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Abstract 

The applicability of an alloy as a hydrogen storage media mostly relies on its pressure-

composition-temperature (PCT) diagram. Since the PCT diagram is composition-

dependent, the vast compositional filed of high entropy alloys, complex concentrated 

alloys or multicomponent alloys can be explored to design alloys with optimized 

properties for each application. In this work, we present a thermodynamic model to 

calculate PCT diagrams of body-centered (BCC) multicomponent alloys. The entropy of 

the phases is described using the ideal configurational entropy for interstitial solid 

solutions with site blocking effect. As a first approximation, it is assumed that the H 

partial molar enthalpy of a phase is constant, so the enthalpy of H mixing varies linearly 

with the H concentration. Moreover, the H partial enthalpy of a phase for a 

multicomponent alloy was approximated by a simple ideal mixture law of this quantity 

for the alloy’s components with the same structure. Experimental data and DFT 

calculations were used for parametrization of the enthalpy terms of eight elements (Ti, V, 

Cr, Ni, Zr, Nb, Hf, and Ta), which are the components of the alloys tested in this work. 

Experimental PCTs of six BCC multicomponent alloys of four different systems were 

compared against the calculated ones and the agreement was remarkable. The model and 

parameters presented here can be regarded as a basis for developing powerful alloy design 

tools for different hydrogen storage applications. 

Key words: high entropy alloys, multicomponent alloys, metal hydrides, thermodynamic 

model, pressure-composition-temperature. 
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1. Introduction 

Metal hydrides (MHs) are strategic materials for the widespread use of hydrogen-

based energy systems. Tanks for solid-state hydrogen storage, heat-storage systems, heat-

pumps, hydrogen compressors, fuel cells and batteries are some of the applications in 

which MHs play a key role [1–6]. For each application, a different set of properties is 

required, and the pressure-composition-temperature (PCT) diagram of a metal-hydrogen 

(M-H) system usually determines its applicability. As many thermodynamic properties, 

the PCT diagrams can be tuned by changing the composition of the metallic material of 

the M-H system.  

The use of alloys instead of pure metals for M-H system is not new. However, since 

the advent of the concepts of high entropy alloys (HEA), multi-principal element alloys 

(MPEA), complex concentrated alloys (CCA) or, more generally, multicomponent alloys, 

the vast unexplored compositional space that can be assessed for the discovery of new 

alloys with optimized properties was brought to light [7,8]. To efficiently navigate in the 

endless sea of compositions available, computational tools to predict phase stability and 

properties are paramount. Otherwise, time-consuming experimental measurements would 

inevitably postpone the finding of new promising materials. 

In 2016, M. Shalberg et al. [9] were the first to report a body-centered cubic (BCC) 

HEA with promising hydrogen storage properties. The TiVZrNbHf alloy absorbed 

hydrogen by forming a body-centered tetragonal (BCT) hydride with high hydrogen 

storage capacity. The structural changes during hydrogenation of this alloy was studied 

in detail in [10]. In 2018, C. Zlotea et al. [11] presented the TiZrNbHfTa alloy, which 

also crystallized as single BCC solid solution. The authors reported that during the 

hydrogenation of this alloy two different hydrides could be observed. A monohydride 

with BCT structure stable at lower pressures and an FCC dihydride stable at higher 

pressures. In 2019, M. Nygard et al. [12] reported the hydrogenation of different single 

BCC multicomponent alloys, such as TiVNbZr, TiVNbHf, TiVNb, TiVNbTa and 

TiVNbCr. During hydrogenation, all these alloys formed an FCC dihydride. Moreover, 

an undistorted BCC monohydride was also observed for some of them, such as TiVNb 

and TiVNbCr. Such BCC monohydride was also reported for some Mg-containing HEA 

such as the Mg0.68TiNbNi0.55 alloy [13]. The understanding of the hydrides’ stability at 

different pressures and temperatures is essential to determine the applicability of an alloy. 

However, PCT diagram measurements are very time-consuming and explore the 
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thermodynamic properties of a large number compositions experimentally is unpractical. 

Therefore, the possibility of predicting the PCT diagram of an alloy based on its chemical 

composition would boost the search of alloys with optimized properties for each specific 

hydrogen storage application. 

In this work we revisited the thermodynamic fundamentals of M-H systems and 

present a thermodynamic model to calculate the pressure-composition-temperature (PCT) 

diagram of multicomponent M-H systems. Since most of the recent works in 

multicomponent alloys for hydrogen storage deals with BCC alloys [9,11–17], this class 

of alloys was firstly considered. The enthalpy terms for eight metal elements, namely Ti, 

V, Cr, Ni, Zr, Nb, Ta, and Hf, which are the components of the alloys considered here, 

were parametrized by combining experimental data and total energy calculations trough 

density functional theory (DFT). The calculated PCTs of six different multicomponent 

alloys were compared against experimental data to evaluate the prediction capability of 

the model, which was remarkable. 

  

2. Theory:  Thermodynamic of M-H systems 

In multicomponent M-H systems, the complete equilibrium (CE) condition is attained 

when the chemical potential of all elements in the system are the same in all co-existing 

phases. CE is only possible when the mobility of all atoms is sufficiently high. In this 

case, the chemical composition of the phases is free to adjust in order to minimize the 

Gibbs free energy of the system.  However, at the low or moderate temperatures typically 

employed in most hydrogen storage applications, the mobility of the metal atoms is 

limited. In this case, it can be assumed that only the H atom is mobile while the metal 

atoms are “frozen”. In this situation, an equilibrium condition is also attained because the 

mobility of hydrogen allows the hydrogen chemical potential to be the same in the co-

existing phases. Such condition is called para-equilibrium (PE) and it is the equilibrium 

condition that will be treated in this manuscript. T.B. Flanagan and W.A. Oates have 

already presented the main aspects of the different degrees of equilibrium that can be 

found in M-H systems and the readers are encouraged to refer to [18] for more details.  

Let us consider a single-phase multicomponent alloy. The alloy composition is 

defined by the variable 𝑐𝑖 that is the atomic fraction of the metal element i. Therefore, 

∑ 𝑐𝑖 = 1. Since we are dealing with PE, the composition of all possible phases in terms 
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of this compositional variable will be the same. Another compositional variable (𝑐𝐻) 

determining the amount of hydrogen in the phase is defined as: 

𝑐𝐻 =
𝑛𝐻

𝑛𝑀
    (1) 

where 𝑛𝐻 and 𝑛𝑀 are the number of mols of hydrogen and metal atoms in the phase, 

respectively.  

In this case, the Gibbs free energy (∆𝐺𝑚) of the possible phases in the system will 

depend on 𝑐𝐻 as shown in Figure 1 (a). The hydrogen chemical potential of H2
 gas per 

mol of H (taking 𝑃𝑜 = 1 atm as standard state) is given by equation 2, while the H chemical 

potential of the α- and β-phase are given by equations 3 and 4, respectively. 

