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39

Abstract The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges focuses the computational mod-40

eling community on areas in need of improvement for rational drug design. The SAMPL7 physical property challenge dealt41

with prediction of octanol-water partition coefficients and pKa for 22 compounds. The dataset was composed of a series of42

N-acylsulfonamides and related bioisosteres 17 research groups participated in the log P challenge, submitting 33 blind submis-43

sions total. For the pKa challenge, 7 different groups participated, submitting 9 blind submissions in total. Overall, the accuracy44

of octanol-water log P predictions in the SAMPL7 challenge was lower than octanol-water log P predictions in SAMPL6, likely45

due to a more diverse dataset. Compared to the SAMPL6 pKa challenge, accuracy remains unchanged in SAMPL7. Interestingly,46

here, though macroscopic pKa values were often predicted with reasonable accuracy, there was dramatically more disagree-47

ment among participants as to which microscopic transitions produced these values (with methods often disagreeing even as48

to the sign of the free energy change associated with certain transitions), indicating far more work needs to be done on pKa49

prediction methods.50

51

1 Introduction52

Computational modeling aims to enable molecular design, property prediction, prediction of biomolecular interactions, and53

provide a detailed understanding of chemical and biological mechanisms. Methods for making these types of predictions can54

suffer from poor or unpredictable performance, thus hindering their predictive power. Without a large scale evaluation of55

methods, it can be difficult to know what method would yield the most accurate predictions for a system of interest. Large scale56

comparative evaluations of methods are rare and difficult to perform because no individual group has expertise in or access to57

all relevant methods. Thus, methodological studies typically focus on introducing newmethods, without extensive comparisons58

to other methods.59

The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges tacklemodeling areas in need of improve-60

ment, focusing the community on one accuracy-limiting problem at a time. In SAMPL challenges, participants predict a target61

property such as solvation free energy, given a target set of molecules. Then the corresponding experimental data remains in-62

accessible to the public until the challenge officially closes. By focusing on specific areas in need of improvement, SAMPL helps63

drive progress in computational modeling.64

Here, we report on a SAMPL7 physical property challenge that focused on octanol-water partition coefficients (log P) and pKa.65

The pKa of amolecule, or the negative logarithm of the acid–base dissociation constant, is related to the equilibrium constant for66

the dissociation of a particular acid into its conjugate base and a free proton. The pKa also corresponds to the pH at which the67

corresponding acid and its conjugate base each are populated equally in solution. Given that the pKa corresponds to a transition68

between specific protonation states, a given molecule may have multiple pKa values.69

The pKa is an important physical property to take into account in drug development. The pKa value is used to indicate the70

strength of an acid. A lower pKa value indicates a stronger acid, indicating the acid more fully dissociates in water. Molecules71

with multiple ionizable centers have multiple pKa values, and knowledge of the pKa of each of the ionizable moieties allows72

for the percentage of ionised/neutral species to be calculated at a given pH (if activity coefficients are known/assumed). pKa73

plays a particularly important role in drug development because the ionization state of molecules at physiological pH can have74

important ramifications in termsof drug-target interactions (e.g., ionic interactions) and/or by influencing other key determinants75

of drug absorption, distribution, metabolism and excretion (ADME) [1], such as lipophilicity, solubility, membrane permeability76

and plasma protein binding [2].77

Accurate pKa predictions play a critical role inmolecular design and discovery as well since pKa comes up in somany contexts.78

For example, inaccurate protonation state predictions impair the accuracy of predicted distribution coefficients such as those79

from free energy calculations. Similarly, binding calculations can be affected by a change in protonation state [3]. If a ligand in a80

protein-ligand system has a different protonation state in the binding pocket compared to when the molecule is in the aqueous81

phase, then this needs to be taken into account in the thermodynamic cycle when computing protein-ligand binding affinities.82

Multiprotic molecules, and those with multiple tautomeric states, have two types of pKa, microscopic and macroscopic. The83

microscopic pKa applies to a specific transition or equilibrium between microstates, i.e. for a transition between a specific tau-84

tomer at one formal charge and that at another formal charge (e.g. two states at different formal charges in Figure 2). It relates85
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to the acid dissociation constant associated with that specific transition. As a special case, a microscopic pKa sometimes refers86

to the pKa of deprotonation of a single titratable group while all the other titratable and tautomerizable functional groups of87

the same molecule are held fixed, but this might possibly not reflect the dominant deprotonation pathway of a given acidic88

tautomer if the base state possesses energetically favored alternate tautomers. There is no pKa between two tautomers with89

the same formal charge because they have the same number of protons so their relative probability is independent of pH. The90

pH-independent free energy difference between them determines their relative population [4].91

At some level, the macroscopic pKa can be thought of as describing the acid dissociation constant related to the loss of a92

proton from amolecule regardless of which functional group the proton is dissociating from, but it may bemore helpful to think93

of it (in the case of polyprotic molecules) as a macroscopic observable describing the collective behavior of various tautomeric94

states as the dominant formal charge of the molecule shifts. In cases where a molecule has only a single location for a titratable95

proton, the microscopic pKa becomes equal to the macroscopic pKa.96

In the current challenge, we explored how well methods could predict macroscopic pKa ’s through microscopic pKa calcula-97

tions.98

The partition coefficient (log P) and the distribution coefficient (log D) are relevant to drug discovery, as they are used to99

describe lipophilicity. Lipophilicity influences drug-target and off-target interactions through hydrophobic interactions, and rel-100

atively high lipophilicity results in reduced aqueous solubility and increased likelihood of metabolic instability [5].101

Prediction of partitioning and distribution has some relevance to drug distribution. Particularly, partitioning and distribution102

experiments involve a biphasic system with separated aqueous and organic phases, such as water and octanol, so such experi-103

ments have some of the features of the interface between blood or cytoplasm and the cell membrane [6, 7] and thus improved104

predictive power for partitioning and distribution may pay off with an improved understanding of such in vivo events.105

Methods to predict log P/log Dmay also use (and test) some of the same techniques which can be applied to binding predic-106

tions. Both types of calculations can use solvation free energies and partitioning between environments (though this could be107

avoided by computing the transfer free energy). Such solute partitioningmodels are simple test systems for the transfer free en-108

ergy of a molecule to a hydrophobic environment of a protein binding pocket, without having to account for additional specific109

interactions which are present in biomolecular binding sites. Thus partitioning and distribution calculations allow separating110

force-field accuracy from errors related to conformational sampling of proteins and protonation state predictions of proteins111

and ligands.112

The log P is usually defined as the equilibrium concentration ratio of the neutral state of a substance between two phases:113

logP = log10Kow = log10
[unionized solute]octanol
[unionized solute]water

(1)
Strictly speaking, this definition of the partition coefficient P as a thermodynamic equilibrium constant is independent of total so-114

lute concentration in the infinite dilution limit only. This reference state is commonly assumed in physics-based prediction mod-115

els. The log P prediction challenge explores how well current methods are able to model the transfer free energy of molecules116

between different solvent environments without any complications coming from predicting protonation states.117

1.1 Motivation for the log P and pKa challenge118

Previous SAMPL challenges have looked at the prediction of solvation free energies [8–12], guest-host [13–19] and protein-ligand119

binding affinities [20–26], pKa [27–33], distribution coefficients [34–37], and partition coefficients [38–41]. These challenges120

have helped uncover sources of error, pinpoint the reasons various methods performed poorly or well and their strengths and121

weaknesses, and facilitate dissemination of lessons learned after each challenge ends, ultimately leading to improved methods122

and algorithms.123

Several past challenges focused on solvation modeling in order to help address this accuracy-limiting component of protein-124

ligand modeling. The SAMPL0 through SAMPL4 challenges included hydration free energy prediction, followed by cyclohexane-125

water distribution coefficient prediction in SAMPL5, and octanol-water distribution coefficient prediction in SAMPL6. Large errors126

were observed in the SAMPL5 cyclohexane-water log D prediction challenge due to tautomers and protonation states not being127

taken into account [29, 42] or adequately handled. Many participants reported log P predictions in place of log D predictions,128

in part because the different ionization states of the molecules were thought not to be particularly relevant in the challenge,129

but this proved not to be the case. Methods that treated multiple protonation and tautomeric states and incorporated pKa130

corrections (which relies on accurate pKa prediction) in their predictions performed better [42].131
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In order to pinpoint sources of error in log D predictions, separate log P and pKa challenges were organized for SAMPL6 [27,132

38, 43, 44]. Better prediction performance was seen in the SAMPL6 octanol-water log P challenge compared to the SAMPL5133

cyclohexane-water log D challenge. Performance improved in SAMPL6 for several reasons. First, the latter challenge avoided the134

pKa prediction problem. Second, far more experimental training data was available (aiding empirical and implicit QMmethods).135

Finally, the more narrow chemical diversity in SAMPL6 were may have helped participants. For the present SAMPL7 physical136

properties challenge, we focused on assessing the accuracy of log P and pKa predictions, and then combined pKa and log P137

predictions to obtain log D predictions.138

1.2 Historical SAMPL pKa performance139

During the SAMPL6 challenge a broad range of conceptually different empirical and physics–based computational methods140

were used to predict pKa values, as discussed in the overview paper [43]. To provide some context for the results of the SAMPL7141

challenge the main results are summarized here.142

The empirical approaches used during SAMPL6 can be divided into three categories, Database Lookup (DL), Linear Free143

Energy Relationship (LFER), and Quantitative Structure–Property/Machine Learning (QSPR/ML) approaches [12]. The physical144

approaches can be divided into pure quantum–mechanical (QM) methods, QM with a linear empirical correction (QM+LEC) to145

account for the free energy of the proton in solution or potential systematic errors caused by the chosen method, and QM in146

combination with molecular mechanics (QM+MM). Generally speaking, the empirical methods require significantly less compu-147

tational effort than their physics–based counterparts once they are parameterized.148

The best–performing models included four empirical methods and one QM-based model. These five methods were able to149

predict the acidity constants of the challenge compounds to within 1 pKa unit. In fact, while most empirical models – except for150

the DL and two of the five QSPR/ML approaches – were able to predict the acidity constants to within about 1.5 pKa units, the151

range of predictions was much wider for the QM-based models.152

In SAMPL6, unlike SAMPL7, the number of submissions per group was not limited, so many groups submitted multiple153

predictions to test the performance of different variations using the same basic methodology, encompassing, e.g. different154

levels of theory, model parameters, or conformational ensembles.155

Well–performing empirical models included both LFER methods, such as ACD/pKa Classic (submission ID xmyhm) and Epik156

Scan (nb007), and QSPR/ML methods such as MoKa (nb017) and S+pKa (gyuhx), all performing with root mean square errors157

(RMSE) between 0.73 and 0.95 pKa units [45–48]. These well-established tools thus demonstrated their reliability and quality.158

Among the physics–based models, the most straightforward approach involved calculation of the acidity constants without159

any empirical corrections, including the experimental value for the free energy of solvation of the proton [49]. One group160

applied different calculation schemes to the compounds of the SAMPL6 challenge that differed in the use of gas phase and/or161

solution phase geometries as well as additional high–level single point gas phase calculations [30]. While the results achieved162

by this method were quite promising, with an initial RMSE of 1.77 pKa units (ryzue) that could be improved to 1.40 by including163

a standard state correction and a different value for the free energy of the proton, the authors also showed the effectiveness164

of a simple linear regression scheme to correct the raw acidity constants. In this case the RMSE of the best-performing model165

decreased further from 1.40 to 0.73 pKa units after regression.166

This type of empirical correction was used by most QM-based approaches, including the best–performing method of the167

SAMPL6 challenge [43], improving some systematic deficiencies of the QM level of theory and basis sets and accounting for the168

proton’s solvation free energy. The best-performing QM+LEC method, xvxzd, achieved an RMSE of 0.68 pKa units during the169

challenge using the COSMO-RS solvation model. This also made it the best–performing model overall, with two other methods170

using the same solvation model only slightly worse (yqkga and 8xt50, with RMSEs of 1.01 and 1.07 pKa units, respectively [32, 43,171

50]).172

A QM+LECmethod using a different solvation approach, EC-RISM, only achieved an RMSE of 1.70 pKa units for the submitted173

model (nb001), but a post-submission optimization of the conformer generation workflow and the electrostatic interactions174

improved the RMSE to 1.13, which is more in line with the other well–performing QM+LEC methods [31]. The CPCM implicit175

solvation model was used by one group [28, 43] and performed only slightly worse than COSMO-RS (RMSEs from the paper176

do not agree with official numbers. Only officially submitted ones are discussed here). For these two models, differing only by177

training either a single LEC for all compounds (35bdm) or two separate LECs for deprotonations of neutral compounds to anions178

and deprotonations of cations to neutral compounds (p0jba), the RMSEswere 1.72 and 1.31 pKa units, respectively. These results179

show that accurate pKa values can be predicted when using the QM+LEC approach with different solvation models.180
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A slightly different approach was used by one participant (0wfzo) where QM calculations of the free energy of deprotonation181

and thermodynamic integration, an MM method, were combined to calculate the difference of the solvation free energies be-182

tween the acid and its conjugate base [33]. This approach yielded an average level of performance, with an RMSE of 2.89 for the183

macroscopic acidity constants calculated from the submitted microscopic acidity constants, excluding two compounds (SM14184

and SM18) from the analysis as they exhibited multiple pKa values too close to each other.185

