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Abstract

Network data is composed of nodes and edges. Successful application of machine
learning/deep learning algorithms on network data to make node classification and link
prediction has been shown in the area of social networks through which highly customized
suggestions are offered to social network users. Similarly one can attempt the use of machine
learning/deep learning algorithms on biological network data to generate predictions of
scientific usefulness. In the present work, compound-drug target interaction data set from
bindingDB has been used to train machine learning/deep learning algorithms which are used
to predict the drug targets for any PubChem compound queried by the user. The user is required
to input the PubChem Compound ID (CID) of the compound the user wishes to gain
information about its predicted biological activity and the tool outputs the RCSB PDB IDs of
the predicted drug target. The tool also incorporates a feature to perform automated In Silico
modelling for the compounds and the predicted drug targets to uncover their protein-ligand
interaction profiles. The programs fetches the structures of the compound and the predicted
drug targets, prepares them for molecular docking using standard AutoDock Scripts that are
part of MGLtools and performs molecular docking, protein-ligand interaction profiling of the
targets and the compound and stores the visualized results in the working folder of the user.
The program is hosted, supported and maintained at the following GitHub repository

https://github.com/bengeof/Compound2Drug



https://github.com/bengeof/Compound2Drug

Introduction

A network data is composed of nodes and edges[1]. An example of such network data would
be social network data where nodes are people and their interests and edges are inter-
connections between them[2-5]. Many useful applications such as customized suggestions for
social media users have been developed through the use of Machine/Deep learning algorithms
which accomplish this through node classification and link prediction protocols[5-10]. Similar
techniques are transferable to gain insights and predictions from biological network data.
Biological network data include, protein-protein interaction networks, differential gene
expression and regulatory networks, metabolic pathways and cell signalling networks, etc
[11,12]. Using these techniques Vazquez, Alexei, et al have developed a tool for protein
function prediction from protein-protein interaction networks [13]. Similarly Hashemifar,
Somaye, et al and other groups have developed a tool for predicting protein-protein interaction
using deep learning algorithms [14,15]. From gene expression network data different groups
have developed tools that use deep learning algorithms to classify cancer types [16-18].
Similarly advances in understanding differential gene expression from gene expression
networks have also been carried out using Deep Learning techniques by different groups
[19,20]. The previous works of our research group has involved incorporating machine/deep
learning techniques for automation in screening PubChem compound library and identifying
the best small drug molecules for a particular drug target [21-23]. In keeping with our research
focus, the present work presents a complimentary approach to drug screening, wherein, given
a particular PubChem compound ID for a particular compound, the developed tool predicts the
most likely pharmaceutical activity of the compound and followingly performs an automated
In Silico modelling to uncover the molecular details of its pharmaceutical activity. To
accomplish the task mentioned above we have used different Machine and Deep Learning
algorithm which predict the bio-activity of a given PubChem compound from the their prior
training knowledge on a training dataset on protein-compound interaction network data
downloaded from BindingDB [24,25]. To automate the discovery of the molecular basis of the
predicted pharmaceutical activity of the compound, an automated In Silico modelling was
carried out against the predicted drug targets. This has been carried out by programmatic access

of AutoDock Vina and MGLtools from the main program [26].



Methods

The bindingDB database [27] was downloaded and a network was constructed using NetworkX
[28] wherein the nodes where compounds and proteins and edges where the interactions
between them. Lower the 1Cso value for a compound to inhibit a particular protein, the shorter
the edges were that link them together. Each compound is identified using the PubChem
Compound ID (CID) and proteins are identified with the Protein Data Bank ID (PDB ID). The
dataset visualized using NetworkX and select visualization is shown in Fig.1. The Dataset
consists of 536435 unique CIDs and 2707 unique PDB IDs. To generate 2D embeddings of the
network, the node2vec [29] python package was used. The module learnt the embeddings of
65 graphs and they were used to perform a machine learning/deep learning based multi-class
classification [30-35]. To address the problem of multi-class classification for graphs with large
data a fully connected deep neural network was constructed, which consisted of an input layer,
three hidden layers which were activated by a RELU activation function and a output layer
which uses a sigmoid activation function to perform the multi-label classification. The
categorical labels were vectorized using OneHotEncoder method. Given an input node which
is a PubChem compound ID (CID), the program generates a sub-network of structurally related
CIDs to the input CID and performs a multi-class classification using the Deep Neural Network
the classify CID into the PDB ID class it belongs to or to say it otherwise, predict the PDB ID
of the protein the compound with a given input CID is likely to interact with. Dropouts were
used as regularization technique to overcome over-fitting and the neural network performed
prediction with a accuracy of over 80%. The multi-label classification for smaller graphs were
handled with a machine learning based approach with the logistic regression algorithm.
Therefore this Machine Learning/Deep Learning based programmatic tool is useful to predict
the bio-activity of a PubChem compound. The workflow of the program is shown in Fig.2.

