Nickel-Catalyzed Reductive Arylation of Redox Active Esters for the Synthesis of α -Aryl Nitriles – Role of a Chlorosilane Additive

Nicholas W. M. Michel§, Racquel K. Edjoc§, Emmanuel Fagbola§, Jonathan M. E. Hughes‡, Louis-Charles Campeau‡, Sophie A. L. Rousseaux§*

 § Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
‡ Department of Process Research and Development, Merck & Co. Inc., Rahway, New Jersey 07065, United States

*Corresponding Author: sophie.rousseaux@utoronto.ca

Supporting Information 1: Experimental Data

Table of Contents

Α.	General Information	S3
в.	Optimization Details	S3
C.	Optimization of Reaction Parameters	S4
	Figure S1. Evaluation of chlorosilane additives ^a	S4
	Figure S2. Evaluation of ligand ^a	
	Figure S3. Evaluation of solvent concentration ^a	S6
	Figure S4. Evaluation of reaction solvent ^a	S6
	Figure S5. Evaluation of Zn equivalents ^a	S7
D.	Mechanistic Studies	S7
	Figure S6. Product distribution as a function of number of equivalents of TMSCl ^a	S7
	Figure S7: Product distribution as a function of number of equivalents of CyMeSiCl2 ^a	S8
	Figure S8. Reaction kinetics under standard conditions, with addition of TMSCI after 5 minutes ^a	S8
	Figure S9 . Reaction kinetics in the absence of NiCl ₂ bpy, with addition of TMSCl after 5 minutes ^a	S9
	<i>Figure S10</i> . Evaluation of the stability of 1a in the presence of various reaction components ^a	S9
E.	Reductive Arylation of NHP Esters: General Procedure 1	\$10
	Product Characterization	S10
	Figure S11: Less tolerated substrates:	S23

F.	Preparation of NHP Ester Starting Materials	S24		
	Figure S12: Preparation of 1a and 1c	S24		
	General Procedure 2: Synthesis of N-hydroxyphthalimide esters	S25		
	Figure S13: Preparation of 1b	S28		
	Figure S14. Preparation of 1d	S29		
	Figure S15. Preparation of 1e	S31		
	Figure S16. Preparation of 1f	S34		
	Figure S17. Preparation of 1g	<i>S36</i>		
Figure S18. Preparation of Radical Clock Substrate 6				
Figure S19: Radical Clock Experiment:				
G.	Preparation of Aryl lodide Starting Materials	S42		
н.	References	S45		

A. General Information

Unless otherwise noted, all reactions were set up on the benchtop and run under an inert atmosphere of N₂ or Ar using flame-dried glassware and anhydrous solvents. CH₂Cl₂, Et₂O, MeCN, PhMe, and THF were purchased as HPLC-grade (inhibitor-free) from Caledon or Sigma–Aldrich, and were dried using a PureSolv MD 5 solvent purification system and used without further manipulation. DMA was purchased from Acros as Extra-Dry (Cat. #: AC396350010) with or without molecular sieves and were used as received.¹ NiCl₂bpy was prepared according to a literature report,² and was kept on the benchtop open to air. Zn dust was activated with dilute HCl and was left on the benchtop open to air for periods up to 12 months with no decrease in efficacy.³ TMSCl (>98%) was purchased from Sigma–Aldrich and used as received. For bottles older than 3 months, or if a pink color is evident, TMSCl was distilled over CaH₂ and kept under an atmosphere of Ar before use. All other commercial reagents and starting materials were used as received. Compounds were purified by flash column chromatography using SiliCycle SilicaFlash P60 silica gel.

GC-MS data was obtained on a Shimadzu GCMS-QP2010 SE; yields represent peak areas calibrated against each compound's response factor relative to n-dodecane internal standard. ¹H and ¹³C NMR spectra were recorded on Varian MercuryPlus 400 MHz, Agilent DD2 500 MHz, or Bruker AvanceIII 400 MHz spectrometers. TLC samples were run on EMD Millipore TLC Silica gel 60 F254 plates and were visualized by UV or by staining with standard KMnO₄. IR spectra were obtained on a PerkinElmer Spectrum 100 instrument equipped with a single-bounce diamond/ZnSe ATR accessory as solids or thin films. Melting points were obtained on a Fisher-Johns Melting Point Apparatus. High-resolution mass spectra (HRMS) were recorded on a JEOL AccuTOF JMS-T1000LV mass spectrometer equipped with a Direct Analysis in Real Time (DART) ion source.

B. Optimization Details

Procedure for optimization reactions on a 0.1 mmol scale: An 8 mL threaded culture tube was equipped with a stir bar, fit with a size 19 rubber septum, flame dried under vacuum, and cooled under N₂. NHP ester (0.15 mmol, 1.5 equiv), 4-iodoanisole (23 mg, 0.20 mmol, 1.0 equiv), Zn dust (52 mg, 0.80 mmol, 8.0 equiv), and NiCl₂bpy (2.9 mg, 0.010 mmol, 10 mol %) were added on the bench top. The tube was sealed with a septum and electrical tape and evacuated and backfilled with N₂ (x3). A solution of TMSCI (36 μ L, 0.30 mmol, 3.0 equiv) in DMA (0.5 mL, 0.2 M) was then added to the tube containing the solids in one portion and the reaction mixture was stirred vigorously⁴ at room temperature (23–25 °C). After 60 min, the reaction was exposed to air, *n*-Dodecane (23 μ L, 0.1 mmol, 1.0 equiv) was added as an internal standard and the reaction mixture was diluted with EtOAc, quenched with 1M HCl, and extracted with EtOAc (x2). The mixture was passed directly over a short plug of silica gel before an aliquot of the crude filtered solution was taken for GC-MS analysis.

Note: For reactions that were monitored by ¹H NMR, 1,3,5-trimethoxybenzene (17 mg, 0.10 mmol, 1.0 equiv) was added at the beginning of the reaction with the other solids. After the

workup, the crude mixture was concentrated under reduced pressure and an aliquot was taken for ¹H NMR analysis.

^a yield determined by GC-MS using dodecane as an internal standard

Figure S2. Evaluation of ligand^a

^ayield determined by GC-MS using dodecane as an internal standard. The remaining mass balance of ArI **2** consists of **S3** and/or **S4**.

Entry	Concentration (M)	% yield (3a)
1	0.05	18
2	0.1	35
3	0.2	61
4	0.5	60

^ayield determined by GC-MS using dodecane as an internal standard

Figure S4. Evaluation of reaction solvent^a

Ph t - CN NHP 0 +	OMe NiCl ₂ dme (10 mol %) bpy (12 mol%) Ph' SiMe ₂ Cl ₂ (1.0 equiv) Zn (2.0 equiv) Solvent (0.1 M) r.t. 1 h	H ₃ CN OMe
1a (1.5 equiv)	2 (1.0 equiv)	3a
Entry	Solvent	3a (% Yield)
1	DMA	45
2	ACN	0
3	Benzene	0
4	DMF	0
5	1,4-dioxane	0
6	PhCF ₃	0
7	PhMe	0
8	MeOH	0
9	DME	0
10	NMP	27
11	DMSO	0
12	DCM	0
13	THF	2

^ayield determined by GC-MS using dodecane as an internal standard

Figure S5. Evaluation of Zn equivalents^a

^ayield determined by GC-MS using dodecane as an internal standard

D. Mechanistic Studies

^ayield determined by GC-MS using dodecane as an internal standard

Figure S7: Product distribution as a function of number of equivalents of CyMeSiCl2^a

^ayield determined by GC-MS using dodecane as an internal standard

Figure S8. Reaction kinetics under standard conditions, with addition of TMSCI after 5 minutes^a

^aYield determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard

Figure S9. Reaction kinetics in the absence of NiCl₂bpy, with addition of TMSCl after 5 minutes^a

^aYield determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard

I SUIC JIU , EVALUATION OF THE STADING OF IA IN THE DICICITE OF VALIOUS FEACTION COMPONENT	Figure S10.	Evaluation	of the stabilit	v of 1a in the	presence of various	reaction components ⁴
--	-------------	------------	-----------------	-----------------------	---------------------	----------------------------------

Entry	NiCl ₂ bpy (10 mol %)	TMSCl (3 equiv)	Zn (8 equiv)	Remaining 1a	4	5	NHP mass balance
1	yes	yes	no	137	16	0	153
2	yes	no	yes	71	76	6	153
3	no	yes	yes	0	75	43	118
4	no	yes (0.5 equiv)	yes	0	80	32	112
5	no	no	yes	117	36	0	153
6	no	yes	no	124	18	0	142
7	yes	no	no	118	30	0	148
8	yes	yes	yes	0	32	62	94

^ayield determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. The mass balance of the NHP ester component may be lower due to loss of **4** in the aqueous layer during work up of the aliquots.

E. Reductive Arylation of NHP Esters: General Procedure 1

Representative procedure for a 0.2 mmol scale reaction: An 8 mL threaded culture tube was equipped with a stir bar, fit with a size 19 rubber septum, flame dried under vacuum, and cooled under N₂. NHP ester (0.30 mmol, 1.5 equiv), aryl iodide (0.20 mmol, 1.0 equiv), Zn dust (0.10 g, 1.6 mmol, 8.0 equiv), and NiCl₂bpy (5.8 mg, 0.020 mmol, 0.10 equiv) were added to the tube while open to air. The tube was sealed with a septum and electrical tape and evacuated and backfilled with N₂ (x3). A solution of TMSCI (72 μ L, 0.60 mmol, 3.0 equiv) in DMA (1.0 mL, 0.2 M) was then added in one portion and the solution was stirred vigorously⁴ at room temperature (23–25 °C). After 60 min, the reaction was exposed to air, diluted with EtOAc, quenched with 1M HCl, and extracted with EtOAc (x2). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel to afford the desired product.

Product Characterization

(*R*)-2-(4-methoxyphenyl)-5-phenylpentanenitrile (**3a**) was prepared according to **general procedure 1** but was run on a 0.5 mmol scale. The mixture was purified by column chromatography on silica gel (slow gradient 0–20% EtOAc/hexanes) to afford a mixture of desired product and reduced NHP **5**, which was removed by heating the sample at 120 °C under high vacuum (1 mbar) for 20 minutes to afford 92 mg (70% yield) of the desired compound as a clear oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.30–7.27 (m, 2H), 7.23–7.18 (m, 3H), 7.16–7.13 (m, 2H), 6.91–6.87 (m, 2H), 3.81 (s, 3H), 3.73 (dd, *J* = 8.3, 6.0 Hz, 1H), 2.65 (t, *J* = 7.2 Hz, 2H), 1.97–1.74 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 159.4, 141.3, 128.6, 128.5, 127.9, 126.2, 121.2, 114.5, 55.5, 36.6, 35.4, 35.2, 28.7 ppm; **R**_f = 0.32 (100% PhMe; KMnO₄, UV); **HRMS** *m/z* (DART): calcd for C₁₈H₂₀NO (M+H) 266.1539 found 266.1541; **I**_R (neat): 2930, 2860, 2240, 1735, 1512, 1249, 1030, 830, 699 cm⁻¹.