1.3 Approaches to predicting small molecule pKa’s186

Calculations of aqueous pKa values have a long history in computational chemistry, with methods ranging from direct quantum-187

mechanical approaches for determining the free energy of protonated and deprotonated species in solution using explicit, im-188

plicit, or hybrid solvation models, to continuum electrostatics-based computations of relative pKa shifts, and empirical or rule-189

based algorithms, as summarized in a number of review articles, e.g. Alongi et al. [51],and Liao et al. [52] and in the SAMPL6190

overview papers [27, 43].191

Computational methods typically designate tautomeric states (“microstates”) for acid and base forms of a compound sepa-192

rated by a unit charge upon (de-)protonation. Their free energies can be linked individually in a pair-wise manner (“microstate193

transitions”) to yield so–called microstate pKa values from which the macroscopic pKa can be determined [53]. Alternatively, the194

tautomer free energies, combined across the underlying conformational states, contribute to the ratio of partition functions195

representing acid and base forms, allowing the direct calculation of macroscopic acidity constants [54]. A complication arises196

if, as is common practice with quantum-mechanical approaches, the difference of solution-state (standard) free energies for197

differently charged species, G(A−aq) and G(HAaq) for a general reaction198

HA → A− + H+ (2)
are scaled by a “slope” factor m and augmented by an intercept parameter b to account for the free energy of the proton,199

yielding a regression equation, given here for microstate j of the base and k of the acid form, respectively,200

pKa, jk = b +
m

RT ln 10
[Gj(A−) − Gk(HA)] (3)

where slope and intercept are typically adjusted with respect to databases of experimental pK a values [54] and RT has the201

usual thermodynamic meaning. Here G denotes the Gibbs free energy, but a similar expression would hold for Helmholtz free202

energy depending on the choice of ensemble.203

As derived in Tielker et al. [54], statistics over all connected microstates (in the “state transition” (ST) approach) and a priori204

partition function summation (in the “partition function” (PF) approach) are identical if and only if m = 1, though in practice the205

difference is usually negligible.206

For the SAMPL7 pKa challenge, participants were required to submit predictions ina novel format, reporting transition free207

energies between microstates as in the “ΔG0” formalism outlined in Gunner et al. [55] (and similar to the work of Selwa et208

al. [28]). Here, the pH–dependent free energy change between “states” k and j is defined by rewriting the well-knownHenderson-209

Hasselbalch equation for, e.g., the general reaction (Eq. 3) in the form210

ΔGjk (pH) = ΔmjkCunits
(

pH − pKa, jk
) (4)

with Cunits = RT ln 10 and, for a transition away from the reference state which involves loss of a proton, Δmjk = −1, denoting211

the charge difference between the “reference state” k (second index, usually taken as a selected neutral microstate, in this case212

HAaq) and the target state j.213

For the thermodynamic standard state at pH = 0 we can write214

ΔG0
jk = −ΔmjkCunitspKa, jk (5)

which shows that ΔG0
jk can be identified with a formal free energy of reaction. An advantage of this approach is that closed215

thermodynamic cycles by summing overΔG0
jk with identical reference kwould add to zero for consistent computationalmethods,216

which can serve as an added value for testing theoretical frameworks [55].217

The macroscopic pKa is obtained by computing the total fraction of all microstates with charge q and j ∈ q via218

xj∈q(pH) =
exp[−ΔGj∈q,k(pH)∕RT ]
∑

i exp[−ΔGik(pH)∕RT ]
(6)
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and solving, usually numerically, for the pH at which219

xj∈q(1) (pH) = xj∈q(2) (pH) (7)
for adjacent net charges q(1) and q(2). At this pH, pKa = pH for these particular charge states, and this approach constitutes220

a formal “titration”.221

Outlining the connection between theΔG0 and the ST and PF formalisms [54] is useful for practitioners who directly compute222

microstate free energies (including corresponding tautomerization free energies for which no pKa is defined) or microstate223

transition pKa values for single deprotonation reactions where a specific reaction direction is by definition implied. The general224

algorithm is as follows, with subscript order pKa, jk implying the reaction j → k−+H+ for any total charge on j and subscript order225

ΔG0
jk meaning the reaction k(+mH+) → j(+nH+) with neutral k. For all states i not equal to the neutral reference microstate k we226

have227

a) If q(i) = 0, ΔG0
ik = mΔG

0(k→ i)228

b) If q(i) − q(k) = +1 (the reaction is k + H+ → i+), then ΔG0
ik = −CunitspKa,ik229

c) If q(i) − q(k) = −1 (the reaction is k → i− + H+), then ΔG0
ik = +CunitspKa,ki230

d) If q(i) − q(k) = +2 (the reaction is k + 2H+ → i2+ via the individual reactions k + H+ → j+ and j+ + H+ → i2+), then ΔG0
ik =231

−Cunits(pKa,jk + pKa,ij)232

e) If q(i) − q(k) = −2 (the reaction is k → i2− + 2H+ via the individual reactions k → j− + H+ and j− → i2− + H+), then ΔG0
ik =233

+Cunits(pKa,kj + pKa,ji)234

This scheme is readily generalized to changes of more than two unit charges. The scaling by the factor m in (a) guarantees235

consistency over closed thermodynamic cycles in the common case of non-zero slope parameter for QM-based models.236

To demonstrate howmacroscopic pKa values computed this way relate to ST and PF results it is instructive to treat the simple237

example of a two-tautomer acid in equilibrium with a single-tautomer base, i.e.238

HA1
Ka,1
→ A− + H+,HA2

Ka,2
→ A− + H+ (8)

for which Eq. ( 3) yields [54]239

KST
a =

(

1
Ka,1

+ 1
Ka,2

)−1

= 10−b
exp[−mG(A−)∕RT ]

exp[−mG(HA1)∕RT ] + exp[−mG(HA2)∕RT ]
(9)

Following the algorithm for ΔG0
jk above with HA1 assumed as neutral reference and augmenting the pH dependence accord-240

ing to Eq. (4) we have241

ΔG(HA1) = 0 (10)

ΔG(HA2) = m[G(HA2) − G(HA1)] (11)

ΔG(A−) = −Cunits(pH − pKa,1) = m[G(A−) − G(HA1)] − Cunits(pH − b) (12)
From Eq. 5 and equating neutral and charged molar fractions it follows from x(HA) = x(A−)242

1 + exp
{

−m
[

G
(

HA2
)

− G
(

HA1
)]

∕RT
}

= 10−b exp
{

+m
[

G
(

HA1
)

− G (A−)
]

∕RT
}

∕Ka (13)
which, upon rearrangement and comparison with (9), yields243

Ka = KST
a (14)

Generalization tomore complex tautomeric mixtures and arbitrary reference states is possible, the latter by recognizing that244

these would only imply cancelling additive constants. TheΔG0 and ST formalisms are therefore equivalent, as is the PF approach245

for m = 1.246
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1.4 Approaches to predicting log P247

Approaches for predicting octanol-water log P values include physical modeling methods, such as quantum mechanics (QM)248

and molecular mechanics (MM) approaches, and empirical knowledge-based prediction methods, such as contribution-type249

approaches. We give some brief background on these prediction methods.250

QM approaches use a numerical solution of the Schrödinger equation to estimate solvation free energies and partitioning.251

These approaches are not practical for larger systems, so certain approximations need to be made so that they can be used252

for calculating transfer free energies. Methods typically represent the solvent using an implicit solvent model and make the253

assumption that the solute has a single or a small number of dominant conformations in the aqueous and non-aqueous phase.254

The accuracy of predictions can be influenced by the basis set, level of theory, and the tautomer used as input. Implicit solvent255

models are used to represent both octanol and water, and these models are often highly parameterized on experimental solva-256

tion free energy data. The abundance of training data contributes to the success of QMmethods, much like empirical prediction257

methods. Solvent models such as SMD [56], the SM-n series of models [57], and COSMO-RS [37, 58–61] are frequently used by258

SAMPL participants.259

MM approaches use a force field which gives the energy of a system as a function of the atomic positions and are usually260

used by SAMPL participants to compute solvation free energies and log P values. Force fields can be fixed charge and additive,261

or polarizable [62, 63], and typically include all atoms, though this need not always be the case. These approaches are usually262

applied by integrating the equations of motion to solve for the time evolution of the system. Force fields such as GAFF [64],263

GAFF2 [65], CGenFF [66], and OPLS-AA [67], and water models such as TIP3P [68], TIP4P [68], OPC3 [69] are frequently used in264

SAMPL challenges [70]. Free energy calculations can be combined with MMmethods to give a partitioning estimate. These types265

of calculations often use alchemical free energy methods to estimate phase transfer via a non-physical thermodynamic cycle.266

Some examples of alchemical approaches include non-equilibrium switching [71, 72] and equilibrium alchemical free energy267

calculations [73] analyzed via thermodynamic integration [74] or BAR/MBAR estimation [75, 76], Such simulations can also use268

techniques like Hamiltonian replica exchange molecular dynamics.269

Some limitations of MM approaches include the accuracy of the force field and the limitation that motions can only be cap-270

tured in simulations that are faster than simulation timescales. The state of the molecule that is used as input is also important–271

usually, a single tautomer/protonation state is selected and held fixed throughout the simulation, which can introduce errors if272

the wrong state was selected or if there are multiple relevant states.273

Empirical prediction models are trained on experimental data and can be used to quickly characterize large virtual libraries.274

These include additive groupmethods, such as fragment- or atom-contribution approaches, and quantitative structure-property275

relationship (QSPR) methods. In atom contribution approaches, the log P is equal to the sum of contributions from the individ-276

ual atom types multiplied by the number of occurrences of each in the molecule. These methods make the assumption that277

each atom contributes a certain amount to the solvation free energy and that these contributions are additive to the log P . In278

fragment (or group) contribution approaches, the log P is equivalent to the sum of the contributions from the fragment groups279

(more than a single atom), and typically uses correction terms that consider intramolecular interactions. These approaches are280

generally calculated by adding together the sum of the fragment contributions times the number of occurrences and the sum281

of the correction contributions times the number of occurrences in the molecule. The other class of empirical log P prediction282

approaches relies on QSPR. In QSPR, molecular descriptors are calculated and then used to make log P predictions. Descriptors283

can vary in complexity- some rely on simple counts of heteroatoms and carbon, while others are derived from correlating the 3D284

shape, electrostatic, and hydrogen bonding characteristics with the log P of the molecule. To find the log P, a regression model285

gets derived by fitting the descriptor contributions to experimental data. Machine learning approaches such as random forest286

models, deep neural networkmodels, Gaussian processes, support vector machines, and ridge regression [77, 78] belong under287

this category.288

Empirical methods tend to benefit from a large and diverse training set, especially when there’s a large body of experimental289

data to train on, such as octanol-water data like in the present and previous log P challenge [79]. However, empirical methods290

can experience problems if a training set has an underrepresented functional group. Additionally, these techniques are geared291

towards partitioning predictions, and, unlike physical-based methods, are not able to be applied to protein-ligand binding.292

2 Challenge design and evaluation293
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2.1 General challenge structure294

The SAMPL7 physical property challenge focused on pKa, partitioning, and permeability. As reported separately, KF and CB295

collected a set of measured water-octanol log P, log D, and pKa values for 22 compounds, along with PAMPA permeability val-296

ues [80]. Since this was our first time hosting a permeability challenge, and these calculations remain challenging for many297

methods, we did not have enough participants to form meaningful conclusions (one participant submitted two sets of pre-298

dictions in total) so the challenge is not discussed in this paper, but we provide a link to the challenge’s GitHub page (https:299

//github.com/samplchallenges/SAMPL7/tree/master/physical_property/permeability).300

The SAMPL7 challenge molecules had weights that ranged from 227 to 365 Da, and varied in flexibility (the number of non-301

terminal rotatable bonds ranged from 3-6). The dataset had experimental log P values in the range of 0.58–2.96, pKa values in302

the range of 4.49–11.93, and log D values in the range of -0.87–2.96. Information on experimental data collection is presented303

elsewhere [80].304

The physical properties challenge was announced on June 29th, 2020 and the molecules and experimental details were305

made available at this time. Additional input files, instructions, and submission templates were made available afterward and306

participant submissionswere accepted until October 8th, 2020. Following the conclusion of the blind challenge, the experimental307

data was made public on October 9th, 2020, and results were discussed in a virtual workshop (on November 2-5, 2020) (SAMPL308

Community Zenodo page https://zenodo.org/communities/sampl/?page=1&size=20)309

A machine-readable submission file format was specified for blind submissions. The submission files included fields for310

naming the method of the computational protocol, listing the average compute time across all of the molecules, detailing the311

computing and hardware used, listing the major software packages and the versions that were used, and a free text method312

section for providing the detailed documentation of each method, the values of key parameters with units, and to explain how313

statistical uncertainties were estimated. There was also a field where participants indicated whether or not they wanted their314

submission formally evaluated. In addition to their predictions, participants were asked to estimate the statistical error (ex-315

pressed as a standard error of the mean (SEM)) associated with their predictions, and the uncertainty of their model. The SEM316

captures the statistical uncertainty of a method’s predictions, and the model uncertainty corresponds to the method’s expected317

prediction accuracy, which estimates how well a participant expects their predicted values will agree with experiment. Histori-318

cally, model uncertainty estimates have received relatively little attention from participants, but we retain hope that participants319

may eventually predict useful model uncertainties since users benefit from knowing the accuracy of a predicted value.320

Participants had the option of submitting predictions from multiple methods, and were asked to fill out separate template321

files for each different method. Each participant or organization could submit predictions from multiple methods, but could322

only have one ranked submission. Allowing multiple submissions gave participants the opportunity to submit prediction sets to323

compare multiple methods or to investigate the effect of varying parameters of a single method. All of the submissions were324

assigned a short descriptive method name based on the name they provided for their protocol in their submission file. This325

descriptive method name was used in the analysis and throughout this paper and is presented in Tables 1, 3, and 5.326

2.2 log P challenge structure327

The SAMPL7 log P challenge consisted of predicting the water-octanol partition coefficients of 22 molecules. Our goal was to328

evaluate how well current models can capture the transfer free energy of small molecules between different solvent environ-329

ments through blind predictions. challenge participants were asked to predict the difference in free energy for the neutral form330

of each molecule between water and octanol. For the log P challenge, participants were required to report, for each molecule,331

the SAMPL7 molecule ID tag (the challenge provided neutral microstate), the microstate ID or IDs that were considered, and the332

predicted transfer free energy, transfer free energy SEM, and model uncertainty.333

Participants were asked to categorize their methods as one of the five method categories— physical (QM), physical (MM),334

empirical, or mixed. Participants were asked to indicate their method based on the following definitions: Empirical models are335

prediction methods that are trained on experimental data, such as QSPR, machine learning models, artificial neural networks,336

etc. Physical models are prediction methods that rely on the physical principles of the system such as MM or QM based physical337

methods to predict molecular properties. Participants were asked to indicate whether their physical method was QM or MM338

based. Methods taking advantage of both kinds of approaches were asked to be reported as “Mixed”. If a participant chose the339

“Mixed” category, they were asked to explain their decision in the method description section in their submission file.340

We highlighted that octanol may be found in the aqueous phase, in case participants wanted to consider this in their predic-341

tions. The mole fraction of water in octanol was measured as 0.271±0.003 at 25◦C [7]342
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Figure 1. Structures of the 22 molecules used for the SAMPL7 physical property blind prediction challenge. Log of the partition coef-ficient between n-octanol and water was determined via potentiometric titrations using a Sirius T3 instrument. pKa values were determinedby potentiometric titrations using a Sirius T3 instrument. Log of the distribution coefficient between n-octanol and aqueous buffer at pH 7.4were determined via potentiometric titrations using a Sirius T3 instrument, except for compounds SM27, SM28, SM30-SM34, SM36-SM39 whichhad log D7.4 values determined via shake-flask assay. PAMPA assay data includes effective permeability, membrane retention, and log of theapparent permeability coefficient. Permeabilities for compounds SM33, SM35, and SM39 were not determined. Compounds SM35, SM36 andSM37 are single cis configuration isomers. All other compounds are not chiral.