The program is required to be run in python3 environment with following dependencies, code
files and models kept in the working folder of the user which are downloadable from the links

given below.
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Fig.1 NetworkX visualization of compound-drug target interaction network
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Fig. 2 Overall algorithmic workflow



Dependencies

gensim==3.8.3 tensor2tensor==1.15.7
gunicorn==20.0.4 tensorboard==2.3.0
Keras-Preprocessing==1.1.2 tensorboard-plugin-wit==1.7.0
kfac==0.2.0 tensorflow==2.3.0
matplotlib==3.3.0 tensorflow-addons==0.10.0
networkx==2.4 tensorflow-datasets==3.2.1
node2vec==0.3.2 tensorflow-estimator==2.3.0
nodevectors==0.1.22 tensorflow-gan==2.0.0
numpy==1.19.1 tensorflow-hub==0.8.0
pandas==1.1.1 tensorflow-metadata==0.22.2
scikit-learn==0.23.2 tensorflow-probability==0.7.0
scipy==1.5.2 tensorflow-text==2.3.0
seaborn==0.10.1 xgboost==1.1.1
mgltools==1.5.6 autoDock vina==4.2.6

The command line user interface of the tool is shown below and the usefulness of the tool is
demonstrated by performing a few select examples using a randomly selected CID input. When
the user runs the main program he is prompted to enter the CID of the compound for which he
requires prediction of drug targets.

[+1 ben@ben-System-Product-Name: ~/Compound2Drug Q =

(base) - $ python3 main.py

2020-10-05 20:55:26.867689: W tensorflow/stream_executor/platform/default/dso_1
oader.cc:59] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcu
dart.so.10.1: cannot open shared object file: No such file or directory; LD _LIB

RARY PATH: :/path/to/mpi/library/

2020-10-05 20:55:26.867718: I tensorflow/stream_executor/cuda/cudart_stub.cc:29
] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Enter the CID: 69584980

Fig.3a Tool Interface



Following this, the tool carries out the prediction task and prints out the predicted target PDB

IDs as follows

+1 ben@ben-System-Product-Name: ~/Compound2Drug Q = = o X

A service 0x561f8b95f020 initialized for platform Host (this does not guarantee
that XLA will be used). Devices:

2020-10-05 23:32:16.662905: I tensorflow/compiler/xla/service/service.cc:176]
StreamExecutor device (0): Host, Default Version

2020-10-05 23:32:16.664828: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
257] Device interconnect StreamExecutor with strength 1 edge matrix:

2020-10-05 23:32:16.664843: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
263]

2020-10-05 23:32:16.730903: W tensorflow/core/framework/cpu_allocator_impl.cc:81
] Allocation of 18325504 exceeds 10% of free system memory.

2020-10-05 23:32:16.739266: W tensorflow/core/framework/cpu_allocator_impl.cc:81
] Allocation of 18325504 exceeds 10% of free system memory.

2020-10-05 23:32:16.743930: W tensorflow/core/framework/cpu_allocator_impl.cc:81
] Allocation of 18325504 exceeds 10% of free system memory.

2020-10-05 23:32:16.768107: W tensorflow/core/framework/cpu_allocator_impl.cc:81
] Allocation of 18325504 exceeds 10% of free system memory.

2020-10-05 23:32:16.817856: W tensorflow/core/framework/cpu_allocator_impl.cc:81
] Allocation of 18325504 exceeds 10% of free system memory.

The PDB IDs predicted by the Machine Learning/Deep Learning model are ['3ede’,
2xplia s tiwged St de L iy gt i arkit s Ry ga - i aghgt s AW T w9
41n7', '316b', '2a8x', 'i1gsd', '4awn', '1hkb', '3dkg', '3mi9', '2igq', '2mng’', '
5dgo', '1tb5', '4nh9']

Fig.3b — Drug target prediction by the tool

For each given input CID, the program also performs automated In Silico modelling and stores
the visualized results of protein-ligand interaction in the working folder of the user. The
structures of the ligand(compound) and the protein are automatically downloaded from
PubChem and RCSB Protein Data Bank and they are prepared for molecular docking using the
standard AutoDock scripts available through MGLTools. The program uses Web API to
perform PLIP protein-ligand interaction profile and stores the results of the protein-ligand

interaction profile in the working folder of the user.



Downloading PDB structure 'igsd'...