𝜇𝐻
𝐻2 =

1

2
𝑅𝑇𝑙𝑛 (

𝑃𝐻2

𝑃𝑜
)     (2) 

𝜇𝐻
𝛼(𝑐𝐻) =

𝑑∆𝐺𝑚
𝛼 (𝑐𝐻)

𝑑𝑐𝐻
     (3) 

𝜇𝐻
𝛽(𝑐𝐻) =

𝑑∆𝐺𝑚
𝛽

(𝑐𝐻)

𝑑𝑐𝐻
     (4) 

Since the metal atoms are “frozen” and the composition of α- and β-phase in terms of 

𝑐𝑖 are the same, the chemical potential of the metal atoms (M) in both phases is also a 

function of 𝑐𝐻 and is given by equations 5 and 6.  

𝜇𝑀
𝛼 (𝑐𝐻) = ∆𝐺𝑚

𝛼 (𝑐𝐻) − 𝑐𝐻𝜇𝐻
𝛼(𝑐𝐻)   (5) 

𝜇𝑀
𝛽 (𝑐𝐻) = ∆𝐺𝑚

𝛽 (𝑐𝐻) − 𝑐𝐻𝜇𝐻
𝛽(𝑐𝐻)        (6)    

It is worth noting the M stands for the whole set of metallic elements in the alloy and 

not for a specific element. Phases are in equilibrium when their chemical potential of H 

and M are the same. Therefore, for a given temperature, the phases in equilibrium will 

depend on the hydrogen pressure since 𝜇𝐻
𝐻2 depends on 𝑃𝐻2

. In this situation, there is only 

a single 𝑃𝐻2
value in which the three phases α, β and H2 can coexist in equilibrium, i.e., 

𝜇𝐻
𝐻2 = 𝜇𝐻

𝛼(𝑐𝐻 𝑝𝑙𝑎𝑡
𝛼 ) = 𝜇𝐻

𝛽
(𝑐𝐻 𝑝𝑙𝑎𝑡

𝛽
) and 𝜇𝑀

𝛼 (𝑐𝐻 𝑝𝑙𝑎𝑡
𝛼 ) = 𝜇𝑀

𝛽
(𝑐𝐻 𝑝𝑙𝑎𝑡

𝛽
). The equilibrium 

condition is represented by the common tangent of the Gibbs free energy curves of α and 

β phases (represented by the blue line in Figure 1 (a)). It represents the equilibrium 

between the α-phase with composition 𝑐𝐻 𝑝𝑙𝑎𝑡
𝛼 , the β-phase with composition 𝑐𝐻 𝑝𝑙𝑎𝑡

𝛽
 and 
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the hydrogen gas at the plateau pressure (𝑃𝑝𝑙𝑎𝑡). Figure 1 (b) presents the pressure-

composition-isotherm (PCI) diagram for the given temperature. The 𝑃𝑝𝑙𝑎𝑡, which is 

determined by the equilibrium condition, can also be expressed by equation 7. 

1

2
𝑅𝑇𝑙𝑛 (

𝑃𝑝𝑙𝑎𝑡

𝑃𝑜
) =

∆𝐺𝑚
𝛽

(𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

) − ∆𝐺𝑚
𝛼 (𝑐𝐻𝑝𝑙𝑎𝑡

𝛼 )

𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

− 𝑐𝐻𝑝𝑙𝑎𝑡
𝛼

       (7) 

Below the plateau pressure, only the α-phase coexists in equilibrium with H2 gas and 

its  𝑐𝐻 composition will depend on the 𝑃𝐻2
. Conversely, above the plateau pressure, only 

the β-phase will be in equilibrium with H2 gas. 

 

Figure 1: (a) Gibbs Free Energy of α and β-phase as function of 𝑐𝐻 for a M-H system 

under PE condition for a given temperature and (b) its corresponding pressure-

composition-isotherm diagram. 
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It is worth noting that the Gibbs free energy of the phases depends only on 𝑐𝐻 because 

of the PE condition. Therefore, the Gibbs free energy curves presented in Figure 1 (a) can 

be simply understood as the Gibbs free energy of H mixing in the α- and β-phase, which 

is given by equation 8. 

∆𝐺𝑚(𝑐𝐻) = ∆𝐻𝑚(𝑐𝐻) − 𝑇∆𝑆𝑚(𝑐𝐻)     (8) 

∆𝐺𝑚(𝑐𝐻) represents therefore the change in Gibbs free energy between a phase 

having composition 𝑐𝐻 and a reference state. For simple M-H systems the chosen 

reference state is usually H2 at 1 atm and M in its stable form. In this case, since we are 

dealing with BCC alloys, it will be chosen as reference state the BCC alloy with  𝑐𝐻 = 0 

and H2 at 1 atm. Therefore, the enthalpy and entropy of H mixing are defined by equations 

9 and 10, respectively. 

∆𝐻𝑚(𝑐𝐻) = 𝐻(𝑀𝐻𝑐𝐻
) − 𝐻(𝑀𝐵𝐶𝐶) −

𝑐𝐻

2
𝐻𝑜(𝐻2)    (9) 

∆𝑆𝑚(𝑐𝐻) = 𝑆(𝑀𝐻𝑐𝐻
) − 𝑆(𝑀𝐵𝐶𝐶) −

𝑐𝐻

2
𝑆𝑜(𝐻2)       (10) 

where 𝐻(𝑀𝐵𝐶𝐶) and 𝑆(𝑀𝐵𝐶𝐶) are the enthalpy and entropy of the alloy in its BCC form, 

𝐻(𝑀𝐻𝑐𝐻
) and 𝑆(𝑀𝐻𝑐𝐻

) are the enthalpy and entropy of the phase (α or β) having 

composition 𝑐𝐻, and 𝐻𝑜(𝐻2) and 𝑆𝑜(𝐻2) are the standard enthalpy and entropy of the H2 

gas, i.e., when 𝑃𝐻2
 = 1 atm. It is important to consider the temperature dependence of the 

𝑆𝑜(𝐻2), which is given by equation 11 according to [19].  

𝑆𝐻2

𝑜 = 𝐴 ln(𝑡) + 𝐵𝑡 +
𝐶𝑡2

2
+

𝐷𝑡3

3
−

𝐸𝑡−2

2
+ 𝐺 [

𝐽

𝑚𝑜𝑙 𝑜𝑓 𝐻2
]    (11) 

where 𝑡 = 𝑇(𝐾)/1000,  𝐴 =  33.066178, 𝐵 = −11.363417, 𝐶 = 11.432816, 𝐷 =

 −2.772874, 𝐸 =  −0.158558, and 𝐺 =  172.707974. This equation is only valid 

between 298 K and 1000 K. 

 

3. Thermodynamic Model 

 

3.1. Entropy of mixing 

The entropy of a phase can be expressed as the sum of the configurational (𝑆𝑐) and 

non-configurational (𝑆𝑛𝑐) terms as given by equation 12. 
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𝑆 = 𝑆𝑐 + 𝑆𝑛𝑐     (12) 

In this work, it is assumed that the difference between the non-configurational terms 

of  𝑀𝐻𝑐𝐻
 and 𝑀 is neglectable. Therefore, ∆𝑆𝑚 given by equation 10 becomes equation 

13. 

