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Abstract 

The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-

Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at 

conical intersections of polyatomic systems. The current on-the-fly implementation of the 

SQC/MM method is based on the adiabatic representation and the dressed momentum. To include 

the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-

adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2
+) 

and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2
+, both two 

ZPE correction approaches give reasonable and consistent results. However, for azomethane, the 

γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. The 

further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics 

in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when 

the excited-state is well separated from the ground state in the Franck-Condon region. This work 

indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the 

nonadiabatic dynamics of realistic polyatomic systems.  
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1. Introduction 

The theoretical description of the nonadiabatic dynamics at conical intersections (CIs) in 

complex systems always arouses great research interests due to the breaking down of the Born-

Oppenheimer (BO) approximation and the involvement of a large number of degrees of freedom 

(DoFs).1-3 Various theoretical approaches were developed to simulate the nonadiabatic dynamics,1-

10 which for example include the full quantum dynamics2,11-15 and different versions of mixed 

quantum-classical/semi-classical dynamics.1-2,5-6,8-10,16-26 The complex potential energy functions 

of the polyatomic molecules with many DoFs impose some additional challenging in the 

simulation of the nonadiabatic dynamics. To solve such problems, the combination of on-the-fly 

simulation with various dynamics methods becomes popular in the simulation of the real-time 

nonadiabatic dynamics of polyatomic systems at all atomic level.5-6,9-10,21,27 

Because the electronic structure calculations are generally performed at each nuclear time 

step in the on-the-fly dynamics, the total cost of on-the-fly simulation is rather high. For this reason, 

on-the-fly simulation of the nonadiabatic dynamics should normally employ practical dynamical 

methods that can provide a good balance between computational cost and efficiency. Thus, only a 

few dynamic approaches are possible choices. For example, trajectory surface hopping (TSH) 

approaches, such as the Tully's fewest switch surface hopping (FSSH) approach and its 

extension,18,20 Landau-Zener/Zhu-Nakamura surface hopping approaches,24,28 were employed in 

the on-the-fly simulation due to their computational efficiency. In recent years, great progress was 

made to use Tully’s on-the-fly FSSH (and its variations) dynamics to treat the nonadiabatic 
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dynamics of realistic polyatomic systems.2,9,21,27 However, the improper treatment of electronic 

coherence and frustrated hops in Tully's FSSH approach were widely discussed.8,19-20,29 Recent 

work also tried to combine a more rigorous surface hopping approach30 in on-the-fly simulation, 

which is derived from the exact factorization of the electronic-nuclear wavefunction.31 

Considerable efforts were made to combine the on-the-fly simulation with the Gaussian-

wavepacket based and relevant approaches,5,10,32-33 such as the ab initio multiple spawning 

(AIMS),5,10 variational multiconfigurational Gaussians (vMCG)32 and multiconfigurational 

Ehrenfest.34 Some numerical details should be concerned in the implementation of these 

approaches. For instance, the new Gaussian wave-packets10 should be properly generated in the 

AIMS and the reasonable basis-function sampling/cloning should be considered in the 

multiconfigurational Ehrenfest dynamics.35 These approaches are very promising because these 

theoretical frameworks were more rigorous and the computational cost is reasonable. 

As expected, only the dynamical approaches with reasonable computational cost may be 

suitable for on-the-fly dynamics. Particularly, the methods based on independent trajectories, 

instead of entangled trajectories, are preferred in the implementation of on-the-fly simulation, if 

both require a similar number of trajectories. According to this idea, it is clear that the symmetrical 

quasi-classical dynamics based on the Meyer-Miller mapping Hamiltonian (SQC/MM)36-38 may 

be an alternative and suitable approach for on-the-fly simulation. In the Meyer-Miller (MM) 

mapping model,36 a Hamiltonian with N discrete quantum states is mapped to an effective 

Hamiltonian (or a mapping Hamiltonian) with N coupled harmonic oscillators.8,36,39-40 It is possible 
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to combine the MM mapping Hamiltonian with different dynamics approaches, such as various 

quasi-classical/semi-classical dynamics approaches,41-49 quantum-classical Liouville equation 

(QCLE),50-53 path integral and extension,54-59 surface hopping,60-61 centroid molecular dynamics 

(CMD),62 and ring-polymer molecular dynamics (RPMD).63-69 In the quasi-classical dynamics, the 

inclusion of the zero-point energy (ZPE) in the electronic mapping variables in principle provides 

better dynamical results than the Ehrenfest dynamics,36 while the partial instead of full ZPE should 

be included in practice.8,70-72 When the “bin” technique is taken to perform the initial sampling and 

the final assignment of the quantum states, the SQC/MM38,73 is formulated. 