2.3 pKa challenge structure343

The SAMPL7 pKa challenge consisted of predicting relative free energies between microstates (microscopic pKa ’s) to determine344

the macroscopic pKa of 22 molecules. Our goal for the SAMPL7 pKa challenge was to assess how well current pKa prediction345

methods perform for the 22 challenge molecules through blind predictions.346

We chose to have participants report relative free energies of microstates for simplicity of analysis. Particularly, for each347

molecule, participants were asked to predict the relative free energy, including the proton free energy, between our selected348

neutral referencemicrostate and the rest of the enumeratedmicrostates for thatmolecule at a reference pH of 0 (see Section 1.3349

on approaches to calculating pKa).This can also be thought of as a reaction free energy for the microstate transition where the350

reference state is the reactant and the other microstate the product (though a proton may also be a product, depending on351

the direction of the transition). As an example for one molecule, we asked for the reaction free energy (relative free energy)352

associated with each of the reactions as seen in Figure 2. This approach differs from that used in past pKa challenges, which353

typically focused on macroscopic pKa predictions. The shift, here, helps resolve several key problems:354

1. A macroscopic pKa can be reported for the wrong microstates, leading to predictions that are accidentally correct, but355

fundamentally wrong because the titration referred to a different states of the molecule.356

2. Analysis of pKa predictions requires pairing calculated macroscopic pKa values with corresponding experimental macro-357

scopic pKa values [43] and such pairing can be very complex without information onwhich states are being predicted; while358

pairing is still required when specific transitions are predicted, it is aided by knowing which transitions are predicted (e.g.359

a -1 to 0 prediction from one participant can no longer accidentally be compared with a 0 to +1 transition from another360

participant)361

3. Ultimately, populations and free energy differences between states drive the experimental measurements, so analysis362

ought to focus on state populations363

In this work, all possible tautomers of each ionization (charge) state are defined as distinct protonation microstates. For the364
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pKa challenge, participants were required to report, for each molecule and each microstate they considered, the microstate ID365

of the reference state (selected by challenge organizers), the microstate ID of the microstate they were considering a transition366

to, the formal charge for the target microstate, and the predicted free energy change associated with a transition to the target367

microstate (Figure 2), the relative free energy SEM, and the relative free energymodel uncertainty. Inmany cases, the transitions368

to be considered were a particular physical reaction involving a change in a single protonation state or tautomer. However, in369

some cases transitions involved a change of multiple protons (e.g. the F-A transition of Figure 2) and thus did not involve a370

single protonation or deprotonation event. Additionally, all transitions were defined as away from the reference state (and thus371

some involve gaining a proton, the opposite of a typical acid dissociation event), a point which caused confusion for a number372

of participants.373

All predictions were required to use free energy units, in kcal/mol, which was another point which caused confusion for374

participants, as we received predictions in several different sets of units and had to handle unit conversion after the challenge375

close.376

Participants were asked to define and categorize their methods based on the following six method categories- experimental377

database lookup (DL), linear free energy relationship (LFER) [12], quantitative structure-property relationship or machine learn-378

ing (QSPR/ML) [12], quantum mechanics without empirical correction (QM) models, quantum mechanics with linear empirical379

correction (QM+LEC), and combined quantum mechanics and molecular mechanics (QM+MM), or “Other”. If the “Other” cate-380

gory was chosen, participants were asked to explain their decision in the beginning of the method description section in their381

submission file.382

2.3.1 Microstate enumeration383

The SAMPL7 pKa challenge participants were asked to predict relative free energies between microstates to determine the pKa384

of molecules. We define distinct protonationmicrostates as all possible tautomers of each ionization (charge) state. Participants385

could consider any of thesemicrostates in their predictions, and had the option of submitting others. Participants were provided386

a reference microstate for each compound, and asked to predict transition free energies to all microstates they viewed as387

relevant, relative to this reference state.388

Here, we provided some enumeration of potential microstates that participants might want to consider. To do so, we used389

more than one toolkit to try and ensure all reasonable tautomers and protomers were included. Our microstates were gener-390

ated using RDKit [81] and OpenEye QUACPAC [82] for protonation state/tautomer enumeration, and then cross checked with391

ChemAxon Chemicalize [83] and Schrodinger Epik [46, 84] to ensure we had not missed states. We also allowed participants392

to submit additional microstates they might view as important, and received one set of such submissions, which resulted in us393

adding a microstate with a +1 formal charge to molecules SM31 (SM31_micro002) and SM34 (SM34_micro002). It is unclear why394

this state was not identified by the tools we used to enumerate microstates.395

We provided participants CSV (.csv) tables which included microstate IDs and their corresponding canonical isomeric SMILES396

string, as well as individual MOL2 (.mol2) and SDF (.sdf) files for each individual microstate. These are available in the SAMPL7397

GitHub repository.398

2.4 Combining log P and pKa predictions to estimate log D399

In the SAMPL7 challenge, log P and pKa predictions were combined in order to estimate log D. The relationship between partition400

and distribution coefficients at a given pH can be computed via [85, 86]401

logDpH = logP − log
(

1 + 10pKa−pH
) (15)

for bases (if no deprotonation site is present or if pKb < pK a) and402

logDpH = logP − log
(

1 + 10pH−pKa
) (16)

for acidic compounds. The log D was calculated under the assumption that the ionic species cannot partition into the organic403

phase [87], which may be important in some cases (e.g. in compounds with high lipophilicity or in cases where pH is so extreme404

that partitioning of a charged species might become important).405

2.5 Evaluation approach406

We considered a variety of errormetrics when analyzing predictions submitted to the SAMPL7 physical property set of challenges.407

We report the following 6 error metrics: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error408
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Figure 2. For each molecule in the SAMPL7 pKa challenge we asked participants to predict the relative free energy between our se-
lected neutral referencemicrostate and the rest of the enumeratedmicrostates for that molecule. In this case, we asked for the relativestate free energy including the proton free energy, which could also be called the reaction free energy for the microstate transition which hasthe reference state as the reactant and the alternate state as the product. Using SM43 as an example, participants were asked to predict the rel-ative free energy between SM43_micro000 (our selected neutral microstate highlighted in yellow) and all of the other enumerated microstates(SM43_micro001–SM43_micro005) for a total of 5 relative state free energies (ΔGBA, ΔGCA, ΔGDA, ΔGEA, ΔGFA). Some transitions involved achange in a single protonation state (e.g. the D-A transition of Figure 2) or tautomer (e.g. the C-A transition of Figure 2). A few cases involved achange of multiple protons (e.g. the F-A transition of Figure 2). All transitions were defined as away from the neutral reference state. Distinctmicrostates are defined as all tautomers of each charge state. For each relative free energy prediction reported, participants also submittedthe formal charge after transitioning from the selected neutral state to the other state. For example, the reported charge state after transition-ing from SM43_micro000 to SM43_micro001 would be -1, SM43_micro000 to SM43_micro004 would be 0 (these are tautomers of each other),SM43_micro000 to SM43_micro005 would be +1, and SM43_micro000 to SM43_micro003 would be +2.
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(ME), coefficient of determination (R2), linear regression slope (m), and Kendall’s Tau rank correlation coefficient (�). Addition-409

ally, 95% confidence intervals were computed for these values using a bootstrapping-over-molecules procedure (with 10,000410

bootstrap samples), as in prior SAMPL challenges [12].411

Accuracy based performance metrics, such as RMSE and MAE, are more appropriate than correlation-based statistics to412

evaluate methods because of the small dynamic range of experimental log P values (0.6-3.0). This is usually reflected in the413

confidence intervals on thesemetrics. Calculated error statistics of all methods can be found in Tables S1, S3, and S4. Summary414

statistics were calculated for each submission for method comparison. Details of the analysis and scripts are preserved on the415

SAMPL7 GitHub repository (described in the “Code and data availability” section).416

For each challenge we included a reference and/or null method set of predictions in the analysis to provide perspective417

for performance evaluations of blind predictions. Null models or null predictions employ a model that is not expected to be418

useful and can provide a simple point of comparison for more sophisticated methods, as ideally, such methods should improve419

on predictions from a null model. Reference methods are not formally part of the challenge, but are provided as comparison420

methods. For the log P challenge we included a null prediction set which predicts a constant log P value of 2.66 for every421

compound, as described in a previous SAMPL paper [38]. For log D evaluation we included a set of null predictions that all of422

the molecules partition equally between the water and octanol phase.423

For the log P and pKa challenge and the log D evaluation, we provide reference calculations using ChemAxon’s Chemical-424

ize [83], a commercially available empirical toolkit, as a point of comparison. These include REF# in the method name in all of425

the figures so that they are easily recognized as non-blind reference calculations. The analysis is presented with and without426

the inclusion of reference and/or null calculations in the SAMPL7 GitHub repository. The figures and statistics tables pertaining427

to the log P and pKa challenges and the log D evaluation in this manuscript include reference calculations.428

For the log P and pKa challenge, we list consistently well-performing methods that were ranked in the top consistently ac-429

cording to two error and two correlation metrics: RMSE, MAE, R2, and Kendall’s Tau. These are shown in Table 2 and 4.430

For each challenge, we also evaluated the relative difficulty of predicting the physical property of interest of each molecule431

in the set. We plotted the distributions of errors in prediction for each molecule considering all prediction methods. We also432

calculated the MAE for each molecule as an average of all methods, as well as for predictions from each method category.433

2.5.1 Converting relative free energies between microstates to macroscopic pKa434

In the pKa challenge, participants submitted predictions consisting of the free energy changes between a reference microstate435

and every other relevant microstate for each compound. Specifically, participants were asked to predict the relative free energy436

between a selected neutral reference microstate and the rest of the enumerated microstates for that molecule at a reference437

pH of 0. In order to compare participants’ predictions to experimental pKa values, these predicted relative free energies had to438

be converted to macroscopic pKa values.439

Here, we analyzed submissions using the titration method discussed above (Section 1.3). This approach computes the pop-440

ulation of each charge state as a function of pH and finds the pH at which the population of one charge state crosses that of441

another (Figure 3); as noted above this approach is equivalent to the transition and free energy approaches detailed previously.442

In our analysis Python code used in the present challenge we work from Equation 6 and Equation 7 to find the pH at which443

populations of the two charge states are equal. Here, we do this using fsolve from scipy in Python.444

3 Results and Discussion445

3.1 Overview of log P challenge results446

A variety of methods were used in the log P challenge. There were 33 blind submissions collected from 17 groups (Tables of447

participants and their predictions can be found in the SAMPL7 GitHub Repository and in the Supporting Information.). In the448

SAMPL6 octanol-water log P challenge there were 91 blind submissions collected from 27 participating groups. In the SAMPL5449

Cyclohexane-Water log D challenge, there were 76 submissions from 18 participating groups [88], so participation was lower450

than previous iterations. This modestly decreased participation (by one group) was likely in part because of COVID-19-related451

disruptions and because this challenge had to be conducted on a short timescale with relatively limited publicity because the452

experimental data was not generated specifically for SAMPL, and thus staging of the SAMPL7 challenge required delaying sub-453

mission of an experimental study which was already complete.454

Out of blind submissions of the SAMPL7 log P challenge, there were 10 in the physical (MM) category, 10 in the physical455

(QM) category, and 12 in the empirical category An additional null and reference method were included in the empirical method456
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category.457

The following sections evaluate the performance of log P prediction methods. Performance statistics of all the methods can458

be found in Table S1. Methods are referred to by their method names, which are provided in Table 1.459

3.1.1 Performance statistics to compare log P prediction methods460

Some methods in the challenge achieved a good octanol–water log P prediction accuracy. Figure 4 shows the performance461

comparison of methods based on accuracy with RMSE and MAE. The uncertainty in the correlation statistics was too high to462

rank method performance based on correlation, but we provide an overall correlation assessment for all methods in the SI463

in Figure S2. 16 submissions achieved a RMSE ≤ 1.0 log P units, but no method achieved a RMSE ≤ 0.5 log P units. Methods464

that achieved a RMSE ≤ 1.0 log P units were mainly empirical, but some were QM-based. Prediction methods include 15 blind465

predictions and one reference method.466

3.1.2 A shortlist of consistently well-performing methods in the log P challenge467

Here, many performance differences are not statistically significant, but we identified five consistently well-performing ranked468

methods that appear in the top 10 according to two accuracy based (RMSE andMAE) and two correlation basedmetrics (Kendall’s469

Tau and R2), as shown in Table 2. The resulting 5 best-performing methods were made up of three empirical methods and two470

QM-based physical methods.471

Method TFE MLR [90] was an empirical method that used a multi-linear regression (MLR) made from experimental log P val-472

ues from 60 sulfonamides obtained from PubChem [98] and DrugBank [99]. The dataset was mainly composed of sulfonamide473

drugs and smaller molecules with other classical functional groups. The following descriptors were used to create the MLR: the474

frequency of functional groups, hydrogen bond acceptors, hydrogen bond donors, molar refractivity, and topological polar sur-475

face area. The functional group frequency was calculated with an in-house script from a modified function of Open Babel [100],476

the rest was obtained from supplied Open Babel properties.477

Method Chemprop was an empirical method which used the log P dataset of the OPERA models in their approach [91].478