∆𝑆𝑚(𝑐𝐻) = 𝑆𝑐(𝑀𝐻𝑐𝐻
) − 𝑆𝑐(𝑀) −

𝑐𝐻

2
𝑆𝑜(𝐻2)     (13) 

 𝑆𝑐(𝑀) is the configurational entropy of the alloy in the reference state, which will 

be considered as the ideal configurational entropy of a random solid solution given by 

equation 14. 

𝑆𝑐(𝑀) = −𝑅 ∑ 𝑐𝑖𝑙𝑛𝑐𝑖

𝑖

       (14) 

where R is the ideal gas constant. 𝑆𝑐(𝑀𝐻𝑐𝐻
) is the configurational entropy of the H solid 

solution or the hydride phases. 𝑆𝑐(𝑀𝐻𝑐𝐻
) is the sum of the configurational entropy of the 

substitutional solid solution of the metal lattice and the interstitial solid solution of H 

atoms in the interstitial sites. In this work, the  configurational entropy expression 

proposed by J. Garcés in [20], which considers site blocking effect (SBE), will be used. 

When SBE takes place, the occupation of an interstitial site is prevented by the prior 

occupation of a neighboring site. The effective repulsion between near neighbor 

interstitial atoms or short-range order (SRO) between interstitial atoms may be chemical 

and/or strain in origin and is usually reported for M-H systems [18,21,22]. The main 

consequence of the SBE is to produce a dramatic decrease in the number of possible 

configurations, which directly affects the configurational entropy of the phase. In the 

model proposed by J. Garcés [20], the occupancy of one site by an interstitial atom 

excludes the occupancy of (𝑟 − 1) neighboring vacant site. Thus, the set of vacant sites 

is divided in two different species: 𝑛𝑓 free vacant sites and 𝑛𝑏 = 𝑟 − 1 blocked vacant 

sites associated with each interstitial atom. The blocked vacant sites do not participate in 

the mixing process and, as consequence, it could be assumed that a new chemical specie 

of size 𝑟 is formed. For a 𝑀𝐻𝑐𝐻
 phase, in which only H atoms is considered as interstitial 

atoms, the expression for configurational entropy is given by equation 15.    
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𝑆𝑐(𝑀𝐻𝑐𝐻
) = −𝑅 [∑ 𝑐𝑖𝑙𝑛𝑐𝑖

𝑖

+ 𝑐𝐻 ln (
𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
)

+ (𝜃 − 𝑟𝑐𝐻) ln (
𝜃 − 𝑟𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
)]      (15) 

Where 𝜃 is the number of interstitial sites per metal atom. For more details regarding the 

deduction of this expression refers to [20]. Therefore, by replacing equation 15 and 14 into 13,  

∆𝑆𝑚(𝑐𝐻) becomes equation 16. 

∆𝑆𝑚(𝑐𝐻) = −𝑅 [𝑐𝐻 ln (
𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
) + (𝜃 − 𝑟𝑐𝐻) ln (

𝜃 − 𝑟𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
)]

−
𝑐𝐻

2
𝑆𝑜(𝐻2)       (16) 

It is worth noting that when 𝑟 = 1 no SBE is taking place. Equation 16 shows that ∆𝑆𝑚 

does not depend on the configurational entropy of the metal lattice but only on the 

configurational entropy of the H interstitial solid solution. Thus, 𝜃 and 𝑟 are the only 

parameters necessary to model ∆𝑆𝑚 for each phase. 

 

3.2.Enthalpy of mixing 

As a first approximation, in this work we assume that the H partial molar enthalpy of 

a phase is constant for a given alloy composition. Therefore, the enthalpy of H mixing in 

a phase varies linearly with the H concentration as given by equation 17.  

∆𝐻𝑚(𝑐𝐻) = 𝐻𝑀 + ℎ𝑀 ∙ 𝑐𝐻        (17) 

where 𝐻𝑀 is a constant and ℎ𝑀 is the H partial molar enthalpy. 

 

3.3. Chemical Potentials 

The thermodynamical equilibrium of the M-H system depends on the 𝜇𝐻 of the 

possible phases in the system. Using equations 16 and 17, 𝜇𝐻 of a phase can be derived 

analytically resulting in equation 18.  

𝜇𝐻(𝑐𝐻) = ℎ𝑀 − 𝑇 [−𝑅𝑙𝑛 (
𝑐𝐻[𝜃 − (𝑟 − 1)𝑐𝐻](𝑟−1)

[𝜃 − 𝑟𝑐𝐻]𝑟
) −

𝑆𝐻2

𝑜

2
]   (18) 
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𝜇𝑀 can be calculated using equation 19. 

𝜇𝑀(𝑐𝐻) = ∆𝐺𝑚(𝑐𝐻) − 𝑐𝐻 ∙ 𝜇𝐻(𝑐𝐻)     (19) 

In possession of 𝜇𝐻(𝑐𝐻) and 𝜇𝑀(𝑐𝐻), the equilibrium of the system can be easily 

assessed. 

 

4. Parametrization 

 

4.1. Phases 

Three phases are usually observed in the hydrogenation of BCC multicomponent 

alloys. The α-phase is the H-dilute solid solution. In the α-phase of BCC metals, such as 

V, Nb and Ta, the H atoms usually occupy the tetrahedral interstitial sites (T-sites) [23].  

The β-phase is an intermediate hydride that can have different structures. For Nb and 

Ta, the β-phase has an orthorhombic structure with the H atoms at some preferential T-

sites. In the case of V, the β-phase has a monoclinic structure with H atoms at some 

preferential octahedral sites (O-sites). As already mentioned, M.M. Nygard et al. [12] 

reported the formation of intermediate hydrides with undistorted BCC structure for 

different alloys such as TiVNb and TiVCrNb. The same was observed for the 

Mg0.68TiNbNi0.55 alloy in [13]. C. Zlotea et al. [11] reported the formation of an 

intermediate hydride with body-centered structure (BCT) for the TiZrNbHfTa alloy. 

According to the authors, the BCT structure can be understood as a preferential 

occupancy of H atoms in some preferential O-sites. Regardless the crystal structure, the 

β-phase can be understood as an expanded (distorted or undistorted) BCC lattice with H 

atoms at some preferential interstitial site. 

The δ-phase is a face centered cubic structure (FCC) with H atoms at the T-sites in a 

CaF2-type structure. This phase is usually observed during hydrogenation of pure 

elements such as VH2, NbH2, TiH2, and for several multicomponent BCC alloys such as 

TiVNb, TiVNbCr and TiNbZrHfTa [12,13]. δ-phase with BCT structure has also been 

reported for the TiVZrNbHf alloy [9,17]. The BCT structure is only a slight distortion of 

the FCC structure. The formation of such distorted δ-phase during hydrogenation has 

been reported for some pure metals and other alloys as well. This is the case of ZrH2, 

HfH2, (TiZr)Hx, and (TiHfZr)Hx  hydrides [24–26].  
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4.2.Entropy of mixing  

For the entropy of mixing of each phase it is necessary only to define the values of  𝜃 

and 𝑟 parameters of equation 16.  

