studies, we plan to perform
molecular simulations to offer insights into the molecular-level mechanism for
high conductivity of the novel ionic liquids suggested by our model. We also
hope that the promising ionic liquid candidates emerging from our work will
enable the experimental community to focus its efforts in the discovery for high
ionic conductivity ionic liquids.

3.3. Binary Ionic Liquid Mixtures

In this section, we evaluate the performance of the FFANN model in predict-
ing ionic conductivity of binary ionic liquid mixtures using transfer learning,
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where the idea is to solve new tasks by transferring knowledge gained from a
closely related problem. In this work, the transfer learning takes the form of
using pure-component ionic conductivity data to develop a model to predict
the ionic conductivity data for binary ionic liquids which the model has not
encountered before. The utility of the approach stems from the fact that there
is a significant increase in the number of binary ionic liquids due not only to the
combinatorics but also the fact that the concentration of the constituent ionic
liquids is now an additional independent variable. For example, if the number
of unique cations is Nc and Na is the number of anions, there are potentially
Nc ∗(Nc−1)/2∗Na binary ionic liquids with common anion (Binary C systems)
and Nc ∗ Na ∗ (Na − 1)/2 binary ionic liquids sharing the identical cation (Bi-
nary A systems); the number of ionic liquids is further amplified by the number
of practically realizable formulations. With 29 unique cations and 38 anions, we
enumerated 15,428 Binary C and 20,387 Binary A systems. For each of these
mixtures, we probed 19 intermediate concentrations spaced at an interval of
0.05 mole fraction between the pure ionic liquids leading to a total of ∼680,000
binary ionic liquids.

For estimating the ionic conductivity of a given binary mixture, we combined the
input features of the constituent ionic liquid cations and anions on a mole frac-
tion basis. For example, for a Binary C system designated as [C1]x[C2]1−x[A],
we obtained the cation features as the mole fraction-weighted average of the
features for [C1] and [C2]. As this is an illustration for a common anion, we
retained the input features for the anion as derived in the model development.
Analogously, for Binary A systems represented as [C][A1]x[A2]1−x, we kept the
cation features while the anion features were derived by scaling the individual
anion features by respective mole fractions and adding the features thus cal-
culated. To examine the overall accuracy of such an approach, we compared
the model predictions with experimental data reported for several binary ionic
liquid mixtures in the NIST database and literature. [71, 72, 73, 74, 75, 76]

3.4. Comparison of Experimental and FFANN-predicted Ionic Conductivity of
Binary Ionic Liquids

Table 2 lists the thirteen binary ionic liquid mixtures for which experimental
data for ionic conductivity are available along with the number of data points
and temperature range. Also included in Table 2 are the FFANN predictions
for these systems and corresponding RMSD values. It is remarkable that the
RMSD it is less than 0.1 S/m for many systems, implying the suitability of the
model for estimating the ionic conductivity for binary ionic liquid systems.
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Table 2: Root mean-squared deviation of the prediction and experimental data for binary
ionic liquid mixtures. N.D stands for number of datapoints present in the dataset. [C4mim]*
stands for 1-butyl-2,3-dimethylimidazolium cation.

System N.D Temperature RMSD Reference
Range/K S/m

[C2mim][DCA] + [C2mim][BF4] 9 298.15 0.46 [72]
[C2mim][DCA] + [C2mim][SCN] 30 298.15-323.15 0.36 [73]
[C4mim][Cl] + [C4mim][CF3SO3] 5 298.0 0.05 [76]
[C4mim][MeSO4] + [C4mim][Me2PO4] 4 298.0 0.17 [76]
[C4mim][NTf2] + [C4mim][CF3SO3] 5 298.0 0.05 [76]
[C4mim][NTf2] + [C4mim][MeSO4] 5 298.0 0.10 [76]
[C4mim][NTf2] + [C4mim][Me2PO4] 6 298.0 0.21 [76]
[C4mim]*[Azide] + [C4mim]*[BF4] 70 303.15-368.15 0.08 [71]
[C8mim][Cl] + [C8mim][BF4] 42 303.0-333.0 0.02 [75]
[C6mim][Cl] + [C6mim][BF4] 42 303.0-333.0 0.06 [75]
[C4mim][NTf2] + [C4mim][Acetate] 32 283.15-333.15 0.13 [74]
[C6mim][Cl] + [C6mim][PF6] 35 303.0-333.0 0.07 [75]
[C2mim][BF4] + [C8mim][BF4] 30 280.0-300.0† 0.09
Overall 315 0.167
†Personal communication