4-(1-cyano-4-phenylbutyl)phenyl 4-methylbenzenesulfonate (**3b**) was synthesized according to **general procedure 1**, and was purified by column chromatography on silica gel (very slow gradient of 0–20% EtOAc/hexanes) to afford 48 mg (59% yield) of the desired product as a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.72–7.68 (m, 2H), 7.32–7.26 (m, 4H), 7.23–7.18 (m, 3H), 7.14–7.11 (m, 2H), 7.00–6.97 (m, 2H), 3.74 (dd, *J* = 8.4, 5.7 Hz, 1H), 2.64 (t, *J* = 7.2 Hz, 2H), 2.45 (s, 3H), 1.95–1.70 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 149.4, 145.7, 141.1, 134.8, 132.3, 130.0, 128.7, 128.7, 128.6, 128.5, 126.3, 123.2, 120.4, 36.9, 35.2, 35.2, 28.6, 21.9 ppm; **R**_f: 0.36 (20% EtOAc/Hexanes; UV, KMnO₄); HRMS *m/z* (DART): calcd for C₂₄H₂₇N₂O₃S (M+NH₄) 423.1737; found 423.1741; **IR (neat):** 3077, 3030, 2936, 2240, 1596, 1500, 1458, 1373, 1175 cm⁻¹; Melting Point: 83–85 °C.

2-(4-hydroxyphenyl)-5-phenylpentanenitrile (**3c**)⁵ was prepared according to **general procedure 1**, and was purified by two rounds of column chromatography on silica gel. 1st column: slow gradient 0–20% EtOAc/Hexanes, product was contaminated with phthalimide **S2**. Purified further by column chromatography on silica gel. 2nd column: gradient 0–20% EtOAc/PhMe), afforded 22 mg (43% yield) of the desired product as a yellow oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.30–7.25 (m, 2H), 7.22–7.13 (m, 5H), 6.84–6.89 (m, 2H), 3.71 (dd, *J* = 8.3, 5.8 Hz, 1H), 2.65 (t, *J* = 7.2 Hz, 2H), 1.97–1.70 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 155.6, 141.3, 128.7, 128.6, 128.5, 127.9, 126.2, 121.2, 116.0, 36.6, 35.4, 35.2, 28.7 ppm; **R**_f: 0.57 (20% EtOAc/PhMe; UV, KMnO₄); **HRMS** *m/z* (DART): calcd for C₁₇H₂₁N₂O (M+NH₄) 269.1648; found 269.1647; **IR (neat):** 3373, 3026, 2927, 2861, 2244, 1614, 1597, 1514, 1452, 1218, 1174, 689 cm⁻¹.

4-(1-cyano-4-phenylbutyl)benzenesulfonamide (**3d**) was prepared according to **general procedure 1** and was purified by column chromatography on silica gel (slow gradient 0–40% EtOAc/Hexanes). The product was stripped of residual DMA by sonicating in DCM:Hexanes and left under high-vac for 24 hours to afford 47 mg (75% yield) of a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_H 7.93 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.31–7.27 (m, 2H), 7.22–7.18 (m, 1H), 7.16–7.12 (m, 2H), 5.01 (br s, 2H), 3.86 (dd, J = 8.4, 5.8)

Hz, 1H), 2.67 (t, J = 7.3 Hz, 2H), 2.01–1.74 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_C 142.0, 140.9, 140.9, 128.7, 128.5, 128.2, 127.5, 126.4, 119.9, 37.3, 35.1, 35.1, 28.6 ppm; **R**_f: 0.34 (40% EtOAc/Hexanes; UV, KMnO₄); **HRMS** m/z (DART): calcd for C₁₇H₂₂N₃O₂S (M+NH₄) 332.1427; found 332.1429; **IR (neat):** 3364, 3263, 3027, 2925, 2861, 2241, 1600, 1325, 1156, 750, 697 cm⁻¹; **Melting Point:** 94–96 °C.

2-(4-(dibenzylamino)phenyl)-5-phenylpentanenitrile (**3e**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (gradient 0–75% PhMe/Hexanes) to afford a mixture of desired product and reduced NHP **5** which was removed by heating the sample at 120 °C under high vacuum (1 mbar) for 20 minutes to afford 49 mg (57% yield) of the desired product as a tan solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.35–7.31 (m, 4H), 7.29–7.26 (m, 3H), 7.26–7.22 (m, 5H), 7.20–717 (m, 1H), 7.15–7.13 (m, 2H), 7.08–7.04 (m, 2H), 6.71 (d, *J* = 8.3 Hz, 2H), 4.65 (s, 4H), 3.64 (dd, *J* = 8.5, 5.6 Hz, 1H), 2.64 (t, *J* = 7.1 Hz, 2H), 1.95–1.73 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 148.8, 141.3, 138.2, 128.7, 128.4, 128.4, 128.1, 127.0, 126.6, 126.0, 123.5, 121.4, 112.7, 54.3, 36.3, 35.2, 35.1, 28.6 ppm; **R**_f: 0.34 (40% PhMe/Hexanes; UV, KMnO4); HRMS *m/z* (DART): calcd for C₃₁H₃₁N₂ (M+H) 431.2482; found 431.2473; **IR (neat):** 3059, 3022, 2949, 2933, 2862, 2239, 1951, 1614, 1603, 1521, 1449, 1239, 727, 694 cm⁻¹; **Melting Point:** 86–87 °C.

5-phenyl-2-(*o*-tolyl)pentanenitrile (**3f**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0–10% EtOAc/Hexanes) to afford 23 mg (46% yield) of the desired product as a light brown oil. Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.42–7.39 (m, 1H), 7.30–7.27 (m, 2H), 7.24–7.21 (m, 2H), 7.20–7.15 (m, 4H), 3.93 (dd, *J* = 8.8, 5.4 Hz, 1H), 2.68 (t, *J* = 7.2 Hz, 2H), 2.30 (s, 3H), 1.98–1.76 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 141.2, 135.0, 134.3, 131.1, 128.6, 128.6, 128.5, 128.2, 127.6, 127.0, 126.2, 35.2, 34.2, 33.9, 28.9, 19.2 ppm; **R**_f: 0.56 (10% EtOAc/Hexanes; UV, KMnO₄); **HRMS** *m/z* (DART): calcd for C₁₈H₂₀N (M+H) 250.1590; found 250.1597; **IR (neat):** 3026, 2928, 2860, 2239, 1603, 1493, 1454, 748, 698 cm⁻¹.

2-(3-(hydroxymethyl)phenyl)-5-phenylpentanenitrile (**3g**): An 8 mL threaded culture tube was equipped with a stir bar, fit with a size 19 rubber septum, flame dried under vacuum, and cooled under N₂. NHP ester (104 mg, 0.300 mmol, 1.50 equiv), Zn dust (104 mg, 1.60 mmol, 8.00 equiv), and NiCl₂bpy (5.8 mg, 0.020 mmol, 0.10 equiv) were added to the tube while open to air. The tube was sealed with a septum and electrical tape, and evacuated and backfilled with N₂ (x3). 3-lodobenzyl alcohol (25 μ L, 0.200 mmol, 1.00 equiv) was added via microsyringe, followed by a solution of TMSCI (72 μ L, 0.60 mmol, 3.0 equiv) in DMA (1.0 mL, 0.2 M) in one portion. The reaction mixture was stirred vigorously at room temperature (23–25 °C). After 60 min, TBAF (0.5 mL of 1.0 M solution in THF, 0.5 mmol, 2.5 equiv) was added and the mixture was stirred for 20 minutes. The reaction was then exposed to air, diluted with EtOAc, quenched with 1M HCl, and extracted with EtOAc (x2). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (slow gradient of 0–20% EtOAc/Hexanes) to afford 28 mg (53% yield) of the desired product as a brown oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.38–7.34 (m, 1H), 7.33–7.27 (m, 4H), 7.24–7.18 (m, 2H), 7.16–7.13 (m, 2H), 4.71 (s, 2H), 3.78 (dd, *J* = 8.4, 5.9 Hz, 1H), 2.66 (t, *J* = 7.3 Hz, 2H), 2.01–1.71 (m, 5H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 142.0, 141.3, 136.2, 129.4, 128.6, 128.5, 126.7, 126.6, 126.2, 125.8, 120.8, 65.0, 37.4, 35.3, 35.2, 28.7 ppm; **R**_f: 0.24 (20% EtOAc:Hexanes; UV, KMnO₄); **HRMS** *m*/*z* (DART): calcd for C₁₈H₂₃N₂O (M+NH₄) 283.1805; found 283.1809; **IR (neat):** 3411, 3026, 2928, 2861, 2240, 1126, 1603, 1495, 1452, 1029, 699 cm⁻¹.

2-(4-acetylphenyl)-5-phenylpentanenitrile (**3h**) was prepared according to **general procedure 1**, and was purified by column chromatography on silica gel (very slow gradient 0–20% EtOAc/Hexanes) to afford 29 mg (53% yield) of the desired product as a clear oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.98–7.94 (m, 2H), 7.42–7.38 (m, 2H), 7.30–7.25 (m, 2H), 7.21–7.18 (m, 1H), 7.15–7.12 (m, 2H), 3.85 (dd, *J* = 8.4, 6.0 Hz, 1H), 2.66 (t, *J* = 7.4 Hz, 2H), 2.60 (s, 3H), 2.01–1.75 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 197.3, 140.9, 140.8, 136.8, 129.1, 128.5, 128.3, 127.5, 126.2, 120.0, 37.2, 35.0, 35.0, 28.5, 26.7 ppm; **R**_f: 0.30

(20% EtOAc/Hexanes; UV, KMnO₄); **HRMS** *m*/*z* (DART): calcd for C₁₉H₂₀NO (M+H) 278.1539; found 278.1549; **IR (neat):** 3027, 2927, 2861, 2242, 1736, 1682, 1607, 1358, 1266, 699 cm⁻¹.