The SQC/MM method gained significant attention due to its numerical simplicity and 

physical insight.38,73-90 The reasonable performance of the SQC/MM dynamics was examined by 

different benchmark works.47,81-82,86-87,89 Within the framework of the SQC/MM dynamics, Cotton 

and Miller suggested different useful approaches in the implementation, such as the triangle 

windowing technique80,91 and the employment of the trajectory-adjusted electronic ZPE 

correction92 in the SQC/MM approach. The SQC/MM method was employed to treat different 

types of nonadiabatic dynamics,38,73,81-86,93 for example excited-state energy/electronic transfer 

dynamics,73,81,86,90,93 singlet fission83-85 and scattering dynamics82 and photo-dissociation 

dynamics.92 As shown by several benchmark works,47,81-82,86-87 the SQC/MM dynamics gives a 

proper correct description of the nonadiabatic dynamics of various model systems (such as the 

spin-boson model, etc.), when the bath motion behaves classically. Previous work also proved that 

the SQC/MM dynamics in principle satisfied the detailed balance in the asymptotic limit.74 These 
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studies provide us the baseline of the reasonable behaviors of the SQC/MM dynamics. In addition, 

it is also shown that the electronic coherence of exciton dynamics in photoharvesting and organic 

photovoltaics systems is captured by the SQC/MM dynamics.81,86 Overall, the SQC/MM method 

is very promising, thus it is highly interesting to introduce it into on-the-fly dynamics for all-atomic 

simulation of the nonadiabatic dynamics of polyatomic molecules in real time. 

Recently, Huo and coworkers proposed to employ the quasi-diabatization procedure in the 

dynamics propagation.88,94-97 They used the quasi-diabatic basis to propagate the MM mapping 

Hamiltonian based dynamics such as partial-linearized density matrix (PLDM) path-integral 

approach and SQC/MM approach. Particularly, they made the initial efforts to combine the PLDM 

path-integral approach, the classical path approximation, and density functional tight-binding 

(DFTB) calculations to achieve the on-the-fly simulation of nonadiabatic dynamics of 

photoinduced charge transfer in organic photovoltaic systems.95 Late, they extended their approach 

to study the photoinduced dynamics at CIs.97 The quasi-diabatic approach works quite well and 

improves numerical stability in several cases. When the electronic states involved in the 

nonadiabatic dynamics have non-neglectable couplings with the higher electronic states, the curl 

condition is not satisfied.1,98-101 In this case, it is not trivial to construct the quasi-diabatic electronic 

basis within the subspace spanned by a few electronic states unless a much larger number of 

electronic states are considered in the adiabatic-to-diabatic transformation. The inclusion of many 

electronic states may bring some additional challenging in the high-level electronic-structure 

calculations. Alternatively, it is also possible to formulate the MM mapping Hamiltonian in the 
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adiabatic representation,36,56,75,102-104 providing a natural interface to combine the electronic 

structure calculations. Along this road, Miller and coworkers75 recently re-formulated the 

SQC/MM dynamics in the adiabatic representation by using the dressed momentum, namely 

kinematic momentum. This formulism provides us an important starting point for the 

implementation of on-the-fly SQC/MM dynamics. We noticed that Cui and coworkers tried to 

combine this approach with the on-the-fly simulation using the semi-empirical electronic-structure 

calculations.105 This work also showed that the on-the-fly SQC/MM dynamics results are sensitive 

with the choice of the window width and ZPE correction parameter γ when γ is fixed in the 

SQC/MM dynamics. In fact, the possible influence of the window width on the dynamics was also 

discussed in several previous works.77,80 This problem may be partially remedied by the trajectory-

adjusted electronic ZPE approach proposed by Cotton and Miller.92 Thus, in principle, this γ-

adjusted approach is highly recommended in the on-the-fly SQC/MM dynamics to study the 

photochemistry of realistic systems. 

In this work, we try to combine the SQC/MM method with the on-the-fly dynamics. To know 

more about the performance of the SQC/MM method in on-the-fly nonadiabatic dynamics 

compared with other methods, such as FSSH and AIMS, two commonly used molecular systems, 

methaniminium cation (CH2NH2
+) and azomethane, were chosen in this work. Since we noticed 

that the choice of the ZPE correction in the SQC/MM dynamics is not a trivial task, we 

implemented both the γ-fixed and γ-adjusted approaches. In the latter case, the γ is determined by 

the initial condition of the electronic DoF for each trajectory. This combination provides a novel 
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simulation tool to describe the full-dimensional nonadiabatic dynamics at CIs of polyatomic 

systems. All implementation is performed based on the nonadiabatic dynamics simulation package 

JADE developed in our group.106-107 In this sense, we also largely extend the JADE package to 

allow the on-the-fly dynamics simulation of nonadiabatic dynamics at CIs with various dynamics 

approaches.  

2. Theory and Methods 

2.1. SQC/MM Hamiltonian on the adiabatic representation 

The adiabatic representation of MM Hamiltonian can be written as75 
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with the kinematic momentum kinP defined as 
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where (R, P) are the coordinates and momenta of the nuclear DoFs, F is the number of electronic 

states, (xi, pi) is the coordinate and momentum of the harmonic oscillator that maps to the i-th 

electronic state, ( )iE R denotes the energy of the i-th electronic state, γ represents the ZPE correction 

parameter and ( )ijd R  is the first-order nonadiabatic coupling (NAC) vector. 

Previous work demonstrated that replacement of the effective potential term in Eq. (1), 
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by a symmetrized one 
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in the propagation generally gives better dynamics results,82 where  

2 21 1
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i i in x p = + −                                                            (5) 

is the action variable for the i-th electronic state. Therefore, our current on-the-fly implementation 

used the following equation of motions (EOMs) 
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2.2. Symmetrical triangle window and initial sampling 

In the SQC/MM dynamics, the “window function” was both used for the initial sampling of the 

electronic DoFs and final assignment for the quantum states. The triangle window function91 for 

multistate used in this work is defined as below 

F
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The system is regarded as staying at the i-th electronic state if 1iW =  at any moment along the 

trajectory. 