In this work, we will assume that for the α-phase the H atoms occupy the T-sites of 

the BCC structure, therefore, 𝜃 = 6. In the BCC structure, a tetrahedral site has four first 

T-site neighbors, two second T-site neighbors and eight third T-site neighbors at distances 

of 𝑎√2/4, 𝑎/2 and 𝑎√6/4, respectively. Thus, 𝑟 = 5 if only the first T-site neighbors are 

blocked by the prior occupation of a T-site. If first and second neighbors are blocked, 

then 𝑟 = 7. And if the first, second and third neighbors are blocked, 𝑟 = 15. 

For the β-phase, the H atoms can occupy either some preferential T-sites or O-sites. 

For the cases in which T-sites are occupied, we will assume that only a fraction of them 

is initially available (ordered structure). In this case we chose 𝜃 = 4 (an intermediate value 

between the α- and δ-phase). When the O-sites are occupied, 𝜃 = 3. If we consider that 

only one T- or O-site is blocked by the prior occupation of a T- or O-site, 𝑟 = 2. If two 

sites are blocked, then 𝑟 = 3. 

In the δ-phase, the H atoms occupy the T-sites of the FCC structure, therefore, 𝜃 = 2. 

No SBE is considered to occur in the δ-phase, therefore, 𝑟 = 1.  Table 1summarizes 𝜃 and 

𝑟 values that can be used for each phase. 

Table 1: Possible 𝜃 and 𝑟 entropy parameters for the different phases. 

 𝜽 𝒓 

α-phase 6 5, 7 or 15 

β-phase 4 or 3 3 or 2 

δ-phase 2 1 

 

4.3.Enthalpy of mixing 

 

4.3.1. Total Energy Calculation by DFT 

For the parametrization of the 𝐻𝑀 and ℎ𝑀 enthalpy terms, the total energy of different 

structures was calculated using first principles calculations in the framework of the 
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density functional theory (DFT).  The calculations were carried out using the WIEN2k 

program, which is based on a full-potential (considers all electrons – core  and valence) 

augmented plane wave plus local orbitals (APW+lo) method to solve the Kohn–Sham 

equations of DFT [27,28]. The exchange and correlation energy were treated using the 

generalized gradient approximation (GGA) parametrized by Perdew, Burke and 

Ernzerhof (PBE) [29]. The cut-off energy is defined as RMT*Kmax, where RMT is the 

smallest atomic sphere radius in the unit cell and Kmax is the largest k-vector in the 

planewave expansion. In this work, the structures containing H atoms were calculated 

using RMT*Kmax = 4.0. The calculation of the structures having only metal atoms was 

carried out using RMT*Kmax = 7.5. For all calculations, 10.000 k-points were used in 

the irreducible part of the Brillouin zone. The energy convergence criteria for the self-

consistent field calculation was 0.0001 Ry. The total ground state energy and the 

equilibrium volume of the structures at 0 K were found by calculating the total energy of 

the structures with different lattice parameters and fitting the results with the Murnaghan 

equation of state. 

 

4.3.2. Parameterization of 𝑯𝑴 

As the BCC metal or alloy with 𝑐𝐻 = 0 is taken as reference state, 𝐻𝑀
𝛼 = 0. Since the 

β-phase is an expanded and un/distorted BCC phase, we can assume that when 𝑐𝐻 →0, 

the α- and β-phase are practically the same, therefore, 𝐻𝑀
𝛽

= 0.  

In this work, the δ-phase will be treated only as an FCC phase and possible distortions 

will be neglected. In this case, 𝐻𝑀
𝛿  represents the enthalpy of phase transition from the 

metal or alloy in the reference state (BCC) to the FCC structure. For the pure metals, we 

can approximate this value by simply calculating the difference between the total energies 

of the FCC and BCC structure. For multicomponent alloys, we consider that the total 

energy of random solid solution is divided among the M-M bonds between the first 

neighbor atoms. The number of bonds considered per metal is therefore equal to the 

coordination number of the structure (8 for BCC and 12 for FCC) divided by two. In this 

case, the total energy of α-phase and δ-phase when 𝑐𝐻 = 0 is given by equations 20 and 

21, respectively, and 𝐻𝑀
𝛿  is given by equation 22. 

𝐸𝑡𝑜𝑡𝑎𝑙
𝛼 = 4𝜀𝑀−𝑀

𝛼       (20) 
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𝐸𝑡𝑜𝑡𝑎𝑙
𝛿 = 6𝜀𝑀−𝑀

𝛿        (21) 

𝐻𝑀
𝛿 = 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿 − 𝐸𝑡𝑜𝑡𝑎𝑙
𝛼         (22) 

where 𝜀𝑀−𝑀
𝛼  and 𝜀𝑀−𝑀

𝛿  is the bond energy of the first neighbor atoms of α- and δ-

phase, respectively. In this work, it will be assumed that for a multicomponent alloy 𝜀𝑀−𝑀
𝛼  

and 𝜀𝑀−𝑀
𝛿  assumes an average value of all the existing bond types in the structure 

weighted by their probability of appearance as given by equation 23. 

𝜀𝑀−𝑀 = ∑ 𝛿𝑖𝑗 ∙ 𝑝𝑖𝑗 ∙ 𝜀𝑖−𝑗

𝑖,𝑗

     (23) 

where 𝜀𝑖−𝑗 is the energy of a bond between element i and j; 𝑝𝑖𝑗 is the probability of 

appearance of the bond i-j, which for a random solid solution is simply given by 𝑐𝑖 ∙ 𝑐𝑗; 

and 𝛿𝑖𝑗 is the degeneracy of the bond i-j, which is 1 for 𝑖 = 𝑗 and 2 for  𝑖 ≠ 𝑗. 

To calculate the energy values of (i-i)-type bonds (𝜀𝑖−𝑖), the total energies of the BCC 

and FCC structures of metal i were calculated by DFT and the values of 𝜀𝑖−𝑖
𝛼  and 𝜀𝑖−𝑖

𝛿  

were determined using equation 20 and 21, respectively. To find the values of 𝜀𝑖−𝑗
𝛼  (i.e. 

𝑖 ≠ 𝑗), the total energies of B2 structures (as shown in Figure 2 (a)) were calculated and 

equation 23 applied. To find 𝜀𝑖−𝑗
𝛿 , the total energies of L10 structures with c/a = 1 (Figure 

2 (b)) were calculated. In this case, the value of the 𝜀𝑖−𝑗
𝛿  is found using equation 24. 

𝐸𝑡𝑜𝑡𝑎𝑙
𝐿10 = 4𝜀𝑖−𝑗

𝛿 + 𝜀𝑖−𝑖
𝛿 + 𝜀𝑗−𝑗

𝛿     (24) 

Table 2 shows the values of 𝜀𝑖−𝑗
𝛼  and 𝜀𝑖−𝑗

𝛿  and Figure S1 of the supplementary data 

file shows the  𝜀𝑖−𝑗 vs bond length curves for the atomic pairs considered in this work. It 

is worth stressing that we choose to use the minimum values of 𝜀𝑖−𝑗. In this case, it is 

assumed that all the bonds are in the equilibrium distance for each atomic pair. Therefore, 

the total energy calculated using equations 20, 21 and 24 can be regarded as a lower 

boundary energy. It is important to bear in mind that this model intends only to find 

reasonable values for 𝐻𝑀
𝛿  and not an accurate description of the total energies and 

enthalpies of multicomponent alloys, for which higher order atomic interactions and 

temperature might have important effects. 
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Figure 2: (a) B2 unit cell having 8 bonds with energy 𝜀𝑖−𝑗
𝛼 .(b) L10 unit cell having 16 

bonds with energy 𝜀𝑖−𝑗
𝛿  , 4 bonds with energy  𝜀𝑖−𝑖

𝛿  and 4 bonds having energy  𝜀𝑗−𝑗
𝛿 . 
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Table 2: 𝜀𝑖−𝑗
𝛼 and 𝜀𝑖−𝑗

𝛿  bond energies in kJ/mol for the atomic pairs considered in this work. 