Figure 6: Comparison between experiment, FFANN model and log based linear relationship
shown in equation ?? for [C4mim]*[Azide]x1 + [C4mim]*[BF4]1−x1 at (a) 303.15 K, (b)
323.15 K and (c) 368.15 K. The dashed lines connecting the pure end points are only guide
to the eye. [C4mim]* stands for 1-butyl-2,3-dimethylimidazolium cation. [71] The dashed
line with ? is obtained by a logarithmic combining rule for ionic conductivity lnσmix =
x1 ∗ lnσ1 + (1 − x1) ∗ lnσ2, while the dashed line without symbol indicates estimates with a
linear combining rule.

Out of the thirteen systems examined in Table 2, the binary system comprised
of [C4mim]*[Azide] and [C4mim]*[BF4] exhibits non-ideal behavior, where the
ionic conductivity achieves either a minimum or maximum at an intermediate
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mole fraction. Figure 6 shows that the ionic liquid passes through a maximum
at lower temperatures (303 and 323 K), while a minimum is observed at higher
temperature (368 K). It is remarkable that the FFAAN model developed here
is able to capture the trend despite its complexity. Furthermore, the model
is accurate enough to identify the concentrations at which such extrema were
measured in the experiment. [71] Overall this indicates that the model is ro-
bust enough to closely match both qualitative and quantitative trends; this is
quite encouraging given that the data for these binary ionic liquid systems were
not part of the model development. We further tested the predictive capability
of the model to reproduce such a non-ideal behavior reported by McFarlane
et al.[77]. The authors measured the molar conductivity for the binary ionic
system of [C2mim][NTf2] and [C2mim][CF3SO3] and found that a maximum at
an intermediate mole fraction. Due to the lack of experimental data for mo-
lar volumes, a direct comparison was not possible; however, our model outputs
(Figure S15) indeed confirmed that the binary ionic liquid mixture would ex-
hibit a maximum in ionic conductivity.

Encouraged by the success of the model in estimating ionic conductivity for
several binary mixtures, we proceeded to examine if there are binary ionic liq-
uid mixtures producing an extremum (either a maximum or minimum) in ionic
conductivity as the mole fractions of the constituent ionic liquids are varied. We
discovered that there were a total of 5040 Binary C systems, which yielded a
maximum in the ionic conductivity. On the other hand, a total of 3771 Binary A
systems produced a maximum in the ionic conductivity at 298 K. Normalizing
these systems by the corresponding number of possible binary ionic liquid sys-
tems, we calculated that approximately 32.6% of Binary C and 18.4% of Bi-
nary A systems could potentially be formed to obtain ionic conductivity higher
than those of the two pure ionic liquids forming the mixture. Two observations
are worth pointing out: (a) binary ionic liquid systems offer a viable pathway
for increasing ionic conductivity; (b) the likelihood for obtaining a maximum in
ionic conductivity is higher when two different cations are mixed, particularly
mixing cations with a large difference in the alkyl chain length.

In order to gain additional insight into the extent of enhancement in ionic con-
ductivity, we calculated the percentage enhancement (E) using eq. 1 where σmax

represents the maximum ionic conductivity for the mixture and σmax,pure refers
to the higher of the two pure ionic conductivities. Figure 7(a) and (b) present
the binary enhancement factor for Binary A and Binary C systems, respectively.

E =
σmax − σmax,pure

σmax,pure
∗ 100 (1)

It is apparent that the percentage enhancement is large for the ionic liquid mix-
tures systems with ionic conductivity values lower than 1 S/m and is partly
attributable to the low conductivity values of the pure ionic liquids appearing
in the denominator of eq. 1. It is also interesting to observe that the Binary C
systems display a broader range of enhancement values in comparison to those
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found for Binary A systems. The analysis suggests that there exists at least
one ionic liquid mixture for each of the unique cations and anions exhibiting
an enhancement. We also uncovered that the Binary A mixtures for which
the maximum enhancement are the top three highest system containing hy-
drogen sulfate [HSO4]− and chloride as the anions. These mixtures are (i)
[C6mim][Cl]0.75[HSO4]0.25 with a maximum pure value of 0.0021 S/m and en-
hanced maximum value of 0.0177 S/m leading to an enhancement of 715.4%,
(ii) [C8mim][Cl]0.75[HSO4]0.25 with a maximum pure value of 0.0010 S/m and
enhanced maximum value of 0.008 S/m with an enhancement of 675.4% and
(iii)[C3mim][Cl]0.55[HSO4]0.45 with a maximum pure value of 0.006 S/m and en-
hanced maximum value of 0.047 S/m with an enhancement of 582.4%. As for the
binary cation mixture seen in (b), 1-(1-cyanomethyl)-3-methylimidazolium0.6

3-(2-(butylamino)-2-oxoethyl)-1-ethyl-1H-imidazolium0.4[PF6] has a maximum
pure value of 0.0196 S/m and the maximum value of 0.113 S/m leading to an
increase of 485.2%.