2-(3-(5-ethoxypyrimidin-2-yl)phenyl)-5-phenylpentanenitrile (**3i**) was prepared according to **general procedure 1**, and was purified by column chromatography on silica gel (slow gradient 0– 20% EtOAc/Hexanes) to afford 66 mg (92% yield) of the desired product as a clear oil which solidified over time to a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 8.46 (s, 2H), 8.33–8.30 (m, 2H), 7.48 (tt, *J* = 7.7, 0.6 Hz, 1H), 7.41–7.38 (m, 1H), 7.29–7.24 (m, 2H), 7.20–7.14 (m, 3H), 4.19 (q, *J* = 6.9 Hz, 2H), 3.88 (dd, *J* = 8.5, 6.1 Hz, 1H), 2.67 (t, *J* = 7.5 Hz, 2H), 2.07–1.75 (m, 4H), 1.49 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 156.8, 151.6, 143.8, 141.2, 138.3, 136.2, 129.4, 128.4, 128.4, 127.2, 126.4, 126.0, 120.7, 64.6, 37.4, 35.3, 35.1, 28.7, 14.7 ppm; **R**_f: 0.4 (20% EtOAc/Hexanes; UV, KMnO₄); **HRMS** *m/z* (DART): calcd for C₂₃H₂₄N₃O (M+H) 358.1914; found 358.1912; **IR (neat):** 3026, 2978, 2918, 2850, 2237, 1746, 1547, 1431, 1275, 698 cm⁻¹; **Melting Point:** 79–80 °C.

2-(benzo[*b*]thiophen-5-yl)-5-phenylpentanenitrile (**3**j) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (very slow gradient 0–20% EtOAc/hexanes) to afford a mixture of desired product and reduced NHP **5** which was removed by heating the sample at 120 °C under high vacuum (1 mbar) for 20 minutes to afford 41 mg (70% yield) of the desired product as a clear oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.87 (dt, J = 8.3, 0.8 Hz, 1H), 7.78 (d, J = 1.7 Hz, 1H), 7.50 (dd, J = 5.5, 0.5 Hz, 1H), 7.33 (dd, J = 5.5, 0.8 Hz, 1H), 7.30–7.24 (m, 3H), 7.22–7.18 (m, 1H), 7.17–7.13 (m, 2H), 3.91 (dd, J = 8.3, 6.3 Hz, 1H), 2.67 (t, J = 7.5 Hz, 2H), 2.07–1.77 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 141.1, 140.0, 139.4, 131.9, 128.5, 128.4, 127.8, 126.1, 123.7, 123.3, 123.2, 122.3, 120.9, 37.3, 35.5, 35.1, 28.6 ppm; **R**_f: 0.53 (20 EtOAc/Hexanes; UV, KMnO₄); HRMS *m*/*z* (DART): calcd for C₁₉H₂₁N₂S (M+NH₄) 309.1420; found 309.1418; **IR (neat):** 3026, 2926, 2859, 2239, 1602, 1453, 1422, 748, 697 cm⁻¹.

4-(1-cyano-2-methylpropyl)phenyl 4-methylbenzenesulfonate (**3k**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (very slow gradient 0–20% EtOAc/hexanes) to afford 36 mg (54% yield) of the desired product as a clear oil. Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.68 (d, *J* = 8.4 Hz, 2H), 7.32–7.29 (m, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.00–6.96 (m, 2H), 3.63 (d, *J* = 6.2 Hz, 1H), 2.44 (s, 3H), 2.12–2.03 (m, 1H), 1.02 (d, *J* = 6.7 Hz, 3H), 0.98 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 149.3, 145.7, 134.0, 132.2, 129.9, 129.2, 128.6, 122.9, 199.5, 44.5, 33.8, 21.8, 20.8, 18.7 ppm; **R**_f: 0.33 (20% EtOAc/hexanes; UV, KMnO₄); HRMS *m/z* (DART): calcd for C₁₈H₂₃N₂O₃S (M+NH₄) 347.1424; found 347.1430; **IR (neat):** 3021, 2968, 2248, 1597, 1503, 1373, 1178, 1156, 749 cm⁻¹.

N-(4-(1-cyano-2-methylpropyl)phenyl)-*N*-methylbenzamide (**3**I) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (very slow gradient 0–30% EtOAc/Hexanes) to afford 42 mg (72% yield) of the desired product as a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.29–7.23 (m, 3H), 7.19–7.12 (m, 4H), 7.06–7.02 (m, 2H), 3.58 (d, *J* = 6.3 Hz, 1H), 3.50 (s, 3H), 2.05 (m, 1H), 1.00 (d, *J* = 6.7 Hz, 3H), 0.97 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 170.8, 144.8, 135.8, 133.2, 130.0, 128.9, 128.7, 127.9, 127.4, 119.6, 44.7, 38.5, 33.9, 20.8, 18.8 ppm; **R**_f: 0.12 (20% EtOAc/Hexanes; UV, KMnO₄); HRMS *m*/*z* (DART): calcd for C₁₉H₂₁N₂O (M+H) 293.16484; found 293.16528; **IR (neat)**: 2965, 2880, 2238, 1640, 1608, 1577, 1511, 1361, 1104, 704 cm⁻¹; **Melting Point:** 60–65 °C.

2-(4-(benzyloxy)phenyl)-3-methylbutanenitrile (**3m**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0– 20% EtOAc/Hexanes) to afford 34 mg (65% yield) of the desired product as a clear oil. Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.45–7.42 (m, 2H), 7.41–7.38 (m, 2H), 7.34–7.32 (m, 1H), 7.23–7.20 (m, 2H), 6.99–6.95 (m, 2H), 5.07 (s, 2H), 3.60 (d, *J* = 6.4 Hz, 1H), 2.09 (m, 1H), 1.04 (d, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 158.5, 136.7, 129.0, 128.6, 128.1, 127.5, 127.2, 120.1, 115.1, 70.1, 44.4, 33.8, 20.7, 18.9 ppm; **R***f*: 0.58 (20% EtOAc/Hexanes; UV, KMnO₄); HRMS *m/z* (DART): calcd for C₁₈H₂₀NO (M+H) 266.1539; found 266.1535; **IR (neat):** 2965, 2231, 1609, 1512, 1240, 1014, 748 cm⁻¹.

2-(3-chlorophenyl)-3-methylbutanenitrile (**3n**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (gradient 0–15% EtOAc/hexanes) to afford 19 mg (49% yield) of the desired product as a yellow oil. Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.32–7.30 (m, 3H), 7.22–7.18 (m, 1H), 3.64 (d, *J* = 6.2 Hz, 1H), 2.17–2.07 (m, 1H), 1.07 (d, *J* = 6.8 Hz, 3H), 1.03 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 136.9, 134.8, 130.1, 128.3, 128.0, 126.0, 119.2, 44.8, 33.8, 20.8, 18.7 ppm; **R**_f: 0.43 (10% EtOAc/Hexanes; KMnO₄); **HRMS** *m/z* (DART): calcd for C₁₁H₁₃NCl (M+H) 194.0731; found 194.0734; **IR (neat):** 2964, 2921, 2850, 2249, 1597, 1575, 1466, 1430 cm⁻¹.

2-(4-(dibenzylamino)phenyl)-3-methylbutanenitrile (**3o**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (gradient 0–75% PhMe/Hexanes) to afford 39 mg (55% yield) of the desired product as a yellow oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.36–7.32 (m, 4H), 7.29–7.22 (m, 6H), 7.09– 7.05 (m, 2H), 6.74–6.70 (m, 2H), 4.66 (s, 4H), 3.52 (d, *J* = 6.4 Hz, 1H), 2.01–1.99 (m, 1H), 1.04 (d, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.5 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 148.9, 138.4, 128.9, 128.8, 127.1, 126.7, 122.7, 120.6, 112.5, 54.4, 44.3, 33.8, 20.8, 19.1 ppm; **R**_f: 0.12 (40% PhMe/Hexanes; UV, KMnO₄); HRMS *m/z* (DART): calcd for C₂₅H₂₇N₂ (M+H) 355.2169; found 355.2165; **IR (neat):** 3028, 2963, 2929, 2871, 2236, 1614, 1519, 1451, 1358, 1230 cm⁻¹

ethyl 3-(1-cyano-2-methylpropyl)benzoate (**3p**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0–25% EtOAc/Hexanes) to afford 16 mg (34% yield) of the desired product as a clear oil.

Analytical data: ¹**H NMR** (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 8.01 (ddd, *J* = 7.7, 1.4, 1.4 Hz, 1H), 7.96–7.94 (m, 1H), 7.53 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.46 (tt, *J* = 7.8, 1.2 Hz, 1H), 4.43–4.34 (m, 2H), 3.72 (d, *J* = 6.3 Hz, 1H), 2.19–2.13 (m, 1H), 1.43–1.39 (m, 3H), 1.07 (dd, *J* = 6.7, 1.5 Hz, 3H), 1.04 (dd, *J* = 6.7, 1.6 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 166.1, 135.5, 132.3, 131.4, 129.4, 129.1, 129.0, 119.5, 61.4, 45.1, 33.9, 20.9, 18.9, 14.5 ppm; **R**_f: 0.33 (10% EtOAc:Hexanes; UV, KMnO₄); **HRMS** *m*/*z* (DART): calcd for C₁₄H₂₁N₂O₂ (M+NH₄) 249.1598; found 249.1598; **IR (neat):** 2966, 2932, 2239, 1716, 1282, 1188, 1106, 1022, 747 cm⁻¹

2-(4-methoxyphenyl)-3-methylbutanenitrile (**3q**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0–10% EtOAc/Hexanes) to afford 27 mg (72% yield) of the desired product as a clear oil.