Molecules from the Opera set were compared with the challenge molecules and those with an ECFP_6 fingerprint (extended479

connectivity fingerprint) tanimoto coefficient (TC) greater than 0.25 were flagged as test molecules for a total of 233 testing480

molecules. The training set was created from the rest of the Opera data set by filtering out molecules with a ECFP_6 TC >0.4 to481

test set molecules. Several models were built using a Directed-Message Passing Neural Network (D-MPNN) [101, 102] to predict482
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Figure 4. Overall accuracy assessment for all methods participating in the SAMPL7 log P challenge shows that many methods did not
exhibit statistically significant differences in performance and there was no single clear winner; however, empirical methods tended
to perform better in general. Both root-mean-square error (RMSE) and mean absolute error (MAE) are shown, with error bars denoting 95%confidence intervals obtained by bootstrapping over challenge molecules. Empirical methods outperform the majority of the other methods.Methods that achieved a RMSE ≤ 1.0 log P units were mainly empirical based, and some were QM-based physical methods. Submitted methodsare listed in Table 1. The submission REF1 ChemAxon [83] was a reference method included after the blind challenge submission deadline, and
NULL0 mean cLogP FDA is the null prediction method; all others refer to blind predictions.
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Table 1. Method names, category, and submission
type for all the log P calculation submissions. The“submission type” column indicates if submission was ablind submission (denoted by “Blind”) or a post-deadlinereference or null calculation (denoted by “Reference”).The table is ordered from lowest to highest RMSE, al-though many consecutively listed methods are statisti-cally indistinguishable. All calculated error statistics areavailable in Table S1.
Method Name Category Submission Type

ClassicalGSG DB2 [89] Empirical Blind
TFE MLR [90] Empirical Blind
ClassicalGSG DB4 [89] Empirical Blind
Chemprop [91] Empirical Blind
TFE-SM8-vacuum-opt Physical (QM) Blind
GROVER Empirical Blind
ClassicalGSG DB1 [89] Empirical Blind
ffsampled_deeplearning_cl1 Empirical Blind
ClassicalGSG DB3 [89] Empirical Blind
COSMO-RS [92] Physical (QM) Blind
TFE_Attentive_FP Empirical Blind
ffsampled_deeplearning_cl2 Empirical Blind
TFE-SM12-vacuum-opt Physical (QM) Blind
TFE-SM8-solvent-opt Physical (QM) Blind
REF1 ChemAxon [83] Empirical Reference
TFE IEFPCM MST [93] Physical (QM) Blind
TFE MD neat oct (GAFF/TIP4P) Physical (MM) Blind
NULL0 mean clogP FDA [79] Empirical Reference
NES-1 (GAFF2/OPC3) G Physical (MM) Blind
NES-1 (GAFF2/OPC3) J Physical (MM) Blind
NES-1 (GAFF2/OPC3) B Physical (MM) Blind
MD (GAFF/TIP3P) [94] Physical (MM) Blind
TFE wet oct (GAFF/TIP4P) Physical (MM) Blind
MD (CGenFF/TIP3P) [94] Physical (MM) Blind
EC_RISM_wet [95] Physical (QM) Blind
TFE-SMD-vacuum-opt Physical (QM) Blind
MD-EE-MCC (GAFF-TIP4P-Ew) [96] Physical (MM) Blind
TFE b3lypd3 [97] Physical (QM) Blind
MD (OPLS-AA/TIP4P) [94] Physical (MM) Blind
MD LigParGen (OPLS-AA/TIP4P) [94] Physical (MM) Blind
TFE-SMD-solvent-opt Physical (QM) Blind
TFE-NHLBI-TZVP-QM Physical (QM) Blind
Ensemble EPI physprop Empirical Blind
Ensemble Martel Empirical Blind
QSPR_Mordred2D_TPOT_AutoML Empirical Blind
TFE-NHLBI-NN-IN Empirical Blind

the log P, which was then used to get the transfer free energy.483

Submission ClassicalGSG DB3 is an empirical method that employed neural networks (NNs) where the inputs are molecular484

features generated using a method called Geometric Scattering for Graphs (GSG) [89]. In GSG, atomic features are transformed485

into molecular features using the graph molecular structure. For atomic features, predictions used 4 physical quantities from486

classical molecular dynamics forcefields: partial charge, Lennard-Jones well depth, Lennard-Jones radius and atomic type. A487

training dataset was built from 7 datasets for a total of 44,595 unique molecules. Open Babel was used to convert RDKit gener-488

ated canonical SMILES toMOL2 files, which were then used as input into CGenFF to determine partial charges and Lennard-Jones489

parameters for all atoms in each molecule. The generation of CGenFF atomic attributes failed for some molecules, so the final490

dataset had 41,409 molecules, and is referred to as the “full dataset”. A training set of 2,379 molecules was obtained by filtering491

the full training set and keeping only those with sulfonyl functional groups. This was done using the HasSubstructMatch function492

of the RDKit toolkit. The log P values were predicted by the model trained on this training set.493

Method COSMO-RSwas a QM-based physical prediction approach [92].. First, this approach used COSMOquick [103] to gener-494

ate tautomers anddiscarded irrelevant states due to an internal energy threshold implemented in COSMOquick. Theparticipants495

conducted a conformational search of every microstate with COSMOconf [104] using up to 150 conformers. Second, for each496

conformer they performed a geometry optimization using the BP86 functional with a TZVP basis set and the COSMO solvation497

scheme, followed by a single point energy calculation using the BP86 functional with a def2-TZVPD basis set and the FINE COSMO498
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cavity. All density functional theory calculations were carried out with the TURBOMOLE 7.5 program package [105, 106]. Third,499

a conformer selection was done by applying COSMOconf (using internally COSMOtherm) to reduce the number of conformers500

and tautomers for the neutral molecule sets. The final set of the neutral state contained only those conformers and states that501

are relevant in liquid solutions. Fourth, the COSMOtherm software (version 2020) [107] was used to calculate the free energy502

difference for each molecule set (from the second step described here) and to calculate the relative weight of the microstates503

in water. All free energy calculations were carried out using the BP-TZVPD-FINE 20 level of COSMO-RS in COSMOtherm. Within504

the used COSMO-RS, an ensemble of conformers andmicrostates is automatically used and weighted according to the total free505

energy in the respective liquid phase, i.e. different weights are used in water and octanol.506

Submission TFE-NHLBI-TZVP-QM was a QM-based physical method that used the Def2-TZVP basis set for all calculations. Cal-507

culations were performed in either Gaussian 09 or Gaussian 16. Structures were optimized with the B3LYP density functional508

and were verified to be local minima via frequency calculations on an integration grid with harmonic frequencies. Details of509

solvation handling were not included in the method description.510

Figure 5 show predicted log P vs experimental log P value comparison plots of these 5 well-performing methods and also511

a method that represents average performance in this challenge. Representative method NES-1 (GAFF2/OPC3) G was selected512

because it has the median RMSE of all ranked methods analyzed in the challenge.513

Table 2. Five consistently well-performing log P prediction methods based on consis-
tent ranking within the top 10 according to various statistical metrics. Submissionswere ranked according to RMSE, MAE, R2, and Kendall’s Tau. Many top methods were foundto be statistically indistinguishable when considering the uncertainties of their error met-rics. Additionally, the sorting of methods was significantly influenced by the metric that waschosen. We determined which ranked log P prediction methods were consistently the bestaccording to all four chosen statistical metrics by assessing the top 10 methods according toeachmetric. A set of five consistently well-performing methods were determined– three em-pirical methods and two QM-based physical methods. Performance statistics are providedas mean and 95% confidence intervals. Correlation plots of the best performing methodsand one average method is shown in Figure 5. Additional statistics are available in Table S1.
Method Name Category RMSE MAE R2 Kendall’s Tau

TFE MLR [90] Empirical 0.58 [0.34, 0.83] 0.41 [0.26, 0.60] 0.43 [0.06, 0.80] 0.56 [0.23, 0.83]
Chemprop [91] Empirical 0.66 [0.39, 0.89] 0.48 [0.30, 0.69] 0.41 [0.11, 0.76] 0.54 [0.25, 0.82]
ClassicalGSG DB3 [89] Empirical 0.77 [0.57, 0.96] 0.62 [0.43, 0.82] 0.51 [0.18, 0.77] 0.48 [0.14, 0.75]
COSMO-RS [92] Physical (QM) 0.78 [0.49, 1.01] 0.57 [0.36, 0.80] 0.49 [0.17, 0.80] 0.53 [0.25, 0.78]
TFE-NHLBI-TZVP-QM Physical (QM) 1.55 [1.19, 1.87] 1.34 [1.02, 1.76] 0.52 [0.19, 0.78] 0.51 [0.19, 0.78]

3.1.3 Difficult chemical properties for log P predictions514

To learn about chemical properties that are challenging for log P predictions, we analyzed the prediction errors of the molecules515

(Figure 6). We chose to use MAE for this analysis because it is less affected by outliers compared to RMSE and is therefore516

more appropriate for following global trends. Although methods varied in performance, as indicated by large and overlapping517

confidence intervals, theMAE calculated for eachmolecule as an average across allmethods indicates that someof themolecules518

were better predicted than others (Figure 6A). For reference, compound classes and structures of the molecules are available in519

Figure S3. Molecules such as SM26, SM27, and SM28 were well predicted on average. Molecules such as SM42, SM43, and SM36520

were not well predicted on average.521

Certain groups of molecules seem to be more challenging for log P predictions. Two of the most poorly predicted molecules,522

SM42 and SM43, are isoxazoles. Isoxazoles are oxygen and nitrogen-containing heteroaromatics. When we consider the cal-523

culated MAE of each molecule separated out by method category, we find that predictions for 2 out of the 3 molecules (SM41524

and SM43) belonging to the isoxazole compound class are less accurate with MM-based physical methods than with QM-based525

physical and empirical method categories (Figure 6B).526

Figure 6C shows error distribution for each challenge molecule over all prediction methods. Molecules such as SM33, SM36,527

SM41, SM42, and SM43 are shifted to the right, indicating that methods likely had a tendency to overestimate how much these528

molecules favored the octanol phase.529

Figure 6D shows the error distribution for eachmolecule calculated for 5methods from submissions that were determined to530

be consistently well-performing (method names: TFE MLR [90], Chemprop [91], COSMO-RS [92], ClassicalGSG DB3 [89], TFE-NHLBI-531
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Figure 5. Predicted vs. experimental value correlation plots of 5 best performing methods and one representative average method in
the SAMPL7 log P challenge. Dark and light green shaded areas indicate 0.5 and 1.0 units of error. Error bars indicate standard error of themean of predicted and experimental values. In some cases, log P SEM values are too small to be seen under the data points. The best-performingmethods were made up of three empirical methods (ClassicalGSG DB3 [89], TFE MLR [90], Chemprop [91]) and two QM-based physical methods(COSMO-RS [92], TFE-NHLBI-TZVP-QM). Details of the methods can be found in Section 3.1.2 and performance statistics are available in 2. Method
NES-1 (GAFF2/OPC3 G) was selected as the representative average method, which has a median RMSE.
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Table 3. Method names, category, and submis-
sion type for all the pKa submissions. The “submis-sion type” column indicates if submission was a blindsubmission (denoted by “Blind”) or a post-deadlinereference calculation (denoted by “Reference”). Thetable is ordered from lowest to highest RMSE, al-thoughmany consecutively listedmethods are statis-tically indistinguishable. All calculated error statisticsare available in Table S3.
Method Name Category Submission Type

REF00_Chemaxon_Chemicalize [83] QSPR/ML Reference
EC_RISM [95] QM Blind
IEFPCM/MST [93] QM Blind
DFT_M05-2X_SMD [97] QM Blind
TZVP-QM QM Blind
Standard Gaussian Process QSPR/ML Blind
DFT_M06-2X_SMD_implicit QM Blind
DFT_M06-2X_SMD_implicit_SAS QM Blind
DFT_M06-2X_SMD_explicit_water QM Blind
Gaussian_corrected QM+LEC Blind

TZVP-QM)). Although there is a spread in error for many of the molecules, the better performing methods overestimate the log P532

of some of the molecules (as indicated by a shift to the right), such as isoxazoles (SM41–SM43) and most notably for SM36.533

The better performing methods also slightly underestimate the log P for molecules belonging to the 1,2,3-triazole compound534

class– molecules SM44–SM6 are slightly shifted to the left meaning participants tended to predict the molecules would favor the535

aqueous phase.536

3.2 Overview of pKa challenge results537

In the SAMPL7 pKa challenge there were 9 blind submissions from 7 different groups. Blind submissions included 7 QM-based538

physical methods, 1 QM+LEC method, and 1 QSPR/ML method. An additional reference prediction method was included in the539

QSPR/ML method category.540

3.2.1 pKa performance statistics for method comparison541

Somemethods in the SAMPL7 challenge achieved a good prediction accuracy for pKa ’s. Figure 7 shows the performance compari-542

son ofmethods based on accuracy with RMSE andMAE. Two submissions achieved a RMSE< 1.0 pKa units, nomethods achieved543

a RMSE ≤ 0.5 pKa units. One of the methods that achieved a RMSE < 1.0 pKa units was a QM-based physical prediction method544

(EC_RISM [95]), and the otherwas aQSPR/MLmethod thatwas submitted as a referencemethod (REF00_Chemaxon_Chemicalize [83]).545

Correlation-based statistics methods provide a rough comparison of methods. Figure 8 shows R2 and Kendall’s Tau values546

calculated for each method, sorted from high to low performance. It is not possible to truly rank these methods based on547

correlation due to the high uncertainty of each correlation statistic. Over half of the methods have R2 and Kendall’s Tau values548

equal to or greater than 0.5 and can be considered as the better half, however individual performance is largely indistinguishable549

from one another. For R2, two methods (EC_RISM, REF00_Chemaxon_Chemicalize), seem to have a greater ranking ability than the550

other methods.551

There were six methods with an R2 ≥ 0.5— four of the methods were QMmethods, one was a QM+LECmethod, and one was552

a QSPR/ML method. Seven methods had a Kendall’s Tau ≥ 0.50. Of these, five were QM methods, one was a QM+LEC method,553

and one was a QSPR/ML method.554

3.2.2 A shortlist of consistently well-performing methods in the pKa challenge555

We determined a group of consistently well-performing methods in the pKa challenge. When looking at individual error metrics,556

many submissions are not different from one another in a way that is statistically significant. Ranking among methods changes557

based on the chosen statistical metric and does not necessarily lead to strong conclusions due to confidence intervals that often558

overlap with one another. Here, we determined consistently well-performing methods according to two accuracy (RMSE and559

MAE) and two correlationmetrics (Kendall’s Tau and R2). For ranked submissions, we identified two consistently well-performing560
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Figure 6. Molecule-wise prediction accuracy in the log P challenge point to isoxazoles as poorly predicted, especially by MM-based
physical methods. Molecules are labeled with their compound class as a reference. (A) The MAE calculated for each molecule as an averageof all methods. (B) The MAE of each molecule separated by method category. (C) log P prediction error distribution for each molecule across allprediction methods. (D) log P prediction error distribution for each molecule calculated for only 5 methods from blind ranked submissions thatwere determined to be consistently well-performing (TFE MLR [90], Chemprop [91], COSMO-RS [92], ClassicalGSG DB3 [89], TFE-NHLBI-TZVP-QM)).