The action-angle sampling method was used to generate the initial 
0

ix  and 
0

ip  for the i-th 

electronic state, which is 

0 0

0 0

2( ) cos

2( ) sin ,

i i

i i

x n

p n

 

 

= +

= +

                                                         (10) 

where
0

in is sampled according to the triangle function and [ , ]   − . The final assignment is 

performed by binning the action variables into the corresponding windows. In the γ-fixed approach, 

this γ value is determined by the triangle window function.91 

 

2.3. Trajectory-adjusted electronic ZPE 

Recently, Cotton and Miller proposed a ZPE adjustment protocol,92 which modifies the ZPE 

correction parameter γ for each trajectory. After the initial sampling according to the triangle 

window, the coordinate and momentum of the electronic DoF are 
0

ix  and 
0

ip , respectively. This 

in fact defines the ZPE for each trajectory, namely  

0 2 0 21 1
( ) ( )

2 2
i i i ijx p = + −                                                      (11) 

j is the initial adiabatic electronic state used in the sampling process. This indicates that the 

corresponding ZPE correction parameter γi of each trajectory is different. Under this trajectory-

adjusted γi, the action of electronic DoFs becomes 
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2 21 1

2 2
i i i in x p = + −                                                           (12) 

during the trajectory propagation. At the same time, the expression of the MM Hamiltonian in the 

adiabatic representation should also take the trajectory-adjusted ZPE into account, namely  
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                                        (13) 

In the trajectory propagation, the time-dependent action of the electronic DoFs is calculated 

according to Eq. (12). Next, the final assignment of the quantum state is performed according to 

Eq. (7-9) in which the γ value is replaced by the trajectory-adjusted γi of each trajectory. More 

discussions on the technical details of this trajectory-adjusted electronic ZPE were clearly given 

in previous reference.92 

 

2.4. Computational details 

Both CH2NH2
+ and azomethane (Scheme 1) were often taken as typical examples to test the direct 

nonadiabatic dynamics approaches.30,106,108-121 Therefore, we also examined their excited state 

dynamics by using the on-the-fly SQC/MM dynamics. In addition, the FSSH dynamics were also 

performed. 

 

Scheme 1. Chemical structure of CH2NH2
+ (left) and azomethane (right) with atom labels. 
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The ground state (S0) minima were optimized at DFT/B3LYP/6-31G* level using the 

Gaussian 16 package.122 The initial sampling of the nuclear coordinates and momenta was 

performed by the Wigner sampling of the lowest vibrational level on the electronic ground state. 

Here the anharmonic effect is neglected for simplicity, and the current Wigner sampling is a 

practical and standard approach in the on-the-fly nonadiabatic dynamics simulation. To directly 

compare the dynamics results based on different approaches, the same initial conditions of nuclear 

coordinates and momenta were used for FSSH, γ-adjusted and γ-fixed SQC/MM dynamics. 

For CH2NH2
+, we considered the dynamics starting from both the first (S1) and second (S2) 

excited state individually. While for azomethane, we explored the dynamics starting from S1. 

In the SQC/MM dynamics, the initial sampling and final assignment of the quantum states 

for electronic DoFs were performed using the symmetrical triangle window tricks. In the SQC/MM 

dynamics, both γ-adjusted and γ-fixed approaches were implemented.  

In the FSSH dynamics, the trajectories were first directly put in the adiabatic electronic state 

where dynamics started. The hop probabilities were calculated according to Tully’s Fewest switch 

algorithm.18 We employed the decoherence correction proposed by Granucci et al. and set the 

parameter α = 0.1.29 

In the on-the-fly simulation, the electronic structure calculations are performed in each 

nuclear time step. The electronic motion is generally faster than the nuclear motion. If we use the 

same time step to integrate the electronic and nuclear motions, the computational cost will become 
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extremely high. To reduce it, a standard implementation of on-the-fly TSH dynamics often takes 

different time steps to propagate the nuclear and electronic motions. For each time step of nuclear 

motion, a much smaller time step is employed to propagate the electronic motion, and the effective 

Hamiltonian at each electronic time step is built by the linear interpolation. This approach was 

clearly discussed in previous works.108,111,123 Thus, in the SQC/MM and FSSH dynamics, after 

several test calculations [see supporting information (SI)], the nuclear equations of motion were 

integrated with time steps, 0.2 and 0.5 fs, respectively. For each step of nuclear motion, 100 steps 

of electronic motion were performed. The final results were obtained by averaging over 200 

trajectories for all dynamics. The convergence tests with respect to the number of trajectories, 

nuclear and electronic time steps are given in Figure S1, S2 and S3 (SI), respectively. 

The values of electronic energies, first-order derivative NACs and gradients can be obtained 

from the on-the-fly quantum chemistry calculation. In this work, the complete active space self-

consistent field (CASSCF) method124-125 with 6-31G* basis set was used in the electronic structure 

calculation process. For CH2NH2
+

, three state average with active space of six electrons in orbitals 

[SA-3-CAS(6,4)] was used in the CASSCF calculation. For azomethane, to directly compare with 

previous AIMS dynamics,120 the same state average and active space [SA-2-CAS(6,4)] consistent 

with that in the previous work120 were used in the SQC/MM and FSSH dynamics. 