Analytical data is consistent with that reported in the literature⁶: ¹**H NMR** (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.21 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 3.81 (s, 3H), 3.60 (J = 6.4 Hz, 1H), 2.13–2.02 (m, 1H), 1.04–1.02 (m, 6H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 159.4, 129.1, 127.1, 120.3, 114.3, 55.5, 44.5, 34.0, 20.8, 19.0 ppm; **R**_f: 0.43 (10% EtOAc/Hexanes; UV, KMnO₄) **IR (neat)**: 2964, 2933, 2838, 2237, 1612, 1512, 1464, 1249, 1180, 1033, 833 cm⁻¹;

2-(benzo[*b*]thiophen-5-yl)-3-methylbutanenitrile (**3r**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (very slow gradient 0–20% EtOAc/hexanes) to afford 24 mg (55% yield) of the desired product as a clear oil. Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.88 (ddd, *J* = 8.3, 0.8, 0.8 Hz, 1H), 7.79 (d, *J* = 1.6 Hz, 1H), 7.50 (dd, *J* = 5.4, 0.5 Hz, 1H), 7.34 (dd, *J* = 5.4, 0.8 Hz, 1H), 7.27–7.24 (m, 1H), 3.79 (d, *J* = 6.3 Hz, 1H), 2.24–2.14 (m, 1H), 1.08 (d, *J* = 6.8 Hz, 3H), 1.06 (d, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 140.0, 139.4, 131.3, 127.8, 124.0, 123.9, 123.0, 120.2, 45.3, 34.1, 21.0, 19.0 ppm; **R**_f: 0.63 (20% EtOAc/hexanes; UV, KMnO₄); HRMS *m/z* (DART): calcd for C₁₃H₁₇N₂S (M+NH₄) 233.1107; found 233.1106; **IR (neat):** 3018, 2964, 2928, 2238, 1464, 1439, 1215, 1051, 752 cm⁻¹

benzyl ((S)-1-(4-(4-((R)-1-cyano-4-phenylbutyl)phenyl)-1H-imidazol-2yl)ethyl)(cyclohexyl)carbamate (**3s**) was prepared according to**general procedure 1**. The mixturewas purified by column chromatography on silica gel (1st: gradient 0–40% EtOAc/hexanes. 2nd:gradient -0–40% EtOAc/hexanes) to afford 32 mg (29% yield) of the desired product as a brownsolid. The compound exists as a complex mixture of rotamers.Analytical data:

¹H NMR (600 MHz, dmso-*d6*, 333 K) $\delta_{\rm H}$ 12.07–11.70 (m, 1H), 7.78–7.12 (m, 15H), 5.23–4.94 (m, 3H), 4.22–4.15 (m 1H), 3.52–3.28 (m, 1H), 2.62 (t, *J* = 7.6 Hz, 2H), 1.95–1.79 (m, 3H), 1.78–1.65 (m, 4H), 1.64–1.42 (m, 7H), 1.29–1.19 (m, 1H), 1.12–0.92 (m, 2H). ¹³C NMR (125 MHz, dmso-*d6*, 298 K) $\delta_{\rm C}$ 168.1, 155.0, 154.3, 148.5, 148.0, 145.2, 141.5, 138.8, 136.9, 134.7, 134.3, 133.5, 132.7, 131.7, 130.5, 130.0, 129.9 128.3, 128.2, 127.7, 127.4, 126.0, 125.8, 125.2, 124.7, 124.2, 122.4, 121.5, 121.4, 113.2, 91.3, 65.9, 55.8, 55.2, 48.7, 48.2, 35.3, 34.3, 31.5, 30.5, 29.6, 28.5, 25.9, 25.0, 18.1, 17.3; **R**_f: 0.55 (40% EtOAc/Hexanes; UV, KMnO₄); **HRMS** *m/z* (DART): calcd for C₁₃H₁₇N₂S (M+H) 561.3224; found 561.3218; **IR (neat):** 3294, 2930, 2855, 2245, 1668, 1451, 1293, 1245, 1153, 697 cm⁻¹; **Melting Point:** 62–65 °C.

(2R,5S)-2-((R)-(4-bromophenyl))((trimethylsilyl)oxy)methyl)-5-((*tert*-butyldimethylsilyl)oxy)-N-(4-(1-cyano-2-methylpropyl)phenyl)-5-(4-fluorophenyl)pentanamide (**3t**): An 8 mL threaded culture tube was equipped with a stir bar, fit with a size 19 rubber septum, flame dried under vacuum, and cooled under N₂. NHP ester (109 mg, 0.400 mmol, 2.00 equiv), (2R,5S)-2-((R)-(4-bromophenyl)(hydroxy)methyl)-5-((*tert*-butyldimethylsilyl)oxy)-5-(4-fluorophenyl)-N-(4-

iodophenyl)pentanamide (143 mg, 0.200 mmol, 1.00 equiv), Zn dust (0.10 g, 1.6 mmol, 8.0 equiv), and NiCl₂bpy (5.8 mg, 0.020 mmol, 0.10 equiv) was added on the bench top. The tube was sealed with a septum and electrical tape and evacuated and backfilled with N₂ (x3). A solution of TMSCl (0.10 mL, 0.80 mmol, 4.0 equiv) in DMA (1.0 mL, 0.2 M) was then added to the tube containing the solids in one portion and the mixture was stirred vigorously at room temperature (23–25 °C). After 60 min, the reaction was exposed to air, diluted with EtOAc, quenched with sat. NH₄Cl, and extracted with EtOAc (x2). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (slow gradient 0–20% EtOAc) to afford the desired product (44 mg, 30% yield) as a clear solid (1:1 ratio of diastereomers as determined by ¹H NMR).

Analytical data: ¹**H NMR** (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.55 (d, *J* = 11.8 Hz, 1H), 7.37–7.33 (m, 2H), 7.29–7.26 (m, 2H), 7.22–7.18 (m, 2H), 7.17–7.11 (m, 4H), 6.97–6.91 (m, 2H), 4.78 (d, *J* = 6.9 Hz,

1H), 4.61 (dd, J = 8.0, 4.2 Hz, 1H), 3.60–3.57 (m, 1H), 2.43 (dddt, J = 8.6, 5.4, 3.6, 1.8 Hz, 1H), 2.09–2.05 (m, 1H), 1.96–1.88 (m, 1H), 1.74–1.56 (m, 3H), 1.04–0.98 (m, 6H), 0.87 (s, 9H), 0.01 (m, 12H), -0.18 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 171.2, 171.2, 161.9 (d, $J_{CF} = 244$ Hz), 141.6 (d, $J_{CF} = 4.8$ Hz), 141.5, 141.5, 141.4, 141.4, 137.4, 137.4, 134.3, 131.4, 130.6, 128.5, 128.2, 127.4, 127.4 (d, $J_{CF} = 7.9$ Hz), 121.6, 121.6, 120.2, 120.1, 119.9, 115.0 (d, $J_{CF} = 21.3$ Hz), 75.8, 75.8, 74.8, 57.4, 57.4, 44.6, 39.0, 33.8, 29.8, 26.0, 25.3, 25.3, 20.8, 20.8, 18.9, 18.3, 0.1, -4.5, -4.8 ppm; **R**_f: 0.55 (20% EtOAc/hexanes; KMnO₄, UV); **HRMS** *m*/*z* (ESI): calcd for C₃₈H₅₂ BrFN₂NaO₃Si₂ (M+Na) 761.2576; found 761.2582; **IR (neat):** 3337, 2930, 2856, 2245, 1663, 1603, 1513, 1251 cm⁻¹; **Melting Point:** 60–61 °C.

N-(*tert*-butyl)-4'-((6-(1-cyano-2-methylpropyl)-4-oxo-2-propylquinazolin-3(4*H*)-yl)methyl)-[1,1'biphenyl]-2-sulfonamide (**3u**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (gradient 0–50% EtOAc/hexanes) to afford 68 mg (60% yield) of the desired product as a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 8.20 (d, *J* = 1.9 Hz, 1H), 8.16 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.76–7.69 (m, 2H), 7.55 (td, *J* = 7.5, 1.4 Hz, 1H), 7.51–7.46 (m, 3H), 7.29–7.26 (m, 3H), 5.46 (s, 2H), 3.80 (d, *J* = 6.4 Hz, 1H), 3.50 (br s, 1H), 2.77–2.73 (m, 2H), 2.22 (m, 1H), 1.91–1.81 (m, 2H), 1.08 (d, *J* = 6.7 Hz, 6H), 1.04 (t, *J* = 7.4 Hz, 3H), 0.98 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 162.3, 157.6, 147.2, 142.2, 139.3, 139.2, 136.4, 133.9, 133.6, 132.4, 132.0, 130.6, 128.4, 128.1, 126.5, 126.4, 120.6, 119.5, 54.6, 46.5, 45.0, 37.3, 34.1, 29.9, 20.9, 20.7, 19.1, 14.0 ppm; **R**_f: 0.57 (50 EtOAc/hexanes; KMnO₄, UV); **HRMS** *m/z* (DART): calcd for C₃₃H₃₉N₄O₃S (M+H) 571.2737; found 571.2730; **IR (neat):** 3294, 2970, 2944, 2880, 2245, 1674, 1598, 1467, 1307, 1147, 776 cm⁻¹; **Melting Point:** 205–206 °C.

2-(4-bromophenyl)-4-phenylbutanenitrile (3v) was prepared according to **general procedure 1**. The mixture as purified by column chromatography on silica gel (slow gradient 0–10% EtOAc/Hexanes) to afford 29 mg (48% yield) of the desired product as a clear oil.

Analytical data: ¹H NMR (500 MHz CDCl₃, 298 K): $\delta_{\rm H}$ 7.59–7.56 (m, 2H), 7.40–7.36 (m, 2H), 7.33–7.28 (m, 1H), 7.27–7.24 (m, 4H), 3.77 (dd, *J* = 9.0, 6.0 Hz, 1H), 2.92–2.82 (m, 2H), 2.39–2.27 (m, 1H), 2.25–2.16 (m, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 139.5, 134.6, 132.3, 129.0, 128.7, 128.4, 126.6, 122.2, 120.1, 37.2, 36.0, 32.9 ppm; **R**_f: 0.45 (10% EtOAc/Hexanes; KMnO₄);

HRMS *m*/*z* (DART): calcd for C₁₆H₁₈N₂Br (M+NH₄) 317.0648; found 317.0655; **IR (neat):** 3092, 3069, 2927, 2861, 2239, 1486, 1454, 1070, 1010 cm⁻¹.

4-(1-cyanobut-3-en-1-yl)phenyl pivalate (**3w**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0–10% EtOAc/Hexanes) to afford 30 mg (57% yield) of the desired product as a clear oil.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.36–7.33 (m, 2H), 7.10–7.07 (m, 2H), 5.79 (ddt, *J* = 17.0, 9.8, 7.0 Hz, 1H), 5.22–5.19 (m, 1H), 5.19–5.16 (m, 1H), 3.86 (dd, *J* = 8.0, 6.4 Hz, 1H), 2.68–2.57 (m, 2H), 1.36 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 177.1, 151.0, 132.6, 132.5, 128.5, 122.3, 120.2, 119.7, 40.0, 39.3, 37.1, 27.2 ppm; **R**_f: 0.3 (10% EtOAc/Hexanes; KMnO₄); **HRMS** *m*/*z* (DART): calcd for C₁₆H₂₀NO₂ (M+H) 258.1489; found 258.1509; **IR (neat)**: 2977, 2928, 2242, 1749, 1508, 1203, 1108, 894 cm⁻¹.