/home /ben/anaconda3/1ib/python3.7/site-packages/Bio/PDB/StructureBuilder.py:92: PDBConstructionWarning: WARNING: Chain A is disconti

nuous at line 7286.
PDBConstructionWarning,

/home /ben/anaconda3/1ib/python3.7/site-packages/Bio/PDB/StructureBuilder.py:92: PDBConstructionWarning: WARNING: Chain B is disconti

nuous at line 7390.
PDBConstructionWarning,

setting PYTHONHOME environment

adding gasteiger charges to peptide

Center point of docking grid for /home/ben/Compound2Drug/tmpmynkc64r/1gsd.pdbqt is as follows: x: 67.36, y: 58.9, z:
38.35

Sizes of docking grid are as follows:x: 70.59, y: 20.49, z:

H R R S R R I T i

# If you used AutoDock Vina in your work, please cite:

0. Trott, A. J. Olson,

AutoDock Vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization and

455-461

DOI 10.1002/jcc.21334

HOH R R R H R R R

# Please see http://vina.scripps.edu for more information.

HEHAHBR R H R R HBH AR H R H AR R H AR R R AR R AR AR H AR AR H

WARNING: The search space volume > 27000 Angstrom”3 (See FAQ)

Detected 16 CPUs

multithreading, Journal of Computational Chemistry 31 (2010)

#

#
#
#
#
#
#
#
#
#
#
#

WARNING: at low exhaustiveness, it may be impossible to utilize all CPUs

Reading input ... done.

Setting up the scoring function ... done.

Analyzing the binding site ... done.

Using random seed: -337853075

Performing search ...
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done.

Refining results ... done.

Fig.4 — Automated In Silico modelling and protein-ligand interaction profiling
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The tool is required to be run with the following files as shown in the working folder. They are

downloadable from the links given below.
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Fig.5 — Working folder
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The trained models, vectors, pickle file can be downloaded from the drive link given below
https://drive.google.com/drive/folders/IwwgrS6EWCnUFnPRohDFmMzzShjZDb0GFe?usp=s
haring

https://drive.google.com/drive/folders/1JOpldckxhCVz1A5R67Y zXPxBWOIKFLJs?usp=sha
rin

https://drive.google.com/file/d/1ENt5pb7liNctR 8CE54935hBU1WQI1TPx/view?usp=sharin

g

The code is downloadable from the GitHub repository link given below
https://github.com/bengeof/Compound2Drug

Results and Discussion

To demonstrate the use of the tool with a randomly selected user input, the tool was run as
described in the methodology section with a randomly chosen PubChem CID : 69584980. The
tool generated a list of predicted targets and automatically estimated the strength of interaction
of the compound with the predicted targets and the results are given below in Table 1. The
strongest interaction was found to be with the target identified with PDB ID : 1gsd which is
identified to be the enzyme Glutathione Transferase. Glutathione Transferase inhibitors
increase the sensitivity of cancer cells to anti-cancer drugs and also possess several other
therapeutic applications [36]. The protein-ligand interaction profile generated by the tool is

shown in Fig. 6 below
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Fig. 6 — Protein-ligand interaction


https://drive.google.com/drive/folders/1wwgrS6EWCnUFnPRohDFmzzShjZDb0GFe?usp=sharing
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https://drive.google.com/file/d/1ENt5pb7liNctR_8CE54g35hBU1WQ1TPx/view?usp=sharing
https://github.com/bengeof/Compound2Drug

Table 1 — Results of protein-ligand interaction prediction and modelling by the tool

Compound Target

Information Information Interaction Strength

PubChem CID RCSB PDB ID | Binding Affinity (Kcal/mol)

69584980 3ede -7.6
2xml -9.2
1w0e -9.1
6d6t -7
4zji -7.1
lerk -7
1g3f -6.4
4qbq -7
3wf3 -8.6
2wwu -1.5
1fx9 -8.4
4In7 -1.4
316b -7
2a8x -9.1
1gsd -9.9
4awn -6.7
1hkb -7.3
3dkg -7.1
3mi9 -7.9
2igq -7.9
5dgo -7.3
1tb5 -9.3
4nh9 -8.6

Conclusion

In the present work, the compound-drug target interaction data set from bindingDB has been
used to train machine learning/deep learning algorithms which were used to predict the drug
targets for any PubChem compound. The user is required to input the PubChem Compound 1D
(CID) of the compound the user wishes to gain information about its predicted biological
activity and the tool outputs the RCSB PDB IDs of the predicted drug targets for the compound.
The tool also incorporates a feature to perform automated In Silico modelling for the
compounds and the predicted drug targets to uncover their protein-ligand interaction profiles.
To demonstrate the use of the tool a randomly selected PubChem Compound ID (CID) was
given as input to the program and the use of the tool in identifying the bio-activity of the

compound was demonstrated.
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