𝜺𝒊−𝒋
𝜶  Ti V Cr Ni Zr Nb Hf Ta 𝜺𝒊−𝒋

𝜶  

 -560421.1 -591764.2 -625097.6 -779338.3 -1461425.9 -1534040.5 -5235125.7 -5408502.9 Ti 

𝜺𝒊−𝒋
𝜹   -623110.6 -656445.6 -810672.3 -1492766.4 -1565384.6 -5266468.0 -5439848.9 V 

Ti -373615.0  -689776.6 -843996.9 -1526098.3 -1598717.9 -5299801.2 -5473183.0 Cr 

V -394508.8 -415403.3  -998231.4 -1680343.3 -1752948.9 -5454044.2 -5627411.5 Ni 

Cr -416729.4 -437623.9 -459844.9  -2362431.4 -2435044.2 -6136130.7 -6309505.1 Zr 

Ni -519564.3 -540455.6 -562671.0 -665488.5  -2507661.1 -6208744.5 -6382124.0 Nb 

Zr -974285.1 -995177.5 -1017397.7 -1120235.8 -1574955.1  -9909830.0 -10083205.7 Hf 

Nb -1022693.3 -1043586.6 -1065807.2 -1168642.9 -1623361.7 -1671769.0  -10256586.5 Ta 

Hf -3490085.2 -3510978.4 -3533199.2 -3636036.0 -4090755.0 -4139162.4 -6606555.1  𝜺𝒊−𝒋
𝜶  

Ta -3605668.2 -3626562.9 -3648783.8 -3751617.8 -4206336.2 -4254744.8 -6722137.1 -6837720.5  

𝜺𝒊−𝒋
𝜹  Ti V Cr Ni Zr Nb Hf Ta 𝜺𝒊−𝒋

𝜹  
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4.3.3. Parametrization of 𝒉𝑴 

ℎ𝑀 represents the H partial molar enthalpy of the phase. As a first treatment, we will 

assume that the ℎ𝑀 of a multicomponent phase will be approximately the mean value of 

the H partial molar enthalpy of the pure elements in the same phase, as given by equation 

25. 

ℎ𝑀 = ∑ 𝑐𝑖 ∙ ℎ𝑖

𝑖

      (25) 

where 𝑐𝑖 and ℎ𝑖 are the atomic fraction and H partial molar enthalpy for element i in the 

phase, respectively. 

For ℎ𝑖
𝛼 and ℎ𝑖

𝛽
we used the experimental values of enthalpy of H solution at infinite 

dilution (∆𝐻∞ ) of the elements. These values were chosen based on two observations 

described by Y. Fukai [21]. First, for elements existing in different allotropic forms, ∆𝐻∞ 

are approximately the same regardless the allotropic form. Second, for BCC metals, the 

standard enthalpy of formation (∆𝐻𝑓
𝑜) of the intermediate hydrides (β-phase) are often 

remarkably close to ∆𝐻∞ for the respective metals. This is true even for V, in which H 

atoms occupy the T-sites in the α-phase and the O-sites in the highly distorted β-phase. 

According to Y. Fukai [21], the enthalpy of H solution in these phases is more related to 

the electronic structure of the host metal than its crystal structure or the hydrogen content. 

The values of ∆𝐻∞ for the eight elements considered in this work were taken from the 

compilation made by R. Griessen and T. Riesterer in [30]. Table 3 presents the values of 

ℎ𝑖
𝛼 and ℎ𝑖

𝛽
for the eight elements.  

For the δ-phase, the values of ℎ𝑖
𝛿 was determined using DFT calculation. The total 

energy of δ-MH2 hydrides and δ-M metal (i.e. M with FCC structure) was calculated and 

ℎ𝑖
𝛿 was determined by equation 26: 

ℎ𝑖
𝛿 =

𝐸𝑡𝑜𝑡𝑎𝑙
𝛿−𝑀𝐻2 − 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿−𝑀 − 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2

2
     (26) 

where 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2  is the total energy of the H2 gas, which was determined using the 

experimental data of ∆𝐻𝑓
𝑜 for δ-VH2, δ-TiH2 and δ-NbH2. ∆𝐻𝑓

𝑜can be approximated using 

equation 27. 
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∆𝐻𝑓
𝑜(𝑀𝐻2) = 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿−𝑀𝐻2 − 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀 − 𝐸𝑡𝑜𝑡𝑎𝑙

𝐻2     (27) 

where 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀  is the total energy of M in its standard state, which is BCC for V and Nb and 

HCP for Ti. Table 4 summarizes the results and Figure S2 of the supplementary data file 

shows the 𝐸𝑡𝑜𝑡𝑎𝑙 vs unit cell volume curves for the calculated structures. The mean value 

of 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2 = -3073.3 kJ/mol was used to calculate ℎ𝑖

𝛿 using equation 26. Table 3 also 

presents the calculated values of ℎ𝑖
𝛿 for the eight elements considered in this work. Figure 

S3 of the supplementary data file shows the 𝐸𝑡𝑜𝑡𝑎𝑙 vs unit cell volume curves for the 

calculated structures. 

Table 3: Values of  ℎ𝑖
𝛼, ℎ𝑖

𝛽
 and ℎ𝑖

𝛿for the elements considered in this work. Values in 

kJ/mol of M.  

𝑬𝒍𝒆𝒎𝒆𝒏𝒕 𝒊 𝒉𝒊
𝜶 = 𝒉𝒊

𝜷
 𝒉𝒊

𝜹 

Ti -58.2 -64.2 

V -29.5 -31.8 

Cr +52.0 2.2 

Ni +16.0 18.5 

Zr -64.0 -74.4 

Nb -35.3 -40.8 

Hf -38.0 -52.0 

Ta -36.0 -6.4 

 

Table 4: Experimental value of ∆𝐻𝑓
𝑜(𝛿 − 𝑀𝐻2) and calculated values of 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿−𝑀𝐻2, 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀  

and 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2  for M = V, Ti and Nb. All values are given in kJ/mol of M or H2. 