2-(benzo[*b*]thiophen-5-yl)-3-(1*H*-indol-3-yl)propanenitrile (**3x**) was prepared according to **general procedure 1**. The mixture was purified by successive rounds of column chromatography on silica gel (1st: slow gradient 0–30% EtOAc/Hexanes; 2nd: slow gradient 80–100% PhMe/Hexanes) to afford 36 mg (60% yield) of the desired product as a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 8.05 (br s, 1H), 7.87 (dt, *J* = 8.3, 0.8 Hz, 1H), 7.80 (d, *J* = 1.8 Hz, 1H), 7.54 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.50 (d, *J* = 5.4, Hz, 1H), 7.39 (ddd, *J* = 8.1, 0.9, 0.9 Hz, 1H), 7.32 (dd, *J* = 5.5, 0.8 Hz, 1H), 7.29 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.22 (ddd, *J* = 8.2, 7.0, 1.0 Hz, 1H), 7.15 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 4.24 (dd, *J* = 8.7, 6.1 Hz, 1H), 3.46 (ddd, *J* = 14.5, 8.5, 0.7 Hz, 1H), 3.37 (ddd, *J* = 14.5, 6.2, 0.8 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 140.0, 139.5, 136.2, 132.1, 127.7, 126.9, 123.7, 123.5, 123.3, 123.1, 122.5, 122.4, 121.3, 119.8, 118.2, 111.4, 111.0, 39.1, 32.8 ppm; **R**_f: 0.23 (PhMe; UV KMnO₄); **HRMS** *m/z* (DART): calcd for C₁₉H₁₄N₂S (M+H) 303.0951; found 303.0950; **IR (neat):** 3336, 3058, 2922, 2850, 2246, 1437, 1263, 1235, 736 cm⁻¹; **Melting Point:** 135–138 °C.

4-(cyano(cyclohexyl)methyl)benzenesulfonamide (**3y**) was prepared according to **general procedure 1**. The mixture was purified by successive rounds of column chromatography on silica gel (1st: gradient 0–40% EtOAc/Hexanes; 2nd: slow gradient 20–40% EtOAc/Hexanes) to afford 44 mg (79% yield) of the desired product as a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.93 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 5.20 (s, 2H), 3.73 (d, J = 6.3 Hz, 1H), 1.81–1.73 (m, 5H), 1.69–1.64 (m, 2H), 1.26–1.11 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 141.9, 139.9, 128.4, 127.1, 119.3, 44.2, 42.9, 31.3, 29.5, 25.9, 25.8, 25.8 ppm; **R**_f: 0.27 (40 EtOAc/Hexanes; UV, KMnO₄); **HRMS** *m/z* (DART): calcd for C₁₄H₁₉N₂O₂S (M+H) 279.1162; found 279.1164; **IR (neat):** 3338, 3251, 2929, 2857, 2238, 1599, 1557, 1458, 1322, 1152, 708 cm⁻¹; **Melting Point:** 128–132 °C.

2-(4-acetylphenyl)-3-cyclopropylbutanenitrile (**3z**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (gradient 0–20% EtOAc/hexanes) to afford 30 mg (65% yield) of the desired product as a yellow oil as an inseparable mixture of diastereomers (4:1 by ¹H NMR; H_M proton signal for major diastereomer, H_m proton signal for minor diastereomer)

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) δ_{H} 7.96 (d, *J* = 8.3 Hz, 2H_M, 2H_M), 7.45 (d, *J* = 8.4 Hz, 2H_m), 7.41 (d, *J* = 8.4 Hz, 2H_M), 4.06 (d, *J* = 4.9 Hz, 1H_M), 3.91 (d, *J* = 5.6 Hz, 1H_m), 2.62 (s, 3H_m), 2.61 (s, 3H_M), 1.36–1.31 (m, 1H_m), 1.22–1.14 (m, 1H_M), 1.11 (d, *J* = 6.8 Hz, 3H_m), 1.05 (d, *J* = 6.7 Hz, 3H_M), 0.9–0.8 (m, 1H_m, 1H_M), 0.60–0.50 (m, 2H_m, 2H_M), 0.20–0.11 (m, 2H_m, 2H_M) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) δ_{C} 197.3, 139.9, 136.7, 128.8, 128.1, 119.1, 44.8, 44.1, 44.0, 43.8, 26.6, 17.9, 16.4, 15.8, 14.8, 5.4, 5.0, 4.3, 3.2 ppm; **R**_f: (0.48 20% EtOAc/hexanes; KMnO₄, UV); HRMS *m/z* (DART): calcd for C₁₅H₁₈NO (M+H) 228.1383; found 228.1380; **IR (neat):** 3181, 3060, 2239, 1772, 1724, 1683, 1605, 1267, 712 cm⁻¹.

Figure S11: Less tolerated substrates:

2-(2-methoxyphenyl)-5-phenylpentanenitrile (**S5**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (very slow gradient 0–15% EtOAc/Hexanes) to afford a mixture of desired product and reduced NHP **5** which was removed by heating the sample at 120 °C under high vacuum (1 mbar) for 20 minutes to afford 14 mg (27% yield) of the desired product as a clear oil.

Analytical Data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.38 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.31–7.26 (m, 3H), 7.21–7.14 (m, 3H), 6.97 (td, *J* = 7.5, 1.1 Hz, 1H), 6.88 (dd, *J* = 8.3, 1.1 Hz, 1H), 4.22–4.18 (m, 1H), 3.83 (s, 3H), 2.65 (ddd, *J* = 8.0, 6.6, 2.3 Hz, 2H), 1.94–1.73 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 156.0, 141.4, 129.3, 128.4, 128.4, 128.3, 125.9, 124.2, 121.2, 120.9, 110.8, 55.4, 35.1, 33.1, 31.2, 28.7 ppm; **R**_f: 0.63 (10% EtOAc/Hexanes; UV, KMnO₄); **IR (neat):** 3026, 2935, 2860, 2240, 1600, 1493, 1454, 1438, 1247, 1026, 750, 699 cm⁻¹.

2-(1-cyano-4-phenylbutyl)benzonitrile (**S6**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0-25% EtOAc/Hexanes) to afford 9 mg (17% yield) of the desired product as a clear oil.

Analytical Data: ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.69 (dt, J = 7.7, 1.1 Hz, 1H), 7.67–7.64 (m, 2H), 7.46 (ddd, J = 7.7, 5.3, 3.4 Hz, 1H), 7.30–7.26 (m, 2H), 7.22–7.18 (m, 1H), 7.18–7.15 (m, 2H), 4.27–4.23 (m, 1H), 2.75–2.64 (m, 2H), 2.03–2.81 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 140.9, 139.6, 133.9, 133.5, 128.9, 128.7, 128.5, 128.4, 126.3, 119.4, 116.8, 111.8, 36.1, 35.1, 35.1, 28.7 ppm; **R**_f: 0.24 (10% EtOAc:Hexanes; UV, KMnO₄).

2-(1*H*-indol-5-yl)-5-phenylpentanenitrile (**S7**) was prepared according to **general procedure 1**. The mixture was purified by successive rounds of column chromatography on silica gel (1st: slow gradient 0–30% EtOAc/Hexanes; 2nd: 100% PhMe) to afford 19 mg (35% yield) of the desired product as a clear oil.

Analytical Data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ_{H} 8.27 (br s, 1H), 7.59 (dd, J = 1.7, 0.8 Hz, 1H), 7.38 (dt, J = 8.4, 0.9 Hz, 1H), 7.31–7.26 (m, 2H), 7.24 (dd, J = 3.2, 2.4 Hz, 1H), 7.22–7.18 (m, 1H), 7.17–7.15 (m, 2H), 7.10 (dd, J = 8.4, 1.8 Hz, 1H), 6.55 (ddd, J = 3.1, 2.0, 0.9 Hz, 1H), 3.87 (dd, J = 8.3, 6.4 Hz, 1H), 2.66 (t, J = 7.5 Hz, 2H), 2.06–1.75 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) δ_{C} 141.4, 135.3, 128.4, 128.4, 128.2, 127.1, 126.0, 125.3, 121.7, 121.1, 119.5, 111.7, 102.6, 37.4, 35.8, 35.2, 28.7 ppm; **R**_f: 0.26 (100% PhMe; UV, KMnO₄); **IR (neat):** 3425, 3019, 2245, 1496, 1454, 1343, 1215, 747 cm⁻¹.

S8

2-(3-chlorophenyl)-4-phenylbutanenitrile (**S8**) was prepared according to **general procedure 1**. The mixture was purified by column chromatography on silica gel (slow gradient 0-10% EtOAc/Hexanes) to afford 28 mg (55% yield) of the desired product as a clear oil.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.30–7.24 (m, 5H), 7.22–7.12 (m, 4H), 3.66 (dd, *J* = 9.2, 6.0 Hz, 1H), 2.85–2.70 (m, 2H), 2.27–2.03 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 139.4, 137.5, 135.0, 130.4, 128.7, 128.4, 128.4, 127.5, 126.6, 125.4, 119.9, 37.2, 36.2, 32.9 ppm; **R**_f: 0.58 (10% EtOAc/Hexanes; KMnO₄).

F. Preparation of NHP Ester Starting Materials

Figure S12: Preparation of 1a and 1c

ethyl 2-cyano-5-phenylpentanoate (**S9**): Ethylcyanoacetate (31.9 mL, 300 mmol, 3.00 equiv) was added to a suspension of K_2CO_3 (24.9 g, 180 mmol, 1.80 equiv) in acetonitrile (200 mL) followed by 1-bromo-3-phenylpropane (7.6 mL, 50 mmol, 0.5 equiv). After near complete consumption of the alkyl bromide (determined by ¹H NMR, approx. 3 days), another portion of 1-bromo-3-phenylpropane (7.6 mL, 50 mmol, 0.5 equiv) was added. Upon complete consumption of the alkyl bromide (approx. 3 days), the reaction mixture was poured in 1M HCl, and extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The excess ethylcyanoacetate was distilled off at 120 °C at a pressure of 1 mbar before the material was further purified by column chromatography on silica gel (slow gradient 0–20% EtOAc in hexanes) to afford 21 g (92% yield) of **S9** as a clear oil which was contaminated with approx. 7% of the byproduct resulting from double alkylation.

Analytical data consistent with that reported in the literature:⁷ ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.32–7.16 (m, 5H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.49 (m, 1H), 2.69 (t, *J* = 7.4 Hz, 2H), 1.97 (m, 2H), 1.86 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 166.2, 140.9, 128.7, 128.5, 126.3, 116.6, 62.9, 37.6, 35.1, 29.4, 28.5, 14.1 ppm.