All the dynamics calculations were performed with a development version of the JADE 

package.106-107 The CASSCF calculations were performed with the MOLPRO software.126 
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3. Results and Discussion 

3.1. CH2NH2+ 

3.1.1. Nonadiabatic dynamics from S2 

For CH2NH2
+, all selected dynamics approaches basically give consistent results on the time-

dependent electronic populations no matter whether the dynamics starts from S2 or S1, see Figure 

1(a) and (b). Here we take γ-adjusted SQC/MM dynamics as an example. When the dynamics 

starts from S2, the system switches from S2 to S1 very rapidly (< 10 fs), as shown in Figure 1(a). 

At 10 fs, the population in S0 starts to increase. The lifetimes of S2 and S1 are approximately 9 fs 

and 30 fs, respectively, consistent with many previous theoretical works.2,30,106,108-112,115,118-119 

 

 

Figure 1. The time-dependent electronic populations of S0 (dotted line), S1 (solid line) and S2 

(dashed line) of dynamics staring from (a) S2 and (b) S1 for CH2NH2
+ molecule. 200 trajectories 

were used for all dynamics. 

 

It is well known that the CN stretching motion plays an important role in the nonadiabatic 



 

15 

 

decay dynamics of CH2NH2
+,106,108,112,127 when the dynamics starts from S2. To properly show the 

CN bond stretching motion in the dynamics starting from S2, we adopted the contour presentation 

in Figure 2. It is obvious that two types of trajectories (labeled as I and II) exist during the 

dynamical run. The first group (I) of trajectories displays a significant CN elongation, while for 

the second group (II) of trajectories, the CN bond only experiences weak oscillation patterns. 

Consistent with previous FSSH results,111 we also found that the first group (I) of trajectories show 

the bi-pyramidalization at both C and N site in the CN elongation process (see below discussion), 

while the second group (II) of trajectories displays highly mixed motions of the bi-

pyramidalization motions at both C and N sites and the torsional motion of the CN bond.  
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Figure 2. The time-dependent CN distance distribution of CH2NH2
+ in the (a) γ-adjusted, (b) γ-

fixed SQC/MM and (c) FSSH dynamics. The initial states are (1) S2 and (2) S1, respectively. 200 

trajectories were used for all dynamics. For the dynamics starting from S2, two types of trajectory 

I and II are given in the subfigures a-1, b-1 and c-1. 

 

It is necessary to know whether the results are different if we only include the data points in 
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the windows during the trajectory propagation. We plotted the time-dependent CN distance 

distribution under such constraint in Figure S4 (SI), and the results are very similar. 

Here we wish to know whether a similar S0/S1 CI seam is reached or not in the SQC/MM and 

FSSH dynamics. To perform a more "direct" comparison, we first found the geometry with the 

minimum S0/S1 energy gap in the FSSH dynamics, before the trajectory jumped to S0. Next, we 

tried to extract the geometry with the minimum S0/S1 energy gap in the SQC/MM dynamics before 

the trajectory entered the window belong to S0. For all dynamics approaches, we did not consider 

the trajectory that did not return back to S0. The geometrical distributions of these minimum-

energy-gap structures were plotted in Figure 3. The key role of the CN bond stretching motion is 

confirmed, while the strong bi-pyramidalization motions at both C and N sites are also important. 

For the nonadiabatic dynamics starting from S2, all dynamics approaches show broad distributions 

of the torsional angles along the CN motion. However, it is clear that the γ-adjusted SQC/MM and 

FSSH dynamics give rather similar descriptions of the CN stretching motion and the bi-

pyramidalization motion. 
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Figure 3. Normalized distribution of key DoFs: bond length C1N2 (CN stretching), dihedral angle 

H4C1N2H5 (CN torsion angle), dihedral angle H4H3N2C1 (pyramidalization at C atom) and 

dihedral angle H5H6C1N2 (pyramidalization at N atom) of the CH2NH2
+ molecule at S1/S0 

minimum-energy-gap structures in γ-adjusted SQC/MM, γ-fixed SQC/MM and FSSH dynamics 

starting from S2. 

 

To check whether the single minimum-energy-gap structure in each trajectory can represent 

the key geometries that play important roles in the nonadiabatic decay process of CH2NH2
+, we 

also extracted the five geometries with the smallest energy gaps for each trajectory before it 
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reached S0 and plotted the distributions of key DoFs in Figure S5 (SI), respectively. The results 

remain similar. 

For the CH2NH2
+ nonadiabatic dynamics starting from S2, the nonadiabatic evolutions given 

by the three dynamics approaches are not far from each other, while some minor differences exist. 

For instance, the time-dependent populations predicted by the two SQC/MM dynamics are more 

similar, while slightly different results are obtained in the FSSH dynamics. As a contrast, we notice 

that the distribution of minimum-energy-gap structures from the γ-adjusted SQC/MM dynamics is 

more similar to the FSSH dynamics, while different distribution patterns were found in the γ-fixed 

SQC/MM dynamics. 