𝑴 ∆𝑯𝒇
𝒐 [Ref] 𝑬𝒕𝒐𝒕𝒂𝒍

𝜹−𝑴𝑯𝟐 𝑬𝒕𝒐𝒕𝒂𝒍
𝑴  𝑬𝒕𝒐𝒕𝒂𝒍

𝑯𝟐  

V -40.6  [21] -2495556.7 -2492442.5 -3073.6 

Ti -134.0 [30] -2244891.6 -2241695.3 -3062.3 

Nb -40.6 [21] -10033769.0 -10030644.6 -3083.9 
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5. Materials and Methods 

 

5.1. PCT Calculation 

In this work, we wrote a simple code in Microsoft Excel using the VBA and solver 

tools to find the equilibrium conditions of the systems. This was done by varying 𝑐𝐻 of 

the phases and minimizing the differences between 𝜇𝐻 and 𝜇𝑀 of them, i.e., finding the 

common tangents of the Gibbs free energy curves. To do so, the Gibbs free energy of the 

phases should be described in all 𝑐𝐻 range. Because the natural logarithm in the 

configurational entropy expression, this quantity can be calculated using equation 16 only 

up to 𝑐𝐻 = 𝜃/𝑟. To solve this problem, we fitted the configurational entropy curves with 

a sixth order polynomial equation. For 𝑐𝐻 ≥ 𝜃/𝑟 the polynomial equations were used to 

describe the configurational entropy. Figure S4 of the supplementary data file shows the 

fitting for the different possible values of 𝜃 and 𝑟 presented in Table 1. 

 

5.2 Materials and experimental PCT measurement. 

Samples of four multicomponent alloys, namely (TiVCr)85Cr15, Ti28.3V1.3Nb55.4Cr15, 

(TiVNb)96.8Ni3.2 and Ti32.1V36.1Nb28Ni3.8, were produced by arc-melting. 

Characterization trough X-ray diffraction (XRD), scanning electron microscopy (SEM) 

and energy dispersive X-ray spectroscopy (EDX) showed that the (TiVCr)85Cr15 and 

Ti28.2V1.3Nb55.4Cr15 were single BCC solid solutions with high chemical homogeneity. On 

the other hand, the (TiVNb)96.8Ni3.2 and Ti32.1V36.1Nb28Ni3.8 presented a microstructure 

composed of a major BCC matrix and a small fraction of Ni-rich intermetallic. The 

chemical composition of the BCC matrixes was determined through SEM-EDX analyses, 

resulting in Ti31.7V32.4Nb33.7Ni2.2 for the (TiVNb)96.8Ni3.8 alloy and Ti30.1V35.5Nb32.2Ni2.2 

for the Ti32.1V36.1Nb28Ni3.8 alloy. The compositions of the BCC matrixes were used to 

calculate the PCT diagrams. 

PCI measurements were carried out in a Sieverts-type apparatus.  Small sample pieces 

(cut using a manual shear cutter) were used for measurements. Initially, the samples were 

subjected to an activation procedure at 390 ºC under dynamic vacuum for 12 hours to 

facilitate hydrogen absorption. PCI measurements at three different temperatures at least 

were obtained in absorption and desorption conditions applying variable doses of 
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hydrogen up to the maximum pressure of 100 bar. The low-pressure limit of the pressure 

gauge was 10-3 atm.  

 

6. Results 

In addition to the four alloys presented in section 5.2, two alloys whose PCT 

measurements were reported in literature, namely, TiZrNbHfTa [11] and TiVZrNbHf 

[17] were also analyzed. Table 5 shows the 𝜃 and 𝑟 parameters used to describe 

configurational entropy as well as the calculated values of 𝐻𝑀 and ℎ𝑀 of the three phases 

for all studied alloys. The same values of 𝜃 and 𝑟 were used for the α- and δ-phase for the 

six alloys. For the α-phase, it was considered the blocking of first and second T-site 

neighbors. However, due to the possible differences in the nature of the β-phase for each 

alloy, the values of 𝜃 and 𝑟 for the β-phase were adjusted to better describe the 

experimental results.  

 

Table 5: 𝜃 and 𝑟 parameters used to describe the configurational entropy and the 

calculated values of 𝐻𝑀 and ℎ𝑀to describe the enthalpy of mixing of the three phases for 

each alloy. The values of 𝐻𝑀 and ℎ𝑀 are in kJ/mol. 𝐻𝑀
𝛼 = 𝐻𝑀

𝛽
= 0. 

Alloy 
α-phase β-phase δ-phase 

𝜽 𝒓 𝒉𝑴 𝜽 𝒓 𝒉𝑴 𝜽 𝒓 𝑯𝑴 𝒉𝑴 

(TiVCr)85Cr15 6 7 -27 4 2 -27 2 1 +15.6 -38.4 

Ti28.3V1.3Nb55.4Cr15 6 7 -28.6 4 2 -28.6 2 1 +16.9 -40.9 

Ti31.7V32.4Nb33.7Ni2.2 6 7 -39.5 4 3 -39.5 2 1 +8.7 -44.0 

Ti30.1V35.5Nb32.2Ni2.2 6 7 -38.9 4 3 -38.9 2 1 +9.1 -43.3 

TiZrNbHfTa 6 7 -46.3 3 2 -46.3 2 1 +3.2 -47.6 

TiVZrNbHf 6 7 -45 4 2 -45 2 1 +2.5 -52.6 

 

 Figure 3 presents the comparison of the calculated and experimental PCTs for the six 

alloys. All the calculated Gibbs free energy curves as well as the common tangents that 

determine the equilibrium plateaus are presented in Figures S5 to S10 of the 

supplementary data file. The calculated PCT of the (TiVCr)85Cr15, Ti28.3V1.3Nb55.4Cr15, 

Ti31.7V32.4Nb33.7Ni2.2 and Ti30.1V35.5Nb32.2Ni2.2 alloys presented two plateaus. The first 

plateau at low hydrogen concentration between the α- and β-phase, and a second plateau 
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at higher hydrogen concentration between the β- and δ-phase. The experimental results 

confirmed the presence of two plateaus. However, only the second plateau could be 

experimentally determined. XRD after partial absorption at room temperature confirmed 

that in all cases the β-phase was an expanded and undistorted BCC phase. We suppose 

that when the β-phase is undistorted, the H atoms continues to occupy the T-sites and for 

this reason we chose 𝜃 = 4 to describe the configurational entropy of this phase. The 

experimental results show that hysteresis of approximately one order of magnitude takes 

place in the second plateau for all the alloys. For the (TiVCr)85Cr15 alloy, the calculated 

PCIs were in between the plateaus measured in absorption and desorption. On the other 

hand, for the Ti28.3V1.3Nb55.4Cr15, Ti31.7V32.4Nb33.7Ni2.2 and Ti30.1V35.5Nb32.2Ni2.2 alloys, the 

calculated second plateaus were close to the experimental desorption plateau.  It is worth 

noting that for the four compositions, the calculated values of 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 in the second plateau 

reasonably agree with the experimental ones. On the other hand, the calculated values of 

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  are higher than the experimental ones. The model predicts that  𝑐𝐻𝑝𝑙𝑎𝑡

𝛿 decreases 

with the increase of temperature, however, the decreasing in the calculated values of 

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  are lower than those observed experimentally. This phenomenon still needs further 

investigation. Despite this, one can see that for the four alloys the agreement between the 

calculated plateau pressures with the experimental results was remarkable. 

Table 6 presents the calculated values of plateau enthalpy (∆𝐻𝑝𝑙𝑎𝑡) and plateau 

entropy (∆𝑆𝑝𝑙𝑎𝑡), which are defined by equation 28 and 29, respectively.  