2-cyano-5-phenylpentanoic acid (4): **S9** (12.9 g, 55.7 mmol, 1.00 equiv) was dissolved in MeOH (55 mL) and water (55 mL) and cooled to 0 °C. LiOH (2.93 g, 112 mmol, 2.20 equiv) was added in one portion and the mixture was warmed slowly to room temperature. Upon completion (as determined by TLC, approx. 1 hr), the reaction mixture was quenched with 1M HCl, and extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure to yield 9.7 g (86% yield) of **S10** as white solid which was of sufficient purity for use in the next step.

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ_{H} 8.79 (br s, 1H), 7.38–7.18 (m, 5H), 3.61 (dd, *J* = 7.2, 6.4 Hz, 1H), 2.74 (t, *J* = 7.4 Hz, 2H), 2.06–1.81 (m, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ_{C} 171.3, 140.7, 128.7, 128.5, 126.4, 115.8, 37.5, 35.0, 29.4, 28.4 ppm; **IR (neat):** 2934, 2888, 2539, 2253, 1717, 1600, 1494, 1454, 1421, 1282, 1243, 748, 697 cm⁻¹.

General Procedure 2: Synthesis of N-hydroxyphthalimide esters

1,3-dioxoisoindolin-2-yl 2-cyano-5-phenylpentanoate (1a): 4 (5.0 g, 25 mmol, 1.0 equiv) was dissolved in DCM (30 mL), and (COCl)₂ (2.5 mL, 30 mmol, 1.2 equiv) was added dropwise. 2-4 drops of DMF were then added and the mixture was left to stir at room temperature for 2 hours. Once bubbling had ceased (approx. 2 hr), the reaction mixture was then concentrated under reduced pressure, and the yellow oily residue was dissolved in THF (30 mL) and cooled to 0 °C. N-hydroxyphthalimide (4.4 g, 27 mmol, 1.1 equiv), and DMAP⁸ (0.31 g, 2.5 mmol, 0.10 equiv) were added, followed by dropwise addition of NEt₃ (3.8 mL, 27 mmol, 1.1 equiv). The reaction mixture was warmed slowly to room temperature and stirred for 2 hours before being guenched with 1M HCl and extracted with EtOAc (x2). The combined organic layers were washed with brine, dried over MgSO4, and concentrated under reduced pressure. The crude yellow solid was suspended in CHCl₃ and sonicated for 2 minutes before being passed through a plug of celite (eluting with CHCl₃) to remove excess N-hydroxyphthalimide and concentrated under reduced pressure. The crude material was then passed through a short pad of silica gel eluting with dichloromethane (200-300 mL), followed by 1.5% MeOH in DCM (100 mL)⁹ and concentrated under reduced pressure. The oily residue was then dissolved in a minimal amount of EtOAc (~15 mL) before hexanes (~500 mL) was added and stirred vigorously overnight which crashed out the desired product. The solid was then collected by filtration and dried under vacuum to afford 4.9 g (59% yield) of **1a** as a white solid. The purity of this compound can be increased by hot recrystallization using hexanes and EtOAc if desired.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) δ_{H} 7.92 (dd, J = 5.5, 3.1 Hz, 2H), 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.34–7.28 (m, 2H), 7.24–7.19 (m, 3H), 3.92 (t, J = 6.7 Hz, 1H), 2.76 (t, J = 7.4 Hz, 2H), 2.19 (dt, J = 8.9, 6.4 Hz, 2H) 2.03 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) δ_{C} 163.4, 161.2, 140.6, 135.3, 128.8, 128.8, 128.5, 126.5, 122.4, 114.4, 35.5, 35.0, 30.0, 28.1 ppm; $R_{f} = 0.9$ (2% MeOH/CH₂Cl₂; KMnO₄, UV); IR (neat): 2961, 2258, 1811, 1788, 1738, 1709, 1464, 1358, 695 cm⁻¹; Melting point: 72–75 °C.

Ethyl 2-cyano-4-phenylbutanoate (**S10**): Ethylcyanoacetate (32 mL, 0.30 mol, 3.0 equiv) was added to a suspension of K_2CO_3 (24.9 g, 180 mmol, 1.80 equiv) in acetonitrile (200 mL) followed by a dropwise addition of (2-bromoethyl)benzene (6.9 mL, 50 mmol, 0.5 equiv). After near complete consumption of the alkyl bromide (as determined by ¹H NMR, approx. 3 days), another half equivalent of (2-bromoethyl)benzene (6.9 mL, 50 mmol, 0.5 equiv)) was added. Upon complete consumption of the alkyl bromide (approx. 4 days), the reaction mixture was poured

over 1M HCl, and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The excess ethylcyanoacetate was distilled off at 120 °C at a pressure of 1 mmbar before the material was further purified by column chromatography on silica gel (slow gradient 0–20% EtOAc in hexanes) to afford 12 g (54% yield) of **S10** as a clear oil.

Analytical data: ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 5.87–5.21 (m, 1H), 5.33–5.18 (m, 2H), 4.26 (q, *J* = 7.1 2H), 3.55 (dd, *J* = 7.5, 6.1 Hz, 1H), 2.76–2.61 (m, 2H), 1.31 (t, *J* = 7.1, 3H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 165.5, 131.3, 120.0, 116.0, 62.8, 37.4, 33.8, 13.9 ppm;

1,3-dioxoisoindolin-2-yl 2-cyano-4-phenylbutanoate (1c): S10 (5.0 g, 23 mmol, 1.0 equiv) was dissolved in MeOH (23 mL) and water (23 mL), and the mixture was cooled to 0 °C. LiOH (1.2 g, 51 mmol, 2.2 equiv) was added in one portion and the mixture was warmed slowly to room temperature. Upon completion (as determined by TLC, approx. 1 hr), the reaction mixture was quenched with 1 M HCl, and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄ and concentrated under reduced pressure to afford 3.6 g (82% yield) of **S11** as a yellow solid which was used directly in the next step according to general procedure 2, using S11 (7.6 g, 40 mmol, 1.0 equiv), CH₂Cl₂ (48 mL), (COCl)₂ (4.1 mL, 48 mmol, 1.2 equiv), and DMF (3 drops) followed by THF (80 mL), N-hydroxyphthalimide (7.2 g, 44 mmol, 1.1 equiv), DMAP (0.49 g, 4.0 mmol, 0.10 equiv), and NEt₃ (6.1 mL, 44 mmol, 1.1 equiv). The crude brown solid was suspended in CHCl₃, sonicated for 2 minutes before being passed through a plug of celite (eluting with CHCl₃) to remove excess N-hydroxyphthalimide, and finally concentrated under reduced pressure. The crude material was then passed through a short pad of silica gel eluting with dichloromethane (200-300 mL), followed by 1.5% MeOH in DCM (100 mL). Error! Bookmark not defined. The material was concentrated under reduced pressure to afford 5.5 g (41% yield) of 1c as an off-white solid.

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.93–7.91 (m, 2H), 7.86–7.82 (m, 2H), 7.37–7.26 (m, 5H), 3.86 (d, *J* = 7.1 Hz, 1H), 3.04 (dt, *J* = 14.2, 7.2 Hz, 1H), 2.94 (dt, *J* = 13.8, 8.1 Hz, 1H) 2.51–2.45 (m, 2H) ppm; ¹³**C NMR (**100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 163.3, 161.0, 138.3, 135.1, 128.9, 128.6, 128.5, 127.0, 124.3, 114.1, 34.6, 32.3, 32.1 ppm; **IR (neat):** 2917, 2262, 1810, 1786, 1739, 1458, 1185, 1114, 875, 693 cm⁻¹; **Melting Point**: 100–102 °C.

Figure S13: Preparation of 1b

ethyl 2-cyano-3-methylbut-2-enoate (**S12**): Ethylcyanoacetate (5.3 mL, 50 mmol, 1.0 equiv), acetone (18 mL, 0.25 mol, 5.0 equiv), glacial acetic acid (6.3 mL), and piperidine (0.21 mL, 2.5 mmol, 0.050 equiv) were added to a round bottom flask. The flask was sealed with a rubber septum before being submerged in a pre-heated oil bath at 90 °C overnight. Upon completion, the reaction was diluted with EtOAc, and the organic layers were washed with sat. NaHCO₃ (x2), brine (x1), dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (slow gradient of 10–14% EtOAc in hexanes) to afford 4.8 g (62% yield) of **S12** which eventually solidified to a pale solid.

Analytical data consistent with that reported in the literature:¹⁰ ¹**H** NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 4.27 (q, J = 7.1 Hz, 2H), 2.40 (d, J = 0.6 Hz, 3H), 2.30 (d, J = 0.6 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 173.7, 162.0, 115.8, 105.3, 61.8, 27.5, 22.9, 14.2 ppm; **R**_f = 0.52 (20% EtOAc:Hexanes; UV, KMnO₄).

2-cyano-3-methylbutanoic acid (**S13**): A solution of **S12**(4.8 g, 31 mmol, 1.0 equiv) in EtOAc was added to a flask containing Pd/C (0.5 g, 10% w/w) and the flask was evacuated and backfilled with nitrogen 3 times before ensuring that all of the Pd/C particles were suspended in the solution by adding EtOAc down the side of the flask. 100 mL of MeOH was then added slowly down the side of the flask under a positive pressure of N₂. The flask was then evacuated and backfilled with hydrogen 3 times and hydrogen gas was bubbled through the solution until full conversion of the starting material (as determined by TLC, approx. 2 hours). The solution was then passed over celite, ensuring the filter cake was never dry, and concentrated under reduced pressure. The crude material was dissolved in MeOH (30 mL) and H₂O (30 mL). The mixture was

cooled to 0 °C and LiOH (1.6 g, 66 mmol, 2.2 equiv) was added. The reaction was allowed to warm slowly to room temperature and stirred for 2 hours before being poured into 1 M HCl and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1) and concentrated under reduced pressure to afford 3.9 g (98% over 2 steps) of **S13** as a white solid. Analytical data consistent with that reported in the literature.¹¹ ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 8.82 (br s, 1H), 3.50 (d, *J* = 5.1 Hz, 1H), 2.52–2.41 (m, 1H), 1.18 (d, *J* = 6.8 Hz, 3H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 171.3, 114.8, 45.4, 30.2, 20.9, 18.9.