19 of 49



A

B

REF00
_C

he
m

ax
on

_C
he

m
ica

liz
e

EC_R
IS

M

IE
FPCM

/M
ST

TZVP-Q
M

DFT_M
05

-2
X_S

M
D

Sta
nd

ar
d 

Gau
ss

ian
 P

ro
ce

ss

DFT_M
06

-2
X_S

M
D_im

pli
cit

_S
AS

DFT_M
06

-2
X_S

M
D_im

pli
cit

DFT_M
06

-2
X_S

M
D_e

xp
lic

it_
wat

er

Gau
ss

ian
_c

or
re

cte
d

method name

0

1

2

3

4

5

6

7

R
M

S
E

QM

QM+LEC

QSPR/ML

EC_R
IS

M

REF00
_C

he
m

ax
on

_C
he

m
ica

liz
e

IE
FPCM

/M
ST

DFT_M
05

-2
X_S

M
D

DFT_M
06

-2
X_S

M
D_e

xp
lic

it_
wat

er

TZVP-Q
M

DFT_M
06

-2
X_S

M
D_im

pli
cit

DFT_M
06

-2
X_S

M
D_im

pli
cit

_S
AS

Sta
nd

ar
d 

Gau
ss

ian
 P

ro
ce

ss

Gau
ss

ian
_c

or
re

cte
d

method name

0

1

2

3

4

5

6

7

M
A

E

QM

QM+LEC

QSPR/ML

Figure 7. Overall accuracy assessment for all methods participating in the SAMPL7 pKa challenge shows that two methods, one a
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Figure 8. Overall correlation assessment for all methods participating in the SAMPL7 pKa challenge shows that one Physical (QM)
method and one QSPR/ML reference method exhibited modestly better performance than others. Pearson’s R2 and Kendall’s RankCorrelation Coefficient Tau (�) are shown, with error bars denoting 95% confidence intervals obtained by bootstrapping over challengemolecules.Submissionmethods are listed out in Table 3. REF00_Chemaxon_Chemicalize [83] is a referencemethod that was included after the blind challengesubmission deadline, and all othermethod names refer to blind predictions. Mostmethods have a statistically indistinguishable performance onranking, however, for R2, two methods (EC_RISM [95], REF_Chemaxon_Chemicalize), tend to have a greater ranking ability than the other methods.Evaluation statistics calculated for all methods are available in Table S3 of the Supplementary Information.
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methods thatwere ranked in the top three according to these statisticalmetrics. The list of consistently well-performingmethods561

are presented in Table 4. The resulting two best-performing methods were both QM-based physical methods.562

Submission EC_RISM was a QM-based physical method [95]. In this approach, multiple geometries were generated for each563

microstate using the EmbedMultipleConfs function of RDKit. These structures were pre-optimized with Amber 12 using GAFF 1.7564

parameters and AM1-BCC charges with an ALPBmodel to represent the dielectric environment of water. Conformations with an565

energy of more than 20 kcal/mol than the minimum structure of that microstate were discarded and the remaining structures566

clustered with a structural RMSD of 0.5 Angstrom. The cluster representatives were then optimized using Gaussian 16revC01567

with IEF-PCM using default settings for water at the B3LYP/6-311+G(d,p) level of theory. Additional stereoisomers were treated568

as if they were additional conformational states of the same microstate so that for each microsate only up to 5 conformations569

with the lowest PCM energies for each solvent were treated with EC-RISM/MP2/6-311+G(d,p) using the PSE2 closure [54] and the570

resulting EC-RISM energies were corrected. To calculate the relative free energies with respect to each neutral reference state,571

4 different formulas were used, depending on the difference in the protonation state. Macrostate pKa values were calculated572

using the partition function approach of equation 5 found elsewhere [54].573

Submission IEFPCM/MST was a QM-based physical method [93]. This approach used the Frog 2.14 software [108, 109] to574

exploremicrostate conformations. Themolecular geometries of the compoundswere fully optimized at the B3LYP/6-31G(d) level575

of theory, taking into account the solvation effect ofwater on the geometrical parameters of the solutes, using the IEFPCMversion576

of the MST model. The resulting minima were verified by vibrational frequency analysis, which gave positive frequencies in all577

cases. The relative energies of the whole set of conformational species were refined from single-point computations performed578

at the MP2/aug-cc-pVDZ levels of theory. In addition, the gas phase estimate of the free energy difference for all microstates579

was derived by combining the MP2 energies with zero point energy corrections. Finally, solvation effects were added by using580

the B3LYP/6-31G(d) version of the IEFPCM/MST model, which is a quantum mechanical self-consistent continuum solvation581

method. The pKa was determined using both the experimental hydration free energy of the proton (-270.28 kcal/mol) and a582

Boltzmann’s weighting scheme to the relative stabilities of the conformational species determined for the microstates involved583

in the equilibrium constant for the dissociation reaction following the thermodynamic cycle reported in previous studies [110].584

Figure 9 show predicted pKa vs experimental pKa value comparison plots of the two well-performing methods and also585

a method that represents average performance. Representative average method DFT_M05-2X_SMD [97] was selected as the586

method with the median RMSE of all ranked methods analyzed in the challenge.587

Table 4. Two consistently well-performing pKa prediction methods based on
consistent ranking within the top three according to various statistical met-
rics. Ranked submissions were ranked/ordered according to RMSE, MAE, R2, andKendall’s Tau. Many methods were found to be statistically indistinguishable whenconsidering the uncertainties of their errormetrics. Additionally, the sorting ofmeth-ods was significantly influenced by the metric that was chosen. We determinedwhich methods are repeatedly among the top two according to all four chosen sta-tistical metrics by assessing the top three methods according to each metric. TwoQM-based methods consistently performed better than others. Performance statis-tics are provided asmean and 95% confidence intervals. All statistics for all methodsare in Table S3.
Method Name Category RMSE MAE R2 Kendall’s Tau

EC_RISM [95] QM 0.72 [0.45, 0.95] 0.53 [0.33, 0.75] 0.93 [0.87, 0.98] 0.81 [0.63, 0.96]
IEFPCM/MST [93] QM 1.82 [1.00, 2.69] 1.30 [0.84, 1.92] 0.56 [0.22, 0.87] 0.52 [0.22, 0.76]

3.2.3 Difficult chemical properties for pKa predictions588

To learn about chemical properties that pose challenges for pKa predictions, we analyzed the prediction errors of the molecules589

(Figure 10). For reference, compound classes and structures of the molecules are available in Figure S3. We chose to use MAE590

for molecular analysis because it is less affected by outliers compared to RMSE and is, therefore, more appropriate for follow-591

ing global trends. When we consider the calculated MAE of each molecule separated out by method category the prediction592

accuracy of each molecule varies based on method category (Figure 10B). The MAE calculated for each molecule as an average593

of all methods shows that SM25 was the most poorly predicted molecule. The QM+LEC method category appears to be less594

accurate for the majority of the molecules compared to the other method categories. Compared to the other two method cat-595
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.

egories, QSPR/ML methods performed better for molecules SM41-SM43, which are isoxazoles (oxygen and nitrogen containing596

heteroaromatics), andmolecule SM44-SM46, which are 1,2,3-triazoles (nitrogen containing heteroaromatics). Physical QMmeth-597

ods performed poorly for molecules SM25 and SM26 (acylsulfonamide compound class). Figure 10C shows error distribution598

for each challenge molecule over all the prediction methods. Molecule SM25 has the most spread in pKa prediction error.599

3.2.4 Microscopic pKa performance600

SAMPL7 challenge pKa participants were asked to report the relative free energy between microstates, using a provided neutral601

microstate as reference. Microstates are defined as the enumerated protomers and tautomers of a molecule. Details of how602

microstates were found can be found in Section 2.3.1. Some molecules had 2 microstates, while others had as many as 6603

(Table S7).604

Figure 12 shows the predicted free energy change between the reference state and each microstate, on average, for all605

transitions across all predictions. Molecules are labeled with their compound class as a reference. Predictions disagree widely606

for some transitions, like those from the reference state to SM26_micro002, SM28_micro001, SM43_micro003, SM46_micro003,607

while predictions for other transitions such as that from the referencemicrostate to SM26_micro004 are in agreement (as shown608

by small error bars in Figure 12A, 14).609

Figure 14 shows examples of some microstate transitions where participants’ predicted transition free energies disagree.610

We also examined how the microstate transition free energies (relative to the reference state) are distributed across predictions611

(Figure 12B). We find that some transitions are much more consistently predicted than others, but in some cases there is broad612

disagreement even about the sign of the free energy change associated with the particular transition – so methods disagree as613

to which protonation state or tautomer is preferred at the reference pH.614

To further analyze which transitions were difficult, we focused on how consistently methods agreed as to the sign of the free615

energy change for each transition. Particularly, we calculated the Shannon Entropy (H) for the transition sign for each transition,616

shown in Figure 13. For each microstate, we calculated H via:617

H = −
∑

i
P iln(P i) (17)

where Pi is the probability of a particular outcome i; here, we use i to indicate a positive sign or a negative sign for the618

predicted free energy change. So Ppositive is the fraction of positive sign predictions, Pnegative is the fraction of negative sign619

predictions, and Pneutral is the fraction of neutral sign predictions (which were somewhat frequent as a few participants predicted620

a free energy change of exactly 0 for some transitions). For example, for SM25_micro001, given the predictions we received, the621
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Table 5. Method names, category, and submission type for all the log D es-
timations. Method names are based off the submitted pKa and log Pmethodnames, with the log P method name listed first followed by “+” and then thepKa method name. The “submission type” column indicates if submission wasa blind submission (denoted by “Blind”) or a post-deadline reference calcula-tion (denoted by “Reference”). All calculated error statistics are available inTable S4.
Method Name Category Submission Type

REF0 ChemAxon Empirical Reference
TFE IEFPCM MST + IEFPCM/MST Physical (QM) Standard
NULL0 Empirical Reference
EC_RISM_wet + EC_RISM Physical (QM) Standard
TFE-NHLBI-TZVP-QM + TZVP-QM Physical (QM) Standard
TFE b3lypd3 + DFT_M05-2X_SMD Physical (QM) Standard
MD (CGenFF/TIP3P) + Gaussian_corrected Physical (MM) + QM+LEC Standard
TFE-SMD-solvent-opt + DFT_M06-2X_SMD_explicit_water Physical (QM) Standard

Ppositive is 0.5, the Pnegative is 0.4 and the Pneutral is 0 (no neutral sign predictions). The Shannon entropy H is then −(0.5 ln(0.5) +622

0.4 ln(0.4) + 0), which is roughly 0.7 and indicates predictions had difficulty agreeing on the sign.623

While the Shannon entropymay not be a perfect tool for analyzing this issue, we find it helpful here. For a particular transition,624

a value of 0 indicates all predictions agreed as to the sign of the free energy change (whether positive, negative, or neutral), while625

values greater than 0 reflect an increasing level of disagreement in the sign of the prediction. 32 of themicrostates had a H value626

of 0, 21 had a values that ranged from 0.5-0.7, and 3 microstates had values greater than 0.9 (the highest level of disagreement).627

The 3 microstates with the most disagreement belong to the thietane-1-oxide compound class (one from SM35, one from SM36628

and one from SM37).629

Transitions that pose difficulty for participants involve a protonated nitrogen and keto-enol neutral state tautomerism. Chem-630

ical transformations involving a protonated nitrogen in terminal nitrogen groups, 1,2,3-triazoles, and isoxazoles were all found631

to occur in molecules that have high levels of disagreement in sign prediction. Depictions of some of these types of transitions632

are presented in Figure 11. Predictions for these transitions were substantially divided on the predicted sign – roughly half of633

the methods predict a positive sign, while the other half predict a negative sign. This means methods could not agree on the634

preferred state at the reference pH. The number of positive, negative, and neutral sign predictions per microstate is available in635

Table S5636

In several cases, the SAMPL input files provided a reference microstate with unspecified stereochemistry, then a separate637

but otherwise equivalent microstate with specified stereochemistry (SM35_micro002, SM36_micro002, SM37_micro003). Experi-638

ments were done on the compoundwith specified stereochemistry, so participants were instructed to assume that the reference639

microstate (which had unspecified stereochemistry) had the same free energy as the microstate with specified stereochemistry.640

However, many participants didn’t use the microstate with specified stereochemistry as the reference state, and most ended641

up predicting a nonzero relative free energy between the reference state and the microstate with specified stereochemistry,642

despite instructions.643

3.3 Overview of log D challenge results644

In the SAMPL7 physical property prediction challenge, log P and pKa predictions were combined in order to estimate log D, as645

described in Section 2.4.646

There were 6 log D estimates and 2 reference methods. Methods are listed in Table 5 and statistics for all log D prediction647

methods are available in Table S4. There were 5 methods that belonged to the physical (QM) category, and 1 in the Physical648