∆𝐻𝑝𝑙𝑎𝑡 =
∆𝐻𝑚

𝛿 (𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 ) − ∆𝐻𝑚

𝛽
(𝑐𝐻𝑝𝑙𝑎𝑡

𝛽
)

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 − 𝑐𝐻𝑝𝑙𝑎𝑡

𝛼
    (28) 

∆𝑆𝑝𝑙𝑎𝑡 =
∆𝑆𝑚

𝛿 (𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 ) − ∆𝑆𝑚

𝛽
(𝑐𝐻𝑝𝑙𝑎𝑡

𝛽
)

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 − 𝑐𝐻𝑝𝑙𝑎𝑡

𝛽
    (29) 

Experimentally, ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑠𝑝𝑙𝑎𝑡 are estimated using the so called Van’t Hoff 

relationship (equation 30). 

1

2
𝑙𝑛(𝑃𝑝𝑙𝑎𝑡) =

∆𝐻𝑝𝑙𝑎𝑡

𝑅𝑇
−

∆𝑆𝑝𝑙𝑎𝑡

𝑅
     (30) 

In this case, it is assumed that ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑠𝑝𝑙𝑎𝑡 are constant over temperature and, 

therefore, these quantities can be found directly by the linearization of 
1

2
𝑙𝑛(𝑃𝑝𝑙𝑎𝑡) vs 1/𝑇. 
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However, neither  ∆𝐻𝑝𝑙𝑎𝑡 nor ∆𝑆𝑝𝑙𝑎𝑡 is actually constant over temperature since the phase 

boundaries, i.e. 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 and 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 , varies with temperature. Moreover, since 𝑆𝐻2

𝑜  varies 

with temperature (equation 11), ∆𝑆𝑝𝑙𝑎𝑡 would not be constant even if 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 and 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  

were. Because of the variation of ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 with temperature is often small, the 

value obtained from the linearization of equation 25 is often a good approximation of the 

actual values. Table 6 also shows the values of ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 determined 

experimentally. Figure 4 presents a Van’t Hoff plot comparing the calculated and 

experimental values of the plateau pressure over temperature. Tables S1 to S6 of the 

supplementary data file presents all the calculated plateau properties for the six studied 

alloys. 

One can see that the agreement between the calculated and experimental values of  

∆𝐻𝑝𝑙𝑎𝑡 for the (TiVCr)85Cr15 and Ti28.3V1.3Nb55.4Cr15 are also remarkable. Moreover, the 

experimental ∆𝑆𝑝𝑙𝑎𝑡 lies between the values of calculated at 25 ºC and 200 ºC, also 

showing a good agreement. For the Ti31.7V32.4Nb33.7Ni2.2, the calculated ∆𝐻𝑝𝑙𝑎𝑡 were 

slightly overestimated (-37 to -38 kJ/mol against -32 to -35 kJ/mol) and the experimental 

and calculated values of ∆𝑆𝑝𝑙𝑎𝑡 were in good agreement. For the Ti30.1V35.5Nb32.2Ni2.2 

alloy, the experimental values of ∆𝐻𝑝𝑙𝑎𝑡 had a larger variation between absorption and 

desorption measurements (-34.2 and -38.1 kJ/mol, respectively), which comprises the 

calculated values. In this case, the experimental values of ∆𝑆𝑝𝑙𝑎𝑡 was slightly higher than 

the calculated ones.   

Figure 3 (e) shows the calculated PCT for the TiZrNbHfTa alloy as well as its 

experimental absorption PCI at 300 ºC taken from [11]. C. Zlotea et al. [11] suggested 

that the β-phase for this alloys is BCT with the H at O-sites. For this reason, we chose 𝜃 

= 3 and 𝑟 = 2 to describe the configurational entropy of this phase. The calculated PCT 

also presented a first plateau between the α- and β-phase and a second plateau between 

the β- and δ-phase. One can see that at 300 ºC the experimental absorption of the second 

plateau pressure is about 20 atm, whereas the calculated one is 2 atm. Considering the 

one order of magnitude hysteresis observed for the other BCC alloys, we believe that the 

calculated value of 𝑃𝑝𝑙𝑎𝑡 is probably close to the actual one. The calculated values of  

∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 for the TiZrNbHfTa alloys are presented in Table 6. Unfortunately, 

experimental data for these values are still missing.  
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The PCT diagram measured at 289 ºC, 317 ºC and  341 ºC for the TiVZrNbHf were 

reported in  [17] and its comparison with the calculated PCT is presented in Figure 3 (f). 

Differently from the other alloys, the calculated PCT of the TiVZrNbHf alloy presented 

only a single plateau between α- and δ-phase. The results were the same for all possible 

configurations of 𝜃 and 𝑟 used to describe the β-phase.  The calculated PCT predicts a 

plateau between the α-phase with 𝑐𝐻 ~ 0.5 and δ-phase with 𝑐𝐻 ~ 0.75. Above this 

concentration, the H concentration of the δ increases with increase of pressure. D. 

Karlsson et al. [17] reported the in-situ hydrogenation/dehydrogenation of the 

TiVZrNbHf using synchrotron XRD measurements. Indeed, no intermediate hydride 

formation between the α- and δ-phase was observed. The shape of the absorption 

experimental PCT and the calculated one is quite similar. However, the experimental 

equilibrium pressures are one order of magnitude higher than the calculated ones, which 

is probably related to hysteresis.  In [17], the authors reported an in-situ experiment in 

which the fully hydrogenated TiVZrNbHf alloy was subjected to dynamic vacuum (10-2 

atm according to the authors) at 400 ºC.  In this experiment, the δ-phase phase did not 

transform back to α-phase, however, the volume of the unit cell was reduced indicating a 

reduction in the H concentration in the phase. Therefore, we may imagine that the actual 

𝑃𝑝𝑙𝑎𝑡 at 400 °C should be lower than 10-2 atm and even lower for the lower temperatures 

in which the PCI measurements were carried out, which is in good agreement with our 

results. The calculated values of ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 are also presented in Table 6.  
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Figure 3: Comparison between calculated and experimental PCT diagrams of (a) 

(TiVNb)85Cr15, (b) Ti28.3V1.3Nb55.4Cr15, (c) Ti31.7V32.4Nb33.7Ni2.2, (d) 

Ti30.1V35.5Nb32.2Ni2.2, (e) TiZrNbHfTa (Experimental data taken from [11]), and (f) 

TiVZrNbHf (Experimental data taken from [17]). 
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Table 6: Comparison between the calculated and experimental values of ∆𝐻𝑝𝑙𝑎𝑡 and 

∆𝑆𝑝𝑙𝑎𝑡.  ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 are given in kJ/mol of H and J/K.mol of H, respectively. 