1,3-dioxoisoindolin-2-yl 2-cyano-3-methylbutanoate (**1b**) was prepared according to the general procedure 1 using **S13** (3.9 g, 30 mmol, 1.0 equiv), $(COCI)_2$ (3.0 mL, 36 mmol, 1.2 equiv), DMF (2-3 drops), and DCM (40 mL), followed by THF (40 mL), N-hydroxyphthalimide (5.4 g, 33 mmol, 1.1 equiv), and NEt₃ (4.6 g, 33 mmol, 1.1 equiv) to afford 6.2 g (76% yield) of **1b** as a white solid. Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) δ_H 7.94–7.89 (m, 2H), 7.85–7.80 (m, 2H), 3.82 (d, *J* = 5.0 Hz, 1H), 2.70–2.58 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 6H) ppm; ¹³**C NMR** (101 MHz, CDCl₃, 298 K) δ_C 163.0, 161.1, 135.1, 128.6, 124.2, 113.4, 43.1, 31.1, 20.6, 18.7 ppm; **IR (neat):** 2980, 2925, 2254, 1816, 1784, 1708, 1463, 1184, 1134, 972, 693 cm⁻¹; **Melting Point**: 87–89 °C.

Figure S14. Preparation of 1d

S14

Ethyl 2-cyanopent-4-enoate (**S14**): To a flask containing sodium hydride (2.0 g, 50 mmol, 1.0 equiv) was added THF (100 mL) and the mixture was cooled to 0 °C in an ice bath. Ethylcyanoacetate (16 mL, 150 mmol, 3.0 equiv) was added dropwise and the mixture was stirred at this temperature for 30 minutes before allyl bromide (4.3 mL, 50 mmol, 1.0 equiv) was added. Upon reaction completion (as determined by TLC, approx. 5 h) the reaction was quenched with water and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (gradient 0–20% EtOAc/hexanes) to afford 5.30 g (69% yield) of **S14** as a yellow solid.

Analytical data is consistent with that reported in the literature.¹² ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 5.87–5.76 (m, 1H), 5.31–5.18 (m, 2H), 4.31–4.22 (m, 2H), 3.55 (dd, *J* = 7.5, 6.1 Hz, 1H), 2.71–2.65 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 165.5, 131.3, 120.0, 116.0, 62.8, 37.4, 33.8, 13.9 ppm.

2-Cyanopent-4-enoic acid (**S15**): **S14** (2.1 g, 14 mmol, 1.0 equiv) was dissolved in MeOH (14 mL) and water (14 mL) and cooled to 0 °C. LiOH (0.72 g, 30 mmol, 2.2 equiv) was added in one portion and the mixture was warmed slowly to room temperature. Upon reaction completion (as determined by TLC, approx. 1 hr), the reaction mixture was quenched with 1 M HCl, and extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure to afford 1.4 g (82% yield) of **S15** as a white solid. Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 5.84 (ddt, *J* = 17.0, 10.1, 7.0, 1.1 Hz, 1H), 5.39–5.19 (m, 2H), 3.66 (dd, *J* = 7.5, 6.0 Hz, 1H), 2.82–2.64 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 170.2, 130.8, 120.5, 115.3, 37.4, 33.6 ppm.

1,3-dioxoisoindolin-2-yl 2-cyanopent-4-enoate (**1d**) was prepared according to **general procedure 2** using **S15** (3.6 g, 28 mmol, 1.0 equiv), CH_2Cl_2 (35 mL), $(COCl)_2$ (3.0 mL, 35 mmol, 1.2 equiv), and DMF (3 drops) followed by THF (60 mL), N-hydroxyphthalimide (5.2 g, 32 mmol, 1.1 equiv), DMAP (0.35 g, 2.9 mmol, 0.10 equiv), and NEt₃ (4.5 mL, 32 mmol, 1.1 equiv) to afford 4.3 g (55% yield) of **1d** as a white solid.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} 7.99–7.78 (m, 4H), 5.94 (ddt, *J* = 17.1, 10.2, 7.1 Hz, 1H), 5.51–5.34 (m, 2H), 3.98 (t, *J* = 6.6 Hz, 1H), 2.98–2.83 (m, 2H) ppm.¹³C NMR (101 MHz, CDCl₃, 298 K): δ_{C} 162.6, 160.9, 135.0, 129.8, 128.5, 124.2, 121.5, 113.8, 35.5, 34.1 ppm. IR (neat): 3102, 2258, 1816, 1789, 1735, 1352, 1116, 1082, 872, 695 cm⁻¹; Melting Point: 65–66 °C.

Figure S15. Preparation of 1e

ethyl (*E*)-2-cyano-3-(1*H*-indol-3-yl)acrylate (**S16**): To a round bottom flask were added ethylcyanoacetate (2.1 mL, 20 mmol, 1.0 equiv), indole-3-carboxaldehyde (2.9 g, 20 mmol, 1.0 equiv), glacial acetic acid (2.5 mL, 8 M), and piperidine (0.10 mL, 1.0 mmol, 5.0 mol %). The flask was sealed with a rubber septum and submerged in a pre-heated oil bath at 90 °C. Upon completion, the reaction was diluted with EtOAc, and washed with sat. NaHCO₃ (x1), and brine (x1). The organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude material was purified by hot recrystallization in EtOH to afford 3.0 g (63% yield) of **S16** as a yellow solid.

Analytical data consistent with that reported in the literature.¹³ ¹**H** NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 9.32 (br s, 1H), 8.66 (dd, *J* = 3.3, 0.7 Hz, 1H), 8.63 (d, *J* = 0.6 Hz, 1H), 7.86–7.81 (m, 1H), 7.52–7.46 (m, 1H), 7.37–7.29 (m, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 163.8, 146.5, 135.6, 130.6, 127.4, 124.2, 122.6, 118.3, 118.1, 112.2, 111.3, 95.0, 62.0, 14.3 ppm;

ethyl 2-cyano-3-(1*H*-indol-3-yl)propanoate (**S17**): A solution of **S16** (2.9 g, 12 mmol, 1.0 equiv) in EtOH (36 mL) and THF (25 mL) was cooled to -40 °C before NaBH₄ (0.46 g, 12 mmol, 1.0 equiv) was added in one portion. The reaction was allowed to warm to -20 °C over the course of approximately 20 minutes before being quenched with sat. NH₄Cl and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (gradient 0–50% EtOAc/hexanes) to afford 1.6 g (56% yield) of **S17** as a yellow solid.

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 8.17 (br s, 1H), 7.59 (ddt, *J* = 7.8, 1.4, 0.7 Hz, 1H), 7.38 (J = 8.2, 1.0 Hz, 1H), 7.25–7.19 (m, 2H), 7.15 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.82 (dd, *J* = 8.3, 5.6 Hz, 1H), 3.49 (ddd, *J* = 14.6, 5.6, 0.8 Hz, 1H), 3.40 (ddd, *J* = 14.6, 8.3, 0.7 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 166.1, 136.3,

126.8, 123.5, 122.6, 120.0, 118.3, 117.0, 111.6, 110.0, 63.0, 39.4, 26.3, 14.0 ppm; **R**_f: 0.71 (50% EtOAc/Hexanes; KMnO₄, UV).

1,3-dioxoisoindolin-2-yl 2-cyano-3-(1*H*-indol-3-yl)propanoate (**1e**): **S17** (1.6 g, 6.5 mmol, 1.0 equiv) was dissolved in a 1:1 mixture of MeOH:H₂O (14 mL), and cooled to 0 °C before LiOH (0.34 g, 14 mmol, 2.2 equiv) was added. The reaction was warmed to room temperature and stirred for 1 hour before 1M HCl was added and the mixture was extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure to afford 1.3 g (91% yield) of **S18** as a red solid which was used directly in the next step according to general procedure 2 using **S18** (1.1 g, 5.0 mmol, 1.0 equiv), (COCl)₂ (0.51 mL, 6.0 mmol, 1.2 equiv), DMF (2 drops), and CH₂Cl₂ (15 mL), followed by N-hydroxyphthalimide (0.98 g, 6.0 mmol, 1.2 equiv), NEt₃ (0.84 mL, 6.0 mmol, 1.2 equiv), and THF (15 mL, 0.30 M). The crude material was purified by column chromatography on silica gel (2% MeOH/CH₂Cl₂) to afford 1.4 g (79% yield) of **1e** as a yellow solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 8.22 (br, s, 1H), 7.92 (dd, J = 5.5, 3.1 Hz, 2H), 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.65 (dd, J = 7.9, 1.1 Hz, 1H), 7.41 (dt, J = 8.1, 0.9 Hz, 1H), 7.36 (d, J = 2.5 Hz, 1H), 7.25 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.19 (J = 8.0, 7.0, 1.0 Hz, 1H), 4.21 (dd, J = 8.3, 5.7 Hz, 1H), 3.73 (ddd, J = 14.6, 5.7, 0.8 Hz, 1H), 3.60 (ddd, J = 14.7, 8.3, 0.7 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 163.1, 161.1, 136.2, 135.1, 128.6, 126.4, 124.3, 124.0, 122.7, 120.1, 118.0, 114.6, 111.5, 108.6, 37.1, 27.0 ppm; **R**_f: 0.81 (2% MeOH/CH₂Cl₂; KMnO₄, UV); **IR (neat)**: 3425, 3414, 2267, 1817, 1788, 1741, 1456, 1186, 1102 cm⁻¹; **Melting Point:** 135–138 °C.

Figure S16. Preparation of 1f

S19

ethyl 2-cyano-2-cyclohexylideneacetate (**S19**): To a round bottom flask were added ethylcyanoacetate (3.2 mL, 30 mmol, 1.0 equiv), cyclohexanone (3.7 mL, 36 mmol, 1.2 equiv), glacial acetic acid (4 mL, 8 M), and pyrrolidine (0.25 mL, 3 mmol, 10 mol %). The flask was sealed with a rubber septum and submerged in a pre-heated oil bath at 90 °C. Upon completion, the reaction was diluted with EtOAc, and washed with sat. NaHCO₃ (x1), and brine (x1). The organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (gradient 0–30% EtOAc/hexanes) to afford 3.6 g (62% yield) of **S19** as a clear oil.