(MM) + QM+LEC category (this category used a MM-based physical method in the log P challenge, and a QM+LEC method in the649

pKa challenge). The null and reference method were included in the empirical method category.650

3.3.1 log D performance statistics for method comparison651

Figure 15 compares the accuracy of methods based on RMSE and MAE. No method achieved a RMSE ≤ 1.0 log D units, and the652

overall RMSE ranged from 1.1 to 4.5 log D units. Four methods had a RMSE between 1 and 2, and three methods had an RMSE653

between 2 and 3. Accuracy is better than the previous log D challenge. In the SAMPL5 log D challenge, out of 63 submissions, no654
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Figure 11. Chemical transformations that lead to common sign disagreements among participants typically involve a protonated
nitrogen in terminal nitrogen groups, 1,2,3-triazoles, and isoxazoles. Shown are some chemical transformations that repeatedly show upas having large disagreement on the sign of the relative free energy prediction, as seen in Figure 13.
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Figure 13. The Shannon entropy (H) per microstate transition shows that participants disagree on many of the signs of the relative
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Figure 15. Overall accuracy assessment for log D estimation. Both root-mean-square error (RMSE) and mean absolute error (MAE) areshown, with error bars denoting 95% confidence intervals obtained by bootstrapping over challenge molecules. REF00_ChemAxon [83] is areference method and NULL0 is a null method that was included after the blind challenge submission deadline, and all other method namesrefer to blind predictions. Methods are listed out in Table 5 and statistics calculated for all methods are available in Table S4.

submissions had a RMSE below 2 log D units. Here, eight methods were submitted and half of them achieved a RMSE below 2655

log D units. Overall, log D prediction accuracy has improved since SAMPL5.656

When the best log P and pKa prediction methods are combined we find that the resulting composite approach outperforms657

most of the other ranked methods, achieving a RMSE of 0.6 (see Figure17, method name TFE MLR + EC_RISM).658

When the experimental log P and pKa are combined to yield a log D (as in Section 2.4), the resulting log D values do not659

perfectly match with the reported experimental log D values, an inconsistency we are currently investigating.660

3.3.2 A consistently well performing method in log D estimation661

For ranked submissions, we identified a single consistently well-performing method that was ranked in the top three according662

to RMSE, MAE, Kendall’s Tau, and R2 (all statistics are available in Table S4). The best-performing method was TFE IEFPCM MST +663

IEFPCM/MST, which used a QM-based physical method for pKa and log P predictions [93]. The IEFPCM/MST model has previously664

been used to predict the log D of over 35 ionizable drugs, where it achieved a RMSE of 1.6 [111], all little worse than a RMSE of665

1.3 in SAMPL7. The pKa prediction protocol used in the challenge is described in Section 3.2.2, where it was ranked among the666

consistently well performing pKa methods.667
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4 Conclusions668

Here, a community-wide blind prediction challenge was held that focused on partitioning and pKa for 22 compounds composed669

of a series of N-acylsulfonamides and related bioisosteres. Participants had the option of submitting predictions for both, or670

either, challenge.671

In the SAMPL7 log P challenge, participants were asked to predict a partition coefficient for each compound between octanol672

and water and report the result as a transfer free energy. A total of 17 research groups participated, submitting 33 blind submis-673

sions total. Many submissions achieved a RMSE around 1.0 or lower for log P predictions, but none were below 0.5 log P units.674

RMSEs ranged from 0.6 to 4 log P units– 15 methods achieved a RMSE of 1.0 or lower, while a RMSE between 1 and 4 log units675

was observed for the majority of methods. Many methods achieved an accuracy similar to the null model which had a RMSE of676

1.2 and predicted that each compound had a constant log P value of 2.66. A few methods outperformed the null model (4 were677

empirical and 1 was an QM based method). In general, empirical methods tended to perform better than other methods, which678

makes sense given the availability of octanol-water log P training data.679

Performance in the SAMPL7 log P challenge was poorer than in the SAMPL6 log P challenge. In the SAMPL6 log P challenge,680

10 methods achieved a RMSE ≤ 0.5 log P units, while here, none did. In general, the SAMPL7 molecules were more flexible,681

which may have contributed to this accuracy difference. The chemical diversity in the SAMPL6 challenge dataset was limited to 6682

molecules with 4-amino quinazoline groups and 2 molecules with a benzimidazole group. The SAMPL7 set was larger and more683

diverse, thus possibly more challenging.684

For ranked submissions, we identified 5 consistently well-performing methods for log P evaluations based on several statis-685

tical metrics. These particularly well performing methods included three empirical methods, a QM-based physical method, and686

a MM-based physical method.687

To see if any molecules posed particular challenges , we looked at log P prediction accuracy for each molecule across all688

methods. Compounds belonging to the isoxazole compound class had higher log P prediction errors.MM-based physical meth-689

ods tended to make predictions that were less accurate for molecules belonging to the isoxazole compound class compared to690

QM-based physical and empirical method categories.691
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In the SAMPL7 pKa challenge, participants predicted free energies for transitions between microstates. Predicted relative692

free energies were then converted to macroscopic pKa values in order to compare participants’ predictions to experimental pKa693

values and calculate performance statistics of predictions. This format allowed us to avoid some of the challenges of matching694

microscopic transitions to macroscopic pKa values [43], making analysis more straightforward. As noted above, some matching695

is still required, but this approach eliminates uncertainty about which transitions are predicted.696

Macroscopic pKa evaluations relied on accuracy and correlationmetrics. Nomethod achieved a RMSE around 0.5 or lower for697

macroscopic pKa predictions for the challengemolecules whichmeansmethods did not achieve experimental accuracy, which is698

likely around 0.5 pKa units [112]. Methods had RMSE values between 0.7 to 5.4 pKa units. Compared to the previous SAMPL6 pKa699

challenge, accuracy remains roughly the same. Out of all submitted methods in SAMPL7, two methods achieved a RMSE lower700

than 1 pKa unit (one of which was a commercially available method that we used as a reference method), while a RMSE between701

1.8 and 5.4 log units was observed for the majority of methods. In terms of correlation, predictions had R2 values ranging from702

0.03 to 0.93 and only two methods achieved an R2 greater than 0.9.703

We tested ChemAxon’s Chemicalize toolkit [83] as an empirical reference method to make macroscopic pKa predictions and704

it performed better than other methods. Excluding the reference method, the two best performing methods across several705

performance statistics were both QM-based physical methods.706

For microscopic pKa, we find that some transitions are much more consistently predicted than others, but in some cases707

there is broad disagreement even about the sign of the free energy change associated with a particular transition – so methods708

disagree as to which protonation state or tautomer is preferred at the reference pH. Participants agreed on the sign of predic-709

tions for roughly 56% of all microstates, while 38% disagreed on sign (predictions were negative or positive). Certain chemical710

transformations were found to have a high level of disagreement, especially protonation of nitrogens in 1,2,3-triazoles, isoxa-711

zoles, as well as those in terminal nitrogen groups. Transitions involving keto-enol neutral state tautomerism also often lead to712

sign disagreement.713

The current challenge combined log P and pKa submissions in order to evaluate the current state of log D predictions. In714

general we find that the accuracy of octanol-water log P predictions in SAMPL7 is higher than that of cyclohexane-water log D715

predictions in SAMPL5. Half of the methods in the current challenge achieved a RMSE below 2 log D units, while no submis-716

sions achieved this in the SAMPL5 challenge. Given the abundance of literature octanol-water partitioning and distribution data717

(compared to cyclohexane-water data in SAMPL5) it makes sense that accuracy would be higher here in SAMPL7 since trained718

methods (i.e. empirical methods and implicit solvent QM) are impacted by availability of training data.719

5 Code and Data Availability720

All SAMPL7 physical property instructions, submissions, experimental data and analysis are available at721

https://github.com/samplchallenges/SAMPL7/tree/master/physical_property.722

Figures and supporting material for this paper can be found at723

https://github.com/MobleyLab/sampl7-physical-property-challenge-manuscript. This repository contains graphs and plots from the724

paper, some of which are available in the main SAMPL7 physical property repository listed directly above, but also includes:725

• A graph that shows the distribution ofmolecular properties of the 22 compounds from the SAMPL7 physical property blind726

challenge.727

• Details of MM-based physical methods that made log P predictions.728

• A table that lists additional info for microscopic pKa predictions. The table lists the: microstate, total number of relative729

free energy predictions, average relative free energy prediction, average relative free energy prediction STD, Minimum730

relative free energy prediction, maximum relative free energy prediction, number of (+) sign predictions, number of (-) sign731

predictions, number of neutral (0) sign predictions, and Shannon entropy (H).732

• A table of the number of states per charge state for the microstates used in the SAMPL7 pKa challenge.733

• A table of the SAMPL7molecule ID, compound class, and isomeric SMILES of SAMPL7physical property challengemolecules.734

• Structures of the molecules in the SAMPL7 physical property challenge grouped by compound class.735

• A figure showing an example of a relative free energy network.736

• A figure showing chemical transformations that repeatedly showup as having large disagreement on the sign of the relative737

free energy prediction in the pKa challenge.738

• Structures of microstates where relative microstate free energy predictions disagree for the pKa challenge.739

• A figure showing the Shannon entropy per microstate transition in the pKa challenge.740
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6 Overview of Supplementary Information741

Contents of Supplementary Information742

• Table S1 Distribution of molecular properties of the 22 compounds from the SAMPL7 physical property blind challenge.743

• Table S1 Evaluation statistics calculated for all methods in the log P challenge.744

• Table S2 Overall correlation assessment for all methods participating in the SAMPL7 log P challenge.745

• Table S2 Details MM-based physical methods that made log P predictions.746

• Table S3 Evaluation statistics calculated for all methods in the pKa challenge.747

• Table S5 Additional info for microscopic pKa predictions.748

• Table S7 Number of states per charge state for the microstates used in the SAMPL7 pKa challenge.749

• Table S4 Evaluation statistics calculated for all log D estimates.750

• Figure S3 SMILES and compound class of SAMPL7 physical property challenge molecules.751

• Table S6 Compound classes and structures of the molecules in the SAMPL7 physical property challenge.752
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Figure S1. Distribution of molecular properties of the 22 compounds from the SAMPL7 physical property blind challenge. (A) Histogramof log P measurements collected with Sirius T3 instrument. The ticks along the x-axis indicate the individual values. Compounds have experi-mental log P values in the range of 0.58-2.96. (B) Histogram of pKa measurements collected with Sirius T3 instrument.. Eight compounds havemeasured pKa ’s in the range of 4.49–6.62 and eleven in the range 9.58- 11.93. Two compounds are included here as having pKa ’s of 12, butactually had experimental values greater than 12, and were therefore outside of the experimental detection range. (C) Histogram of log Dmea-surements between n-octanol and aqueous buffer at pH 7.4 were determined via potentiometric titrations using a Sirius T3 instrument, exceptfor compounds SM27, SM28, SM30-SM34, SM36-SM39 which had log D7.4 values determined via shake-flask assay. log Dmeasurements rangedfrom -0.87-2.96. (D) Histogram of molecular weights calculated for the compounds in the SAMPL7 dataset. The molecular weight ranged from227-365 Da. (E) Histogram of the number of rotatable bonds in each molecule. The number of rotatable bonds in challenge molecules rangedfrom 3-6.
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Table S1. Evaluation statistics calculated for all methods in the log P challenge. Submitted predictions are represented by their method name. There are six errormetrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determination (R2), linear regression slope(m), and Kendall’s Rank Correlation Coefficient (�), and error slope (ES). The mean and 95% confidence intervals of each statistic is presented. This table is ranked byincreasing RMSE.
Method Name Category Submission Type RMSE MAE ME R2 m Kendall’s Tau ES