 

3.1.2. Nonadiabatic dynamics from S1 

When the initial state is S1, the exponential decay of S1 is observed with a lifetime of ~27 fs, 

see Figure 1(b). During the whole decay dynamics, S2 is only weakly populated. Whether to 

include S2 in the dynamics calculations or not does not change the population dynamics 

significantly, see Figure S6 in SI. It is important to notice that the geometrical evolution in this 

case is quite different with respect to the dynamics starting from S2. For most trajectories, the CN 

distance remains relatively short (about 1.2~1.6 Å) during the evolution, see Figure 2. All 

dynamics approaches predicted that the bi-pyramidalization at both C and N sites, and torsional 

motion of the CN bond, are responsible for the S1 → S0 decay, as shown in Figure 4. We also 

noticed that a similar distribution pattern of the minimum-energy gap structures in the trajectory 
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propagation was predicted by all dynamics methods. 

The same conclusion is drawn when five minimum-energy-gap structures are considered for 

each trajectory, see Figure S7 in SI. 

 

 

Figure 4. Normalized distributions of key DoFs: bond length C1N2 (CN stretching), dihedral angle 

H4C1N2H5 (CN torsion angle), dihedral angle H4H3N2C1 (pyramidalization at C atom) and 

dihedral angle H5H6C1N2 (pyramidalization at N atom) of the CH2NH2
+ molecule at S1/S0 

minimum-energy-gap structures in γ-adjusted SQC/MM, γ-fixed SQC/MM and FSSH dynamics 

starting from S1. 
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No matter whether the dynamics starts from S1 or S2, the dynamics features, including 

excited-state lifetimes, the major reactive molecular motion in the excited-state nonadiabatic 

dynamics, and the geometrical feature in the relevant CI seam are similar in the description by 

different dynamics methods used in this work, the γ-adjusted and γ-fixed SQC/MM and FSSH, see 

Figure 1-4. In addition, the dynamics results are highly consistent with previous on-the-fly studies 

with various methods, such as the TSH dynamics,106,108-112,118,128 and the more rigorous TSH 

approach from the exact factorization of electronic-nuclear wavefunction.30 

Both SQC/MM and FSSH approaches should be rather important in the on-the-fly dynamics 

community. In the current work, the dynamics results from SQC/MM and FSSH are very similar 

for CH2NH2
+, while these results are not trivial and contain important meanings. For instance, this 

work confirms that the on-the-fly SQC/MM dynamics can be used to describe the nonadiabatic 

dynamics of CH2NH2
+, a prototype system to test the on-the-fly nonadiabatic dynamics methods. 

This gives us the confidence to use this approach in the further study of realistic systems. At the 

same time, the current work also gives additional evidence to support the previous understanding 

of the excited-state process of CH2NH2
+ by the TSH method,106,108-112,118,128 making sure that the 

proper description of the nonadiabatic dynamics of CH2NH2
+ is achieved. In fact, this type of 

comparison is very important for the general on-the-fly simulation. Only when different dynamics 

simulations give consistent results may we get the confidence that the nonadiabatic dynamics is 

properly described theoretically.  
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3.2. Azomethane 

Azomethane is often used as a chemical source for radical generation since it can decompose into 

alkyl radicals and nitrogen after absorption of ultraviolet light in the gas phase.129 Previous 

theoretical studies with the FSSH and AIMS methods showed that azomethane would undergo an 

ultrafast nonadiabatic decay process after excitation.120-121 As a typical system for benchmark, we 

chose azomethane to examine the SQC/MM dynamics. Here we used the CASSCF level with SA-

2-CAS(6,4) in the SQC/MM and FSSH dynamics, and the same electronic structure level was 

employed in previous AIMS work.120 

For azomethane, only two states, S1 and S0, are involved in the nonadiabatic dynamics process 

in this work. When the systems are put in S1, most of the trajectories decay to S0 within 350 fs for 

γ-adjusted SQC/MM dynamics, consistent with our own FSSH dynamics and previous AIMS 

dynamics.120-121 While for the γ-fixed SQC/MM dynamics, about half of the trajectories still stay 

at S1 at 350 fs, see Figure 5(a). This phenomenon is very unlike that of CH2NH2
+, where the time-

dependent electronic populations of S1 of SQC/MM dynamics with both γ-adjusted and γ-fixed 

versions are very close (Figure 1). 
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Figure 5. (a): Time-dependent electronic populations of S1 with different dynamics methods. 200 

trajectories are used in the SQC/MM and FSSH dynamics. The results of the AIMS dynamics are 

taken from previous work.120 (b) Linear interpolated potential energy curve from S0 minimum to 

CI. 

 

To understand the general feature of nonadiabatic dynamics of azomethane, we optimized the 

S1/S0 CI, and plotted the linear interpolated potential energy curve from S0 minimum to CI, see 

Figure 5(b). Consistent with previous studies,120 there is no barrier along the photoisomerization 

pathway. 