Figure 7: Percentage enhancement and suppression in ionic conductivity for binary ionic liq-
uid mixtures at 298 K. Binary A Max stands for a binary mixture sharing a common cation
showing maximum enhancement; Binary C Max stands for a binary cation mixture displaying
maximum enhancement; Binary A Min denotes a binary anion mixture exhibiting minimum
suppression, and Binary C Min represents a binary cation mixture producing minimum sup-
pression.

Similarly, there were several binary ionic liquid systems which showed an oppo-
site behavior, i.e., there is at least one binary ionic liquid composition at which
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the ionic conductivity is lower than those of the corresponding pure ionic liq-
uids. We uncovered 2305 Binary C and 4284 Binary A systems which showed
a minimum in the ionic conductivity as a function of the ionic liquid compo-
sition at 298 K. To quantify the extent of lowering in the ionic conductivity,
we calculated percentage suppression (S) using eq. 2 in which σmin denotes the
minimum in ionic conductivity and σmax,pure refers to the maximum of the two
pure ionic conductivities. We elected to measure the deviation from σmax,pure

to emphasize the reduction in the

S =
σmin − σmax,pure

σmax,pure
∗ 100 (2)

ionic conductivity expected when an ionic liquid with lower conductivity is
mixed with the one possessing high conductivity. Inherent in the definition
in eq. 2 is the fact that the percentage lowering is capped at 100%. The ex-
tent of depression in the ionic conductivity depicted in Figure 7 confirms the
expectation. It is noteworthy that the suppression in the ionic conductivity
brought about by the mixture of anions is restricted to ionic liquids with ionic
conductivity below 1 S/m, while the depression in the ionic conductivity due to
mixing of cations is predicted to cover the entire range of ionic conductivities.
Furthermore, we identified the number for a given cation pair or anion respon-
sible for elevating or depressing ionic conductivity for binary mixtures. The
analysis is presented in the form of various heat maps (Figures S16, S17, S18,
and S19). It is also interesting to note that the short chain alkyl cations such
as 1-methylimidazolium and 1,3-dimethylimidazolium are promising cations for
ionic conductivity enhancement when combined with other cations as seen in
Figure S18.
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4. Conclusion

In this article, we made use of the NIST ILThermo Database to derive an ar-
tificial neural network model (FFAAN) and a support vector machine regression
model for predicting ionic conductivity of pure imidazolium-based ionic liquids.
The ionic conductivity values ranged over six orders of magnitude and covered
temperatures from 275 K to 475 K. The input features for the models were
obtained using RDKit. The overall accuracy was found to be nearly identical
for both the models. An examination of the predictions for the high ionic con-
ductivity ionic liquids suggested superior performance for FFAAN, which was
then employed for subsequent predictions.

Using 29 unique cations and 38 unique anions in the database, the ionic conduc-
tivity for all the possible combinations (1102 in total) were predicted at 298 K.
The procedure led to the identification of the ionic liquid [C1mim][DCA] with
the highest conductivity of 3.70 S/m - 30% higher than the highest ionic con-
ductivity reported in the NIST ILThermo Database at 298 K. The prediction
was confirmed with the experimental data available in the literature. A sim-
ple procedure for combining the features on a mole fraction-weighted basis was
devised to evaluate the predictive capability of the model for ionic liquid-ionic
liquid mixtures. The results obtained with the approach showed that model was
able to accurately capture the ionic conductivity for several binary for which
experimental data exist.

The present study suggests a large number of binary mixture with non-ideal
behavior in terms of the ionic conductivity. We encourage the experimental and
molecular simulation communities to test the predictions. Confirmation of such
non-ideality will increase the confidence in such models, while any deviations
of the measured or computed properties from the predictions will enable a fur-
ther refinement of the model. In either case, it is expected that the concerted
effort between the experimental, molecular simulation, and machine learning
approaches will accelerate materials discovery in the ionic liquids domain.
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[11] M. Galiński, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes,
Electrochimica acta 51 (26) (2006) 5567–5580.
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