ClassicalGSG DB2 Empirical Blind 0.55 [0.38, 0.69] 0.44 [0.31, 0.58] 0.05 [-0.20, 0.26] 0.51 [0.18, 0.82] 0.71 [0.36, 1.06] 0.51 [0.18, 0.78] 0.81 [0.62, 1.03]
TFE MLR Empirical Blind 0.58 [0.34, 0.83] 0.41 [0.26, 0.60] -0.04 [-0.30, 0.19] 0.43 [0.06, 0.80] 0.60 [0.21, 0.95] 0.56 [0.23, 0.82] 1.38 [1.27, 1.45]
ClassicalGSG DB4 Empirical Blind 0.65 [0.50, 0.78] 0.55 [0.41, 0.69] 0.25 [0.01, 0.50] 0.51 [0.19, 0.76] 0.82 [0.39, 1.22] 0.45 [0.15, 0.71] 0.57 [0.46, 0.85]
Chemprop Empirical Blind 0.66 [0.39, 0.88] 0.48 [0.30, 0.68] -0.17 [-0.44, 0.08] 0.41 [0.11, 0.76] 0.69 [0.31, 1.08] 0.54 [0.25, 0.82] 1.03 [0.79, 1.21]
TFE-SM8-vacuum-opt Physical (QM) Blind 0.67 [0.45, 0.86] 0.51 [0.33, 0.69] 0.15 [-0.13, 0.42] 0.45 [0.11, 0.75] 0.80 [0.33, 1.23] 0.50 [0.18, 0.76] 0.99 [0.75, 1.20]
GROVER Empirical Blind 0.69 [0.41, 0.96] 0.49 [0.31, 0.71] -0.21 [-0.50, 0.05] 0.33 [0.04, 0.70] 0.56 [0.18, 0.92] 0.37 [0.05, 0.66] 0.87 [0.62, 1.09]
ClassicalGSG DB1 Empirical Blind 0.76 [0.56, 0.96] 0.62 [0.45, 0.82] 0.10 [-0.23, 0.40] 0.28 [0.06, 0.60] 0.61 [0.26, 0.99] 0.36 [0.04, 0.63] 0.63 [0.43, 0.85]
ffsampled_deeplearning_cl1 Empirical Blind 0.77 [0.44, 1.04] 0.51 [0.29, 0.77] -0.25 [-0.58, 0.04] 0.31 [0.05, 0.70] 0.63 [0.24, 1.05] 0.42 [0.06, 0.74] 0.99 [0.72, 1.19]
ClassicalGSG DB3 Empirical Blind 0.77 [0.57, 0.96] 0.62 [0.43, 0.82] -0.15 [-0.46, 0.16] 0.51 [0.18, 0.78] 1.08 [0.55, 1.59] 0.48 [0.15, 0.75] 0.60 [0.42, 0.89]
COSMO-RS Physical (QM) Blind 0.78 [0.49, 1.01] 0.57 [0.36, 0.80] -0.30 [-0.61, -0.01] 0.49 [0.17, 0.79] 0.97 [0.49, 1.45] 0.53 [0.25, 0.78] 0.97 [0.74, 1.18]
TFE_Attentive_FP Empirical Blind 0.79 [0.47, 1.07] 0.57 [0.36, 0.82] -0.18 [-0.53, 0.12] 0.19 [0.00, 0.61] 0.44 [0.04, 0.87] 0.34 [-0.02, 0.69] 0.93 [0.69, 1.13]
ffsampled_deeplearning_cl2 Empirical Blind 0.82 [0.48, 1.11] 0.56 [0.32, 0.83] -0.37 [-0.69, -0.08] 0.36 [0.07, 0.72] 0.73 [0.31, 1.16] 0.40 [0.07, 0.69] 0.94 [0.67, 1.15]
TFE-SM12-vacuum-opt Physical (QM) Blind 0.82 [0.61, 1.02] 0.66 [0.47, 0.87] 0.28 [-0.06, 0.60] 0.41 [0.08, 0.72] 0.90 [0.36, 1.42] 0.39 [0.05, 0.67] 0.88 [0.65, 1.09]
TFE-SM8-solvent-opt Physical (QM) Blind 0.97 [0.71, 1.20] 0.78 [0.55, 1.02] 0.65 [0.35, 0.94] 0.42 [0.10, 0.70] 0.83 [0.35, 1.31] 0.44 [0.13, 0.69] 0.71 [0.47, 0.94]
REF1 ChemAxon Empirical Reference 1.00 [0.79, 1.20] 0.85 [0.63, 1.08] 0.46 [0.08, 0.83] 0.39 [0.10, 0.70] 0.98 [0.45, 1.53] 0.40 [0.09, 0.68] 0.13 [-0.00, 0.29]
TFE IEFPCM MST Physical (QM) Blind 1.03 [0.65, 1.41] 0.80 [0.56, 1.10] -0.07 [-0.53, 0.33] 0.27 [0.01, 0.68] 0.85 [0.12, 1.50] 0.42 [0.10, 0.70] 1.07 [0.88, 1.23]
TFE MD neat oct (GAFF/TIP4P) Physical (MM) Blind 1.11 [0.74, 1.43] 0.83 [0.52, 1.15] -0.74 [-1.10, -0.40] 0.56 [0.24, 0.82] 1.25 [0.64, 1.83] 0.58 [0.27, 0.82] 1.30 [1.19, 1.40]
NULL0 mean clogP FDA Empirical Reference 1.20 [0.94, 1.42] 1.01 [0.73, 1.28] -0.96 [-1.26, -0.64] 0.00 [0.00, 0.00] 0.00 [-0.00, 0.00] nan [nan, nan] 0.18 [0.04, 0.32]
NES-1 (GAFF2/OPC3) G Physical (MM) Blind 1.21 [0.92, 1.51] 1.03 [0.78, 1.31] -0.13 [-0.63, 0.37] 0.22 [0.01, 0.59] 0.88 [0.15, 1.59] 0.34 [0.02, 0.63] 1.23 [1.11, 1.33]
NES-1 (GAFF2/OPC3) J Physical (MM) Blind 1.28 [0.97, 1.58] 1.08 [0.81, 1.38] 0.01 [-0.54, 0.53] 0.21 [0.01, 0.63] 0.92 [0.09, 1.76] 0.33 [0.00, 0.64] 1.21 [1.08, 1.33]
NES-1 (GAFF2/OPC3) B Physical (MM) Blind 1.42 [1.02, 1.81] 1.13 [0.79, 1.51] -0.51 [-1.08, 0.05] 0.27 [0.02, 0.65] 1.11 [0.30, 1.91] 0.36 [0.05, 0.65] 1.17 [1.01, 1.31]
MD (GAFF/TIP3P) Physical (MM) Blind 1.43 [1.15, 1.71] 1.30 [1.06, 1.56] -1.30 [-1.56, -1.06] 0.48 [0.22, 0.79] 0.77 [0.45, 1.12] 0.55 [0.28, 0.80] 0.94 [0.80, 1.09]
TFE wet oct (GAFF/TIP4P) Physical (MM) Blind 1.47 [1.16, 1.77] 1.30 [1.03, 1.60] -1.30 [-1.60, -1.03] 0.42 [0.10, 0.75] 0.80 [0.30, 1.30] 0.47 [0.14, 0.75] 1.15 [1.03, 1.27]
TFE-NHLBI-TZVP-QM Physical (QM) Blind 1.55 [1.19, 1.88] 1.34 [1.02, 1.67] 1.32 [1.00, 1.67] 0.52 [0.19, 0.78] 1.16 [0.59, 1.65] 0.51 [0.19, 0.78] 0.05 [-0.00, 0.17]
0.05 MD (CGenFF/TIP3P) Physical (MM) Blind 1.63 [1.25, 1.98] 1.41 [1.08, 1.76] -1.38 [-1.74, -1.02] 0.54 [0.26, 0.82] 1.26 [0.81, 1.76] 0.52 [0.26, 0.76] 0.90 [0.70, 1.07]
EC_RISM_wet Physical (QM) Blind 1.84 [1.31, 2.36] 1.49 [1.07, 1.96] -1.49 [-1.96, -1.06] 0.29 [0.05, 0.68] 0.96 [0.37, 1.57] 0.38 [0.08, 0.67] 0.67 [0.45, 0.90]
TFE-SMD-vacuum-opt Physical (QM) Blind 1.96 [1.60, 2.30] 1.76 [1.42, 2.13] 1.76 [1.42, 2.13] 0.44 [0.12, 0.68] 1.04 [0.46, 1.59] 0.41 [0.03, 0.70] 0.68 [0.50, 0.87]
MD-EE-MCC (GAFF-TIP4P-Ew) Physical (MM) Blind 2.06 [1.48, 2.59] 1.61 [1.09, 2.17] -0.93 [-1.70, -0.17] 0.03 [0.00, 0.28] 0.47 [-0.53, 1.49] 0.11 [-0.16, 0.38] 0.76 [0.51, 1.03]
MD (OPLS-AA/TIP4P) Physical (MM) Blind 2.19 [1.69, 2.65] 1.82 [1.31, 2.34] -1.35 [-2.03, -0.60] 0.28 [0.06, 0.58] 1.47 [0.58, 2.55] 0.36 [0.07, 0.62] 0.73 [0.48, 0.97]
TFE b3lypd3 Physical (QM) Blind 2.19 [1.76, 2.57] 1.98 [1.59, 2.37] 1.98 [1.59, 2.37] 0.40 [0.10, 0.67] 1.06 [0.47, 1.64] 0.45 [0.11, 0.72] 0.22 [0.09, 0.41]
MD LigParGen (OPLS-AA/TIP4P) Physical (MM) Blind 2.28 [1.80, 2.71] 1.95 [1.46, 2.44] 0.35 [-0.60, 1.29] 0.07 [0.00, 0.37] 0.83 [-0.51, 2.26] 0.19 [-0.14, 0.50] 0.65 [0.42, 0.88]
TFE-SMD-solvent-opt Physical (QM) Blind 2.39 [1.97, 2.78] 2.19 [1.79, 2.60] 2.19 [1.79, 2.60] 0.40 [0.09, 0.67] 1.09 [0.45, 1.67] 0.42 [0.09, 0.68] 0.51 [0.34, 0.68]
Ensemble EPI physprop Empirical Blind 2.73 [2.27, 3.16] 2.54 [2.13, 2.98] 2.54 [2.13, 2.98] 0.33 [0.04, 0.64] -0.30 [-0.49, -0.10] -0.35 [-0.60, -0.03] -0.00 [-0.00, -0.00]
Ensemble Martel Empirical Blind 3.29 [2.89, 3.68] 3.16 [2.78, 3.55] 3.16 [2.78, 3.55] 0.39 [0.05, 0.73] -0.25 [-0.40, -0.09] -0.46 [-0.72, -0.14] -0.00 [-0.00, -0.00]
QSPR_Mordred2D_TPOT_AutoML Empirical Blind 3.64 [3.01, 4.24] 3.36 [2.80, 3.96] 3.36 [2.80, 3.96] 0.39 [0.10, 0.71] -0.72 [-1.12, -0.33] -0.37 [-0.65, -0.04] -0.00 [-0.00, -0.00]
TFE-NHLBI-NN-IN Empirical Blind 3.97 [3.57, 4.34] 3.85 [3.45, 4.25] 3.85 [3.45, 4.25] 0.00 [0.00, 0.15] 0.02 [-0.30, 0.34] 0.02 [-0.23, 0.27] 0.01 [-0.00, 0.02]
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Figure S2. Overall correlation assessment for all methods participating in the SAMPL7 log P challenge show that the uncertainty of each correlation statistic is quite high,
not allowing a true ranking based on correlation. Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau (�) are shown, with error bars denoting 95% confidence intervalsobtained by bootstrapping over challenge molecules. Submitted methods are listed in Table 1. The submission REF1 ChemAxon was a reference method included after the blindchallenge submission deadline, and NULL0 mean cLogP FDA is the null prediction method; all others refer to blind predictions. Most methods have a statistically indistinguishableperformance on ranking because of the small dynamic range of the dataset. Evaluation statistics calculated for all methods are available in Table S1 of the Supplementary Information.
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Table S2. Details of MM-based physical methods in the log P prediction challenge. Force fields, water models, andoctanol phase choice are reported. A dry octanol phase indicates the octanol phase was composed of only octanol. A wetoctanol phase indicates the octanol phase was treated as a mixture of octanol and water. RMSE, MAE, R2, and Kendall’s Tauvalues are reported as mean and 95% confidence intervals.
Method Name Force Field Water Model Octanol Phase RMSE MAE R2 Kendall’s Tau

TFE MD neat oct (GAFF/TIP4P) GAFF TIP4P dry 1.11 [0.74, 1.43] 0.83 [0.52, 1.15] 0.56 [0.24, 0.82] 0.58 [0.27, 0.82]
NES-1 (GAFF2/OPC3) G GAFF2 OPC3 dry 1.21 [0.92, 1.51] 1.03 [0.78, 1.31] 0.22 [0.01, 0.59] 0.34 [0.02, 0.63]
NES-1 (GAFF2/OPC3) J GAFF2 OPC3 dry 1.28 [0.97, 1.58] 1.08 [0.81, 1.38] 0.21 [0.01, 0.63] 0.33 [0.00, 0.64]
NES-1 (GAFF2/OPC3) B GAFF2 OPC3 dry 1.42 [1.02, 1.81] 1.13 [0.79, 1.51] 0.27 [0.02, 0.65] 0.36 [0.05, 0.65]
MD (GAFF/TIP3P) GAFF TIP3P dry 1.43 [1.15, 1.71] 1.30 [1.06, 1.56] 0.48 [0.22, 0.79] 0.55 [0.28, 0.80]
TFE wet oct (GAFF/TIP4P) GAFF TIP4P wet 1.47 [1.16, 1.77] 1.30 [1.03, 1.60] 0.42 [0.10, 0.75] 0.47 [0.14, 0.75]
MD (CGenFF/TIP3P) CGenFF TIP3P dry 1.63 [1.25, 1.98] 1.41 [1.08, 1.76] 0.54 [0.26, 0.82] 0.52 [0.26, 0.76]
MD-EE-MCC (GAFF-TIP4P-Ew) GAFF TIP4P-eW dry 2.06 [1.48, 2.59] 1.61 [1.09, 2.17] 0.03 [0.00, 0.28] 0.11 [-0.16, 0.38]
MD (OPLS-AA/TIP4P) OPLS-AA TIP4P dry 2.19 [1.69, 2.65] 1.82 [1.31, 2.34] 0.28 [0.06, 0.58] 0.36 [0.07, 0.62]
MD LigParGen (OPLS-AA/TIP4P) OPLS-AA TIP4P dry 2.28 [1.80, 2.71] 1.95 [1.46, 2.44] 0.07 [0.00, 0.37] 0.19 [-0.14, 0.50]
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Table S3. Evaluation statistics calculated for all methods in the pKa challenge. Submitted predictions are represented by their method name. There aresix error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determination (R2), linearregression slope (m), Kendall’s Rank Correlation Coefficient (�), and error slope (ES). Themean and 95% confidence intervals of each statistic is presented. This tableis ranked by increasing RMSE.
Method Name Category Submission Type RMSE MAE ME R2 m Kendall’s Tau ES