Since the rotation of the central N-N double bond, characterized by the dihedral angle of 

CNNC, plays an important role in the nonadiabatic decay of azomethane, the time-dependent 

evolution of dihedral angle of CNNC for all trajectories of SQC/MM dynamics with γ-adjusted 

and γ-fixed is plotted, see Figure 6. The dihedral angles after the minimum-energy-gap structures 

are not plotted for a better view of the trajectory propagation on the excited state from the Franck-

Condon (FC) region to the S1/S0 CI. 
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Figure 6. Time-dependent evolutions of dihedral angle of CNNC for all trajectories before 

decaying to S0 of (a) γ-adjusted and (b) γ-fixed SQC/MM dynamics. The trajectories that decay 

and do not decay to the S0 within 350 fs are shown in (1) and (2) separately. The red points indicate 

the S1/S0 minimum-energy-gap structures. The radial and angular in the polar coordinates represent 

the time (fs) and dihedral angle (degree), respectively. 

 

Clearly, the trajectory must experience a strong twisting motion of the CNNC dihedral angles 

if it goes to S0 via the S0/S1 CI. Otherwise, the trajectory remains on the excited state, and no S1 

population decays observed. For γ-adjusted dynamics, most trajectories show the strong rotation 

of the NN double bond, and the trajectory can access to these geometries with a very small energy 
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gap. This means that the majority of the trajectories follow the isomerization channels and decay 

to S0 via the relevant CIs. While for γ-fixed dynamics, a large number of trajectories do not show 

the significant CNNC twisting motion, but display an oscillation of the CNNC angle around 180 

(-180) degrees. These trajectories simply stay on S1 and do not decay to S0 at all. 

Figure 5(b) shows that the energy of the S0/S1 CI is lower than that of S1 at the S0-min 

geometry. No energy barrier exists along the isomerization reaction pathway. Thus, the trajectory 

should naturally follow the barrierless pathway and access the S0/S1 CI without any doubt. 

However, for γ-fixed dynamics, a large number of trajectories seem to just stay in S1. The 

problematic feature can be explained by the fact that the nuclear motion is propagated by a kind 

of mean potential energy surface (PES), instead of S1 PES even before the trajectory reaches the 

S0/S1 CI. In γ-fixed dynamics, both S1 and S0 were involved in the nonadiabatic dynamics of 

azomethane, and the nuclear motion is governed by the effective potential   

( ) ( )0 0 1 1effV n E n E= +R R                                                       (14) 

where 
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are time-dependent action variables of electronic states for each trajectory. Please notice that the 

effective potential on the nuclear part given in Eq. (14) is rather approximated when the 

symmetrized form of the effective potential [Eq. (4)] is employed. For each single trajectory, only 

when 0 1 1n n+ = , Eq. (4) becomes completely equivalent to Eq. (14). However, this condition is not 
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always true for each single trajectory since 0n  and 1n  are sampled independently in standard γ-

fixed SQC dynamics. This feature was carefully discussed in detail by several previous works.77-

78,92 However, the essential ideas behind them should be rather similar and thus we still can use 

Eq. (14-15) for the below discussions.  

Certainly, the effective potential given in Eq. (14) defines the nuclear motion at the very 

beginning of the dynamics. Because both two action variables were obtained stochastically by 

sampling procedure, the effective potential is the linear combination of the S0 and S1 potential. As 

a consequence, the BO dynamics is not recovered for the single trajectory, while in principle the 

early-stage dynamics should follow the S1 surface due to the negligible S0/S1 NAC in the FC region. 

In the azomethane, S0 is a strong bounded state near the S0 minimum geometry. If the contribution 

of the n0 is large enough, the effective potential may become a bounded potential that prevents the 

trajectory escaping from the FC region. To clarify this idea, we plotted the initial sampled action 

variables and labeled their final assignment in Figure 7. 
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Figure 7. Distribution of the initial sample n0 and n1 of all trajectories for γ-fixed dynamics. The 

labels “decay” and “not decay” mean the trajectory decays and does not decay to S0 within 350 fs 

in the γ-fixed SQC/MM dynamics, respectively. The label “out of window” means the action 

values of the trajectory are not in any triangle windows at the end of dynamics. 

 

It is clear that the trajectories are more likely to stay in the excited state when n0 is large. In 

this condition, the effective PES might become bounded, and the trajectory cannot arrive at the CI 

region. This explains why many trajectories do not decay in Figure 5(a). 

As a contrast, in the γ-adjusted situation, the ZPE correction value of each trajectory is 

determined by its own initial condition. In such a case, the early-time dynamics almost becomes 

the pure BO dynamics when the NAC is small enough under the large S0/S1 energy gap. In this 

way, most trajectories may follow the correct potential and access the CI. This explains the fast 
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and completed population decay of the γ-adjusted SQC/MM dynamics in Figure 5(a).  

Clearly, the γ-adjusted SQC/MM dynamics result is much closer to that of the AIMS 

dynamics in Figure 5(a),120 we suggest that this γ-adjusted approach should always be used. In 

addition, this choice is consistent with physical insight. When the ground state and excited states 

are well separated in the energy domain in the FC region, the early-time excited-state dynamics 

should essentially the BO dynamics due to the extremely weak NAC. Thus, the employment of 

the γ-adjusted approach allows the trajectory propagation to recover this limit. This avoids the 

possible deficiency of the effective potential acting on the nuclear propagation in the γ-fixed 

approach. This observation is consistent with the ideas by Cotton and Miller,92 who strongly 

suggested using the γ-adjusted approach in the study of the gas-phase photochemistry of the 

molecular systems without too many DoFs. 