Alloy 
Calculated Experimental 

∆𝑯𝒑𝒍𝒂𝒕 ∆𝑺𝒑𝒍𝒂𝒕 ∆𝑯𝒑𝒍𝒂𝒕 ∆𝑺𝒑𝒍𝒂𝒕 

(TiVNb)85Cr15 -32.4a / -34.9b -75.2a / -87.2b -32.0abs / -34.9des -83.1abs/-81.1des 

Ti28.3V1.3Nb55.4Cr15 -34.1a / -36.0b -74.6a / -86.5b -31.5abs / -34.4des -82.3abs/-79.3des 

Ti31.7V32.4Nb33.7Ni2.2 -37.8a / -37.3b -75.5a / -81.1b -32.0abs / -35.2des -81.8abs/-76.0des 

Ti30.1V35.5Nb32.2Ni2.2 -38.2a / -37.8b -74.9a / -80.4b -34.2abs / -38.1des -86.2abs/-82.4des 

TiZrNbHfTa -44.5c / -44.1d -74.3c / -79.9d - - 

TiVZrNbHf -51.8e / -52.5f -68.7e / -72.4f - - 

a Calculated at 25 °C; b Calculated at 250 °C; c Calculated at 100 °C; d Calculated at 300°C; 
e Calculated at 260 °C; f Calculated at 360 °C abs Absorption measurements; des Desorption 

measurements. 

 

 

 

Figure 4: Van’t Hoff plots comparing experimental and calculated values of plateau 

pressures. Only for the TiVZrNbHf alloy the plateau pressure between α- and δ-phase is 

presented. For all others, the pressure of α-β plateau is presented. The experimental data 

for the TiZrNbHfTa alloy was taken from [11]. Since the plateau of the TiVZrNbHf was 

not clearly observed in the PCT data of [17], the experimental plateau pressure for this 

alloy is not presented here. 
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7. Discussion 

The good agreement between the calculated and experimental PCTs for the alloys 

tested here brought to light some important aspects of the thermodynamic of hydrogen-

multicomponent alloy systems that is worth to discuss.  

Firstly, we can evaluate the role of the configurational entropy of the phases on the 

PCT calculation.  When PE condition is considered, the high ideal configurational entropy 

of the metal host in multicomponent alloys does not have any impact on the stability of 

the hydrides as can be seen in equation 16. The entropy variation caused by the interstitial 

H solution is the important entropy term to calculate the PCT. The good agreement 

between the experimental and calculated values of ∆𝑆𝑝𝑙𝑎𝑡 shows that the ideal 

configurational entropy for interstitial solid solution with SBE proposed by J. Garcés [20] 

is a suitable model to predict the entropy change during hydrogenation reaction. The 

common assumption that most entropy change during hydrogenation reaction comes from 

the vanishing of H2 gas and, therefore, that the entropy difference between the solid 

phases has a small effect on the plateau pressures is often used [31,32]. Although we 

agree that the major contribution to ∆𝑆𝑝𝑙𝑎𝑡 comes from the conversion of molecular 

hydrogen gas to dissolved hydrogen, we will show that the difference between the 

entropies of the solid phases in the plateau is not negligible for PCT calculation. Take as 

example the (TiVNb)85Cr15, which the calculated ∆𝐻𝑝𝑙𝑎𝑡 is -32.4 kJ/mol of H and ∆𝑆𝑝𝑙𝑎𝑡 

is -75.2 J/K.mol of H for the β-δ plateau at 25 ºC, resulting in a 𝑃𝑝𝑙𝑎𝑡 of 3.2x10-4 atm. If 

the difference between the configurational entropies of δ- and β-phase was not 

considered, ∆𝑆𝑝𝑙𝑎𝑡would be -65.3 J/K.mol of H, resulting in a 𝑃𝑝𝑙𝑎𝑡 of 3.0x10-5 atm, i.e., 

one order of magnitude lower. Such difference would be true for any temperature. 

Therefore, a good description of the entropy of the solid phases is crucial for PCT 

calculation aiming at alloy design. Interestingly, the difference between the 

configurational entropies of the H interstitial solid solutions seems to be enough to predict 

the experimental results, which suggests that the difference between the non-

configurational terms is indeed probably small.  Therefore, we believe that a better 

understating of how the chemical composition affects the H site occupancy (tetrahedral 

or octahedral) mainly for the β-phase is crucial to allows us to select the 𝜃 and r 

parameters of the configurational entropy model, allowing the application of predictive 

high-throughput calculations. 
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A second point that is worth discussing is the good agreement between the calculated 

and experimental values of ∆𝐻𝑝𝑙𝑎𝑡. In this work, we use the simple approximation of the 

H partial molar enthalpy following an ideal mixture law of the alloy’s components. The 

good agreement between the calculated and experimental results shows that at least for 

the TiVNbCr and TiVNbNi systems in the range of composition studied here, this is a 

good approximation. However, we believe that this might not be a universal rule. Maybe 

for other systems, or for other compositions, for example, in the Cr-rich or Ni-rich region 

of these systems, some deviation from the ideal mixture law might be important. Even 

though, the parametrization of the ℎ𝑀 term of equation 17 can be further developed using 

either ab initio calculation or experimental data. The ideal mixture law was only the first 

choice to test the proposed model. 

Finally, in our approach the SBE was considered only in the entropy and not in the 

enthalpy formulation. If the strain caused by the H interstitial solid solution in the host 

metal lattice and repulsive H-H interactions were considered in the enthalpy formulation, 

the H partial molar enthalpy of a phase would not be constant, but it would depend on the 

H concentration. Indeed, since the classical work of R. Lacher in 1935 [33],  many authors 

have used the approach of describing the H partial molar enthalpy as a linear function of 

the hydrogen concentration [34–36]. In our approach, we consider that when such 

increase of energy caused by H-H interactions or lattice strain manifests, the system 

responds by organizing the H atoms in a new ordered phase that eliminate this excess 

energy. Therefore, the new phase with lower configurational entropy (mathematically 

expressed by the lower 𝜃 parameter) is formed. Since in this work we use the same ℎ𝑀 

value to describe the enthalpies of the α-phase and β-phase, the first plateau between 

these two phases is only a result of their different configurational entropies. For the case 

where the β-phase continues to be BCC with H atoms at specific tetrahedral sites, the 

spinodal decomposition could be described only by the different configurational entropies 

of the two phases. In this case, the lattice strain and H-H interactions would manifest on 

the SBE and it would be account into the 𝑟 term of the configurational entropy equation. 

Determining stress/strain field and local H-H interaction energy is rather complicated. 

Therefore, the possibility of calculating reasonably accurate PCTs without the need of 

these quantities makes the model much more useful for alloy design and high-throughput 

calculations. Therefore, we reinforce that a deeper evaluation of the H ordering in the 
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interstitial sites of multicomponent alloys is of fundamental importance to improve the 

predictability of PCT calculations. 

 

8. Conclusions 

In this work we presented a thermodynamic model to calculate PCT diagrams. The 

configurational entropy of the phases was described using the equation formulated by J. 

Garcés for interstitial solid solution with site blocking effect. The enthalpy of H mixing 

in the possible phases was considered to vary linearly with the H concentration, meaning 

a constant H partial molar enthalpy. For multicomponent phases, the partial molar 

enthalpy was approximated by an ideal mixture law of the alloy’s components, and the 

values for the pure elements were parametrized either by experimental data or DFT 

calculation. The model was applied to six BCC multicomponent alloys and the calculated 

PCTs were compared against the experimental ones. The good agreement between the 

calculated and experimental results shows that this model can be used as a basis for 

calculating reasonably accurate PCTs and become a powerful tool for alloy design and 

high-throughput calculations.  
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