REF00_Chemaxon_Chemicalize QSPR/ML Reference 0.71 [0.50, 0.90] 0.56 [0.38, 0.76] 0.09 [-0.23, 0.38] 0.91 [0.86, 0.96] 0.88 [0.72, 1.02] 0.73 [0.51, 0.90] 0.83 [0.58, 1.04]
EC_RISM QM Blind 0.72 [0.45, 0.95] 0.53 [0.33, 0.75] 0.20 [-0.10, 0.50] 0.93 [0.87, 0.98] 0.80 [0.72, 0.91] 0.81 [0.63, 0.96] 1.32 [1.19, 1.42]
IEFPCM/MST QM Blind 1.82 [1.00, 2.69] 1.30 [0.84, 1.92] 0.25 [-0.46, 1.09] 0.56 [0.22, 0.87] 0.86 [0.53, 1.18] 0.52 [0.22, 0.76] 1.00 [0.80, 1.17]
DFT_M05-2X_SMD QM Blind 2.90 [2.04, 3.69] 2.28 [1.53, 3.10] -0.78 [-2.02, 0.41] 0.03 [0.00, 0.37] 0.15 [-0.32, 0.53] 0.17 [-0.22, 0.54] 0.55 [0.31, 0.81]
TZVP-QM QM Blind 2.90 [2.52, 3.25] 2.75 [2.34, 3.14] 1.20 [0.02, 2.33] 0.23 [0.03, 0.60] -0.11 [-0.20, -0.04] -0.14 [-0.49, 0.23] -0.00 [-0.00, -0.00]
Standard Gaussian Process QSPR/ML Blind 3.49 [2.76, 4.12] 2.91 [2.06, 3.75] 2.47 [1.38, 3.55] 0.30 [0.10, 0.69] -0.05 [-0.09, -0.02] -0.42 [-0.70, -0.08] 1.11 [0.96, 1.24]
DFT_M06-2X_SMD_implicit QM Blind 4.16 [2.00, 6.38] 2.80 [1.76, 4.33] -0.07 [-1.61, 1.95] 0.52 [0.39, 0.78] 1.70 [0.80, 2.77] 0.70 [0.48, 0.88] 0.50 [0.30, 0.70]
DFT_M06-2X_SMD_implicit_SAS QM Blind 4.16 [2.03, 6.44] 2.81 [1.80, 4.36] -0.20 [-1.71, 1.85] 0.50 [0.36, 0.77] 1.64 [0.72, 2.72] 0.56 [0.28, 0.81] 0.14 [0.02, 0.31]
DFT_M06-2X_SMD_explicit_water QM Blind 5.12 [1.19, 7.92] 2.56 [0.96, 4.76] -0.35 [-2.62, 1.93] 0.20 [0.00, 0.81] 1.10 [-0.39, 2.50] 0.46 [0.06, 0.78] 0.52 [0.29, 0.77]
Gaussian_corrected QM+LEC Blind 5.36 [4.70, 5.95] 5.12 [4.42, 5.79] 5.12 [4.42, 5.79] 0.76 [0.63, 0.88] 0.35 [0.27, 0.45] 0.60 [0.42, 0.76] 0.00 [-0.00, 0.00]
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Table S4. Evaluation statistics calculated for all log D estimates. Predictions are represented a name based on method names participants submitted to the and log P challenges.There are six error metrics reported: the root-mean-squared error (RMSE), mean absolute error (MAE), mean (signed) error (ME), coefficient of determination (R2), linear regression slope(m), Kendall’s Rank Correlation Coefficient (�), and error slope (ES). The mean and 95% confidence intervals of each statistic is presented. This table is ranked by increasing RMSE.
Method Name Category Submission Type RMSE MAE ME R2 m Kendall’s Tau ES

REF0 ChemAxon Empirical Reference 1.06 [0.82, 1.27] 0.91 [0.68, 1.14] 0.28 [-0.14, 0.70] 0.27 [0.01, 0.58] 0.54 [0.10, 0.90] 0.31 [-0.02, 0.61] 0.12 [-0.00, 0.28]
TFE IEFPCM MST + IEFPCM/MST Physical (QM) Standard 1.27 [0.85, 1.64] 0.98 [0.67, 1.33] 0.24 [-0.28, 0.75] 0.55 [0.17, 0.87] 1.31 [0.71, 1.70] 0.57 [0.27, 0.82] 1.16 [0.89, 1.25]
NULL0 Empirical Reference 1.59 [1.22, 1.93] 1.35 [1.00, 1.71] 1.23 [0.81, 1.65] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] nan [nan, nan] 0.65 [0.44, 0.87]
EC_RISM Physical (QM) Standard 1.69 [1.30, 2.05] 1.43 [1.07, 1.82] -1.43 [-1.81, -1.07] 0.53 [0.20, 0.77] 0.95 [0.54, 1.29] 0.51 [0.21, 0.74] 0.84 [0.64, 1.02]
TFE-NHLBI-TZVP-QM + TZVP-QM Physical (QM) Standard 1.72 [1.30, 2.12] 1.47 [1.12, 1.86] 1.26 [0.78, 1.75] 0.25 [0.01, 0.64] 0.64 [0.08, 1.25] 0.38 [0.02, 0.70] 0.05 [-0.00, 0.18]
TFE b3lypd3 + DFT_M05-2X_SMD Physical (QM) Standard 2.15 [1.56, 2.71] 1.78 [1.31, 2.31] 1.78 [1.31, 2.31] 0.32 [0.04, 0.66] 0.80 [0.27, 1.30] 0.41 [0.05, 0.72] 0.42 [0.27, 0.70]
MD (CGenFF/TIP3P) + Gaussian_corrected Physical (MM) + QM+LEC Standard 2.27 [1.97, 2.55] 2.13 [1.80, 2.45] 1.84 [1.21, 2.35] 0.62 [0.35, 0.84] 1.53 [0.93, 2.18] 0.62 [0.36, 0.82] 0.88 [0.75, 1.00]
TFE-SMD-solvent-opt + DFT_M06-2X_SMD_explicit_water Physical (QM) Standard 4.54 [2.09, 7.15] 2.92 [1.88, 4.57] 2.88 [1.80, 4.55] 0.25 [0.11, 0.76] 1.92 [0.53, 4.45] 0.55 [0.22, 0.80] 0.55 [0.38, 0.73]
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Table S5. Additional info for microscopic pKa predictions.

Microstate
Total number
of relative free
energy predictions

Average relative free
energy prediction

Average relative free
energy prediction STD

Minimum relative free
energy prediction

Maximum relative free
energy prediction

Number of (+) sign
predictions

Number of (-) sign
predictions

Number of neutral (0)
sign predictions

Shannon entropy (H)

SM25_micro001 9 -0.6 13.2 -15.6 16.3 4 5 0 0.7
SM25_micro002 8 8.8 10.6 -7.5 20.4 6 2 0 0.6
SM25_micro003 8 9.6 2.7 4.5 12.6 8 0 0 0.0
SM25_micro004 2 -8.9 4.5 -12.1 -5.8 0 2 0 0.0
SM25_micro005 2 -0.8 2.1 -2.3 0.7 1 1 0 0.7
SM26_micro001 9 7.3 2.4 3.0 10.7 9 0 0 0.0
SM26_micro002 8 -6.7 20.5 -31.7 22.1 3 5 0 0.7
SM26_micro003 8 20.9 12.0 0.9 32.4 8 0 0 0.0
SM26_micro004 2 4.3 0.7 3.8 4.8 2 0 0 0.0
SM26_micro005 2 8.1 2.6 6.3 10.0 2 0 0 0.0
SM27_micro001 9 13.4 4.9 6.1 19.0 9 0 0 0.0
SM28_micro001 9 -5.7 25.0 -39.0 23.5 4 5 0 0.7
SM28_micro002 8 17.1 8.0 8.2 26.5 8 0 0 0.0
SM28_micro003 8 0.9 8.3 -10.0 12.6 4 4 0 0.7
SM28_micro004 2 25.1 9.1 18.7 31.5 2 0 0 0.0
SM29_micro001 9 12.6 4.3 6.3 18.7 9 0 0 0.0
SM30_micro001 9 12.3 4.2 5.9 17.7 9 0 0 0.0
SM31_micro001 9 13.2 4.4 6.0 18.1 9 0 0 0.0
SM31_micro002 3 -0.6 6.6 -8.1 4.5 2 1 0 0.6
SM32_micro001 9 12.8 4.6 5.9 18.9 9 0 0 0.0
SM33_micro001 9 11.9 3.9 5.2 17.1 9 0 0 0.0
SM34_micro001 9 13.0 4.6 5.7 19.7 9 0 0 0.0
SM34_micro002 3 -0.9 6.4 -8.1 4.4 2 1 0 0.6
SM35_micro001 9 11.7 4.5 3.2 16.2 9 0 0 0.0
SM35_micro002 8 0.2 1.4 -1.9 2.5 5 2 1 0.9
SM35_micro003 8 12.2 5.6 3.2 18.1 8 0 0 0.0
SM36_micro001 9 10.8 3.1 5.2 14.9 9 0 0 0.0
SM36_micro002 8 1.2 1.8 0.0 4.4 4 1 3 1.0
SM36_micro003 8 10.7 3.3 5.2 14.7 8 0 0 0.0
SM37_micro001 9 0.1 9.4 -11.7 13.7 5 4 0 0.7
SM37_micro002 8 9.8 2.9 3.7 12.7 8 0 0 0.0
SM37_micro003 8 0.7 1.8 -1.5 4.2 4 3 1 1.0
SM37_micro004 8 8.9 3.0 3.8 12.4 8 0 0 0.0
SM37_micro005 7 -2.7 7.6 -10.6 11.0 3 4 0 0.7
SM38_micro001 9 11.6 4.6 5.2 17.5 9 0 0 0.0
SM39_micro001 9 10.1 3.1 5.1 14.6 9 0 0 0.0
SM40_micro001 9 10.8 3.3 5.0 15.7 9 0 0 0.0
SM40_micro002 8 -1.8 10.3 -15.5 11.8 4 4 0 0.7
SM41_micro001 9 8.4 3.5 2.2 14.8 9 0 0 0.0
SM41_micro002 8 -0.5 9.9 -12.9 13.9 4 4 0 0.7
SM42_micro001 9 5.5 4.6 0.2 12.3 9 0 0 0.0
SM42_micro002 8 -0.2 8.6 -10.8 14.3 4 4 0 0.7
SM42_micro003 3 -2.0 3.0 -5.1 1.0 1 2 0 0.6
SM43_micro001 9 5.9 4.4 0.5 13.4 9 0 0 0.0
SM43_micro002 8 0.1 9.4 -11.0 11.0 4 4 0 0.7
SM43_micro003 8 -11.6 38.1 -60.9 38.2 4 4 0 0.7
SM43_micro004 2 -3.6 2.2 -5.2 -2.1 0 2 0 0.0
SM43_micro005 2 0.1 0.4 -0.2 0.4 1 1 0 0.7
SM44_micro001 9 9.5 2.9 4.3 12.9 9 0 0 0.0
SM44_micro002 8 -1.1 7.4 -10.3 9.9 4 4 0 0.7
SM45_micro001 9 9.6 3.1 4.4 14.7 9 0 0 0.0
SM45_micro002 8 -1.0 7.8 -11.0 9.6 4 4 0 0.7
SM46_micro001 9 9.9 4.1 4.0 18.4 9 0 0 0.0
SM46_micro002 8 -0.7 7.5 -9.6 10.5 4 4 0 0.7
SM46_micro003 8 -12.2 37.1 -63.5 39.0 4 4 0 0.7
SM46_micro004 3 6.3 4.5 2.4 11.3 3 0 0 0.0

46of49



Table S6. SMILES and compound class of SAMPL7 physical property challenge molecules. A view of the compounds and their classes canbe found in Figure S3.
SAMPL7 Molecule ID Compound Class Isomeric SMILES

SM25 acylsulfonamide O=C(NS(C1=CC=CC=C1)(=O)=O)CCC2=CC=CC=C2
SM26 acylsulfonamide O=S(CCC1=CC=CC=C1)(NC(C)=O)=O
SM27 oxetane O=S(CCC1=CC=CC=C1)(NC2(C)COC2)=O
SM28 thietane-1,1-dioxide O=S(CC1(NC(C)=O)CCC2=CC=CC=C2)(C1)=O
SM29 oxetane CS(NC1(COC1)CCC2=CC=CC=C2)(=O)=O
SM30 oxetane O=S(NC1(COC1)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM31 oxetane O=S(NC1(COC1)CCC2=CC=CC=C2)(N(C)C)=O
SM32 thietane CS(NC1(CSC1)CCC2=CC=CC=C2)(=O)=O
SM33 thietane O=S(NC1(CSC1)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM34 thietane O=S(NC1(CSC1)CCC2=CC=CC=C2)(N(C)C)=O
SM35 thietane-1-oxide CS(N[C@@]1(C[S+]([O-])C1)CCC2=CC=CC=C2)(=O)=O
SM36 thietane-1-oxide O=S(N[C@@]1(C[S+]([O-])C1)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM37 thietane-1-oxide O=S(N[C@@]1(C[S+]([O-])C1)CCC2=CC=CC=C2)(N(C)C)=O
SM38 thietane-1,1-dioxide CS(NC1(CS(C1)(=O)=O)CCC2=CC=CC=C2)(=O)=O
SM39 thietane-1,1-dioxide O=S(NC1(CS(C1)(=O)=O)CCC2=CC=CC=C2)(C3=CC=CC=C3)=O
SM40 thietane-1,1-dioxide O=S(NC1(CS(C1)(=O)=O)CCC2=CC=CC=C2)(N(C)C)=O
SM41 isoxazole O=S(NC1=NOC(C2=CC=CC=C2)=C1)(C)=O
SM42 isoxazole O=S(NC1=NOC(C2=CC=CC=C2)=C1)(C3=CC=CC=C3)=O
SM43 isoxazole O=S(NC1=NOC(C2=CC=CC=C2)=C1)(N(C)C)=O
SM44 1,2,3-triazole O=S(NC(N=N1)=CN1C2=CC=CC=C2)(C)=O
SM45 1,2,3-triazole O=S(NC(N=N1)=CN1C2=CC=CC=C2)(C3=CC=CC=C3)=O
SM46 1,2,3-triazole O=S(NC(N=N1)=CN1C2=CC=CC=C2)(N(C)C)=O
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Figure S3. Compound classes and structures of the molecules in the SAMPL7 physical property challenge. SMILES of the compounds arein Table S3.
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Table S7. Number of states per charge state for the microstates used in the SAMPL7 pKa challenge. The total number of microstates(protomers and tautomers) is listed. Some of the molecules have up to 6 microstates, while others have only 2.
Charge State

+2 +1 0 -1 Total #
SM25 0 1 3 2 6
SM26 0 1 3 2 6
SM27 0 0 1 1 2
SM28 0 1 2 2 5
SM29 0 0 1 1 2
SM30 0 0 1 1 2
SM31 0 1 1 1 3
SM32 0 0 1 1 2
SM33 0 0 1 1 2
SM34 0 1 1 1 3
SM35 0 0 2 3 5
SM36 0 0 2 3 5
SM37 0 2 2 2 6
SM38 0 0 1 1 2
SM39 0 0 1 1 2
SM40 0 1 1 1 3
SM41 0 1 1 1 3
SM42 0 1 2 1 4
SM43 1 2 2 1 6
SM44 0 1 1 1 3
SM45 0 1 1 1 3
SM46 1 2 1 1 5
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