 

3.3. Discussions 

Here we wish to give a few of additional comments and discussions on the current works. 

The understanding of the excited-state nonadiabatic dynamic is rather challenging for the 

realistic molecules. Many ultrafast spectroscopic experiments give time-resolved spectra. In order 

to understand the nonadiabatic dynamics and analyze such spectra, theoretical simulations are 

necessary. To describe the realistic systems with many DoFs and arbitrary PESs, the on-the-fly 

nonadiabatic dynamics simulation becomes irreplaceable. Different electronic methods have 

different advantages and shortcomings, and previous works showed that the on-the-fly dynamics 
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with different electronic structure methods may give different results.107,130 In principle, the same 

situations exist for the nonadiabatic dynamics methods.  

For surface hopping dynamics, the over-decoherence problem is well known.19-20,29 Although 

many theoretical approaches were proposed to add the decoherence corrections and many on-the-

fly implementation works used them for practical reasons,19-21,29,106,127,131 many corrections are 

rather phenomenological and the empirical parameters are often added. The underlying reason is 

that researchers have still not found a formal way to derive the surface hopping dynamics from 

rigorous semiclassical approximations. Thus, the improvement of the performance of surface 

hopping dynamics is rather challenging. As a contrast, the SQC/MM dynamics can more-or-less 

capture the electronic coherence without the inclusion of empirical corrections.81,86 More 

importantly, the SQC/MM approach can be improved systematically by adding more quantum 

corrections based on more rigorous semiclassical dynamics. In the SQC/MM dynamics, the 

trajectories are independently propagated, and thus the computational cost is in principle smaller 

than that of the wavepacket-based methods, as like AIMS and vMCG. 

Only when we combine various dynamics approaches and different electronic structure 

methods in the on-the-fly simulation, it is possible to construct the correct and comprehensive 

understandings of the nonadiabatic procedures of polyatomic systems. For example, when the on-

the-fly simulations with different dynamics and electronic structure methods give consistent results, 

we more or less believe that the proper description of the nonadiabatic dynamics is achieved. This 

situation is observed in our simulation of CH2NH2
+. Certainly, when the results are strongly 
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dependent on the selected dynamics methods, more additional theoretical and experimental studies 

should be performed. In addition, when different problems were concerned, it may be suitable to 

choose the proper methods. Thus, it is always worthwhile to implement different dynamics 

approaches in the on-the-fly simulation. Previous works already demonstrated that the SQC/MM 

dynamics is a rather promising approach,38,73-90 so it is highly preferable to introduce it in the on-

the-fly simulation.  

In the γ-fixed SQC/MM dynamics, we employed the triangle window proposed by Miller and 

Cotton.80,91 They recommended the triangle window, because it gives a similar description for 

normal nonadiabatic dynamics compared with the SQC/MM dynamics with the rectangle window, 

while it gives a better description in the weak diabatic coupling situation. In such work, they also 

strongly suggest using γ = 1/3 in the application of the triangle window due to the geometrical 

reason.80,91 Here we preferred to use this ZPE correction instead of modifying its value due to the 

below reasons. 

For the γ-fixed SQC/MM dynamics with the square window, several works clearly 

demonstrated that the results are strongly dependent on the selection of the γ value.77,105 In 

principle, a similar conclusion should be reached in the on-the-fly implementation of this approach. 

However, in the on-the-fly simulation, it is not possible to choose the γ value by running many 

preliminary calculations because of the huge computational costs and the lack of accurate results. 

In addition, a too narrow window may give better results for anharmonic systems,77 while in this 

setup, a large number of trajectories go out of windows and it is not easy to converge calculations. 
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In this sense, it is more important to select a reasonable γ value within a proper window before the 

treatment of realistic systems. Since the γ value can be derived by geometry feature for the triangle 

window,80,91 we think that it is suitable to just take it instead of adjusting its value. 

At the same time, we also realize that the γ-adjusted SQC/MM dynamics always give much 

better dynamics, particularly for the second test system. This already confirms that we should 

anyway use the γ-adjusted SQC/MM dynamics in the future on-the-fly simulation. Thus the 

examination of the influence of the γ value for the γ-fixed SQC/MM dynamics is not essential in 

the current work. 

 

4. Conclusion 

In this work, we tried to implement the on-the-fly SQC/MM dynamics. The SQC/MM 

dynamics formulism in the adiabatic representation provides a rather clear idea for the direct 

combination with the electronic structure calculations. We chose CH2NH2
+ and azomethane as 

typical examples to examine the performance of the on-the-fly SQC/MM dynamics. The results 

show that all dynamical features of the nonadiabatic dynamics of CH2NH2
+ are well captured by 

the on-the-fly SQC/MM dynamics, no matter the γ-adjusted or γ-fixed approach is used. While for 

azomethane, the γ-adjusted SQC/MM dynamics performs much better than the γ-fixed SQC/MM 

dynamics. The reason is that the former one can recover the BO dynamics features at the beginning 

of the trajectory when the electronic states are far from each other, while the latter one always uses 



 

32 

 

a kind of mean PES. As a result, the γ-adjusted approach is strongly recommended to be used in 

all on-the-fly SQC/MM nonadiabatic dynamics.  

This work demonstrates that the current on-the-fly SQC/MM dynamics provides a very 

promising approach to simulate the nonadiabatic dynamics of polyatomic molecules. When the 

MM Hamiltonian is considered, the SQC/MM dynamics is a simple dynamics approach, which 

serves as a zero-order approximation of more advanced semi-classical dynamics methods with the 

inclusion of quantum effects. Starting from the SQC/MM dynamics, it is possible to obtain other 

sophisticated semi-classical methods with different accurate levels by introducing more quantum 

correction terms. Thus, the current implementation work provides a good starting point to 

cooperate with more rigorous semi-classical dynamics in the on-the-fly dynamics simulation.  
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Figure S1. The time-dependent electronic populations of S0 (dotted line), S1 (solid line) and S2 

(dashed line) states of γ-adjusted SQC/MM dynamics for (a) CH2NH2
+ starting from S2, (b) 

CH2NH2
+ starting S1 and (c) azomethane starting from S1. The number of trajectories is given in 

each subfigure. In the main text, 200 trajectories were used to discuss the results.  
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Figure S2. The time-dependent electronic populations of S0 (dotted line), S1 (solid line) and S2 

(dashed line) for (a) γ-adjusted SQC/MM, (b) γ-fixed SQC/MM and (c) FSSH dynamics for 

CH2NH2
+ starting from (1) S2 and (2) S1. The numbers in the legends represent the nuclear time 

steps used in the dynamics. For each step of nuclear motion, 100 steps of electronic motion were 

performed. 200 trajectories were used for all dynamics. 

For SQC/MM dynamics, the time-dependent electronic populations with nuclear time steps 

of 0.1 fs and 0.2 fs are very close, while a few different results are given with 0.5 fs. For FSSH 

dynamics, the time-dependent electronic populations change very little from time step of 0.1 fs to 

0.5 fs. Therefore, we concluded that the nuclear time steps of 0.2 fs and 0.5 fs are enough for 

SQC/MM and FSSH dynamics, respectively.   
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Figure S3. The time-dependent electronic populations of S0 (dotted line), S1 (solid line) and S2 

(dashed line) for (a) γ-adjusted SQC/MM, (b) γ-fixed SQC/MM and (c) FSSH dynamics for 

CH2NH2
+ starting from (1) S2 and (2) S1. The numbers in the legends represent the electronic time 

steps used in the dynamics. Nuclear time steps of 0.2 fs and 0.5 fs were used for SQC/MM and 

FSSH dynamics, respectively. 200 trajectories were used for all dynamics. 

For SQC/MM dynamics, the time-dependent electronic populations with electronic time steps 

of 0.004, 0.002 and 0.001 fs are all very close. For FSSH dynamics, the time-dependent electronic 

populations with electronic time steps of 0.005 fs and 0.0025 fs are very close, while a few different 

results are given with 0.01 fs. Therefore, we concluded that the electronic time steps of 0.004 fs 

(1/50 of corresponding nuclear time step of 0.2 fs) and 0.005 fs (1/100 of corresponding nuclear 

time step of 0.5 fs) are enough for SQC/MM and FSSH dynamics, respectively. Since the 

propagation of the electronic motion is not very time-consuming in the on-the-fly dynamics, we 

used 1/100 of nuclear time steps to obtain the electronic time step for all dynamics.  
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Figure S4. The time-dependent CN distance distributions of CH2NH2
+ in the (a) γ-adjusted, (b) γ-

fixed SQC/MM and (c) FSSH dynamics. The initial states are (1) S2 and (2) S1, respectively. Only 

the geometries in the windows are included in SQC/MM dynamics. 200 trajectories were used for 

all dynamics. 
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Figure S5. Normalized distributions of key degrees of freedom: bond length C1N2 (CN stretching), 

dihedral angle H4C1N2H5 (CN torsion angle), dihedral angle H4H3N2C1 (pyramidalization at C 

atom) and dihedral angle H5H6C1N2 (pyramidalization at N atom) of the CH2NH2
+ molecule at 

five S1/S0 minimum-energy-gap structures in γ-adjusted SQC/MM, γ-fixed SQC/MM and FSSH 

dynamics starting from S2. For all dynamics approaches, we do not consider the trajectory that 

does not return back S0.  
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Figure S6. The time-dependent electronic populations of S0 (dotted line), S1 (solid line) and S2 

(dashed line) states of (a) γ-adjusted SQC/MM, (b) γ-fixed SQC/MM and (c) FSSH dynamics for 

CH2NH2
+ molecule starting from S1. The number of states involved in the dynamics is given in 

each subfigure. 200 trajectories were used for all dynamics.  
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Figure S7. Normalized distributions of key degrees of freedom: bond length C1N2 (CN stretching), 

dihedral angle H4C1N2H5 (CN torsion angle), dihedral angle H4H3N2C1 (pyramidalization at C 

atom) and dihedral angle H5H6C1N2 (pyramidalization at N atom) of the CH2NH2
+ molecule at 

five S1/S0 minimum-energy-gap structures in γ-adjusted SQC/MM, γ-fixed SQC/MM and FSSH 

dynamics starting from S1. For all dynamics approaches, we do not consider the trajectory that 

does not return back to S0. 
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