Analytical data consistent with that reported in the literature.¹⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 4.26 (q, *J* = 7.1 Hz, 2H), 2.99–2.94 (m, 2H), 2.69–2.63 (m, 2H), 1.83–1.61 (m, 6H), 1.34 (t, *J* = 7.1 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 180.1, 162.1, 115.7, 102.2, 61.8, 37.0, 31.7, 28.7, 28.4, 25.8, 14.2 ppm; **R**_f: 0.6 (20%EtOAc/hexanes; KMnO₄, UV)

2-cyano-2-cyclohexylacetic acid (**S20**): A solution of **S19** (3.2 g, 16 mmol, 1.0 equiv) in EtOH (40 mL) and THF (15 mL) was cooled to -40 °C before NaBH₄ (0.62 g, 16 mmol, 1.0 equiv) was added in one portion. The reaction was allowed to warm to -20 °C over the course of approximately 20 minutes before sat. NH₄Cl was added and extracted with EtOAc (x3). The combined organic layers

were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude material was then dissolved in a 1:1 mixture of MeOH:H₂O (14 mL), and cooled to 0 °C before LiOH (0.85 g, 36 mmol, 2.2 equiv) was added. The reaction was warmed to room temperature and stirred for 1 hour before 1 M HCl was added and the solution was extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure to afford 2.3 g (82% yield over 2 steps) of **S20** as a white solid.

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 9.94 (br s, 1H), 3.46 (d, *J* = 5.4 Hz, 1H), 2.11–2.03 (m, 1H), 1.89–1.66 (m, 5H), 1.39–1.15 (m, 5H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 171.7, 115.2, 44.8, 38.9, 31.3, 29.4, 25.9, 25.7, 25.5 ppm;

1,3-dioxoisoindolin-2-yl 2-cyano-2-cyclohexylacetate (**1f**) was prepared according to **general procedure 2** using **S20** (2.3 g, 16 mmol, 1.0 equiv), $(COCI)_2$ (1.7 mL, 20 mmol, 1.2 equiv), DMF (3 drops), and CH₂Cl₂ (50 mL), followed by N-hydroxyphthalimide (3.2 g, 20 mmol, 1.2 equiv), NEt₃ (2.7 mL, 20 mmol, 1.2 equiv), and THF (15 mL, 0.3 M). The crude material was purified by column chromatography on silica gel (2% MeOH/CH₂Cl₂). The oily residue was then dissolved in a minimal amount of EtOAc (~2 mL) before hexanes (~100 mL) was added and stirred vigorously overnight which crashed out the desired product. The solid was then collected by filtration and dried under vacuum to afford 2.1 g (41% yield) of **1f** as a white solid.

Analytical data: ¹H NMR (500 MHz, CDCl₃, 298 K) δ_{H} 7.93–7.89 (m, 2H), 7.83 (dd, *J* = 5.5, 3.1 Hz, 2H), 3.80 (d, *J* = 5.4 Hz, 1H), 2.26 (tddd, *J* = 8.8, 7.0, 4.3, 2.6 Hz, 1H), 2.06–2.01 (m, 1H), 1.95–1.84 (m, 3H), 1.77–1.70 (m, 1H), 1.47–1.31 (m, 4H), 1.28–1.19 (m, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K) δ_{C} 162.9, 161.2, 135.1, 128.6, 124.2, 113.7, 42.3, 39.7, 30.9, 29.2, 25.8, 25.6, 25.3 ppm; **R**_f: 0.8 (1% MeOH/CH₂Cl₂; KMnO₄); **IR (neat):** 2932, 2857, 2252, 1810, 1784, 1744, 1355, 1182, 1078, 693 cm⁻¹; **Melting Point:** 85–88 °C.

Figure S17. Preparation of 1g

ethyl (*E*)-2-cyano-3-cyclopropylbut-2-enoate **S21**: Ethylcyanoacetate (2.1 mL, 20 mmol, 1.0 equiv), 1-cyclopropylethan-1-one (2.4 mL, 24 mmol, 1.2 equiv), glacial acetic acid (5 mL), and pyrrolodine (0.33 mL, 4.0 mmol, 0.20 equiv) were added to a round bottom flask. The flask was sealed with a rubber septum before being submerged in a pre-heated oil bath at 90 °C overnight. Upon completion, the reaction was diluted with EtOAc, and the organic layers were washed with sat. NaHCO₃ (x2), brine (x1), dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (slow gradient of 0–20% EtOAc in hexanes) to afford 0.9 g (25% yield) of **S21** as a white semi-solid as a mixture of E:Z isomers (1.5:1 as determined by ¹H NMR; H_M proton signal for major isomer, H_m proton signal for minor isomer).

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 4.30–4.22 (m, 2H_M, 2H_m), 3.46 (tt, *J* = 8.3, 5.1 Hz, 1H_m), 2.40 (tt, *J* = 8.1, 4.9 Hz, 1H_M), 1.95 (s, 3H_M), 1.86 (s, 3H_m), 1.36–1.31 (m, 3H_M, 3H_m) 1.17–1.11 (m, 2H_M, 2H_m), 1.02–0.97 (m, 2H_M, 2H_m) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 178.4, 162.7, 162.1, 116.5, 104.1, 103.1, 61.5, 61.4, 20.3, 17.8, 16.2, 14.1, 14.1, 14.0, 10.4, 9.3 ppm; **R**_f: 0.51 (20% EtOAc/hexanes; KMnO₄, UV).

ethyl 2-cyano-3-cyclopropylbutanoate (**S22**): A solution of **S21** (0.9 g, 5 mmol, 1 equiv) in EtOH (12 mL) and THF (4 mL) was cooled to -40 °C before NaBH₄ (0.2 g, 5 mmol, 1 equiv) was added in one portion. The reaction was allowed to warm to -20 °C over the course of approximately 20 minutes before being quenched with sat. NH₄Cl and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure to afford 0.79 g (87% yield) of the crude material (1.2:1 ratio of diastereomers as determined by ¹H NMR; H_M proton signal for major diastereomer, H_m proton signal for minor diastereomer).

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 4.33–4.21 (m, 2H_M, 2H_m), 3.62 (d, *J* = 4.8 Hz, 1H_M), 3.51 (d, *J* = 5.0 Hz, 1H_m), 1.59–1.50 (m, 1H_m), 1.47–1.39 (m, 1H_M), 1.35–1.29 (m, 3H_M, 3H_m), 1.21 (d, *J* = 6.9 Hz, 3H_m), 1.18 (d, *J* = 6.8 Hz, 3H_M), 0.90–0.79 (m, 1H_M, 1H_m), 0.65–0.50 (m, 2H_M, 2H_m), 0.28–0.10 (m, 2H_M, 2H_m) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 166.0, 165.9, 115.8, 115.7, 62.6, 62.5, 44.8, 44.5, 40.7, 40.4, 18.6, 16.5, 16.1, 14.6, 14.0, 14.0, 4.9, 4.8, 4.6, 3.1 ppm; **R***_f***:** 0.64 (20% EtOAc/hexanes; KMnO₄).

1,3-dioxoisoindolin-2-yl 2-cyano-3-cyclopropylbutanoate (**1g**): **S22** (0.77 g, 4.3 mmol, 1.0 equiv) was dissolved in a 1:1 mixture of MeOH:H₂O (10 mL), and cooled to 0 °C before LiOH (0.22 g, 9.4 mmol, 2.2 equiv) was added. The reaction was warmed to room temperature and stirred for 1 hour before 1M HCl was added and extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure to afford 0.65 g (98% yield) of **S23** as a thick clear oil which was used directly in the next step according to **general procedure 2** with **S23** (0.77 g, 4.3 mmol, 1.0 equiv), (COCl)₂ (0.43 mL, 5.0 mmol, 1.2 equiv), DMF (2 drops), and CH₂Cl₂ (15 mL), followed by N-hydroxyphthalimide (0.82 g, 5.0 mmol, 1.2 equiv), NEt₃ (0.70 mL, 5.0 mmol, 1.2 equiv), and THF (15 mL). The crude material was purified by column chromatography on silica gel (gradient 0–2% MeOH/CH₂Cl₂) and dried under high vacuum for 2 days to afford 1.1 g (87% yield) of **1g** as white solid (1.3:1 mixture of diastereomers

as determined by ¹H NMR; H_M proton signal for major diastereomer, H_m proton signal for minor diastereomer).

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.93–7.88 (m, 2H_M, 2H_m), 7.85–7.80 (m, 2H_M, 2H_m), 4.08 (d, *J* = 4.2 Hz, 1H_M), 3.94 (d, *J* = 4.7 Hz, 1H_m), 1.79–1.71 (m, 1H_m), 1.68–1.62 (m, 1H_M), 1.37 (d, *J* = 5.6 Hz, 3H_M), 1.36 (d, *J* = 5.8 Hz, 3H_m), 1.05–0.94 (m, 1H_M, 1H_m), 0.74–0.48 (m, 2H_M, 2H_m), 0.38–0.21 (m, 2H_M, 2H_m) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 163.1, 163.0, 161.3, 161.2, 135.2, 135.2, 128.8, 128.8, 124.4, 124.4, 114.0, 113.7, 42.5, 42.5, 41.9, 41.4, 18.4, 16.4, 16.3, 14.9, 5.3, 5.2, 4.9, 3.8 ppm; **R**_f: 9.9 (2% MeOH/CH₂Cl₂; KMnO₄, UV); **IR (neat):** 3015, 2971, 2922, 2269, 1814, 1779, 1739, 1608, 1467, 1184 cm⁻¹; **Melting Point:** 47 – 49 °C.

Figure S18. Preparation of Radical Clock Substrate 6

Rac-((1*R*,2*R*)-2-phenylcyclopropyl)methanol (**S24**) was prepared according to a literature procedure.¹⁵ Cinnamyl alcohol (3.4 g, 25 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (30 mL) and the mixture was cooled to 0 °C before $ZnEt_2$ (36 mL, 0.86 M solution in hexane, 31 mmol, 1.2 equiv) was added dropwise. In a separate flask, diiodomethane (4.0 mL, 50 mmol, 2.0 equiv) was dissolved in CH_2Cl_2 (100 mL) and the mixture was cooled to 0 °C before $ZnEt_2$ (36 mL, 0.86 M solution in hexane, 31 mmol, 1.2 equiv) was added dropwise. Both reaction vessels were stirred at 0 °C for 30 minutes before the contents of the reaction flask containing cinnamyl alcohol was transferred to the flask containing diiodomethane via cannula transfer. The reaction was stirred at 0 °C for 30 minutes and then allowed to warm slowly to room temperature over 16 hours. Sat. NH₄Cl was added, followed by 1 M HCl, and the mixture was extracted with CH_2Cl_2 (x2). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure to yield **S24** which contained residual inseparable cinnamyl alcohol.

Rac-((1*R*,2*R*)-2-(bromomethyl)cyclopropyl)benzene (**S25**): Crude **S24** was dissolved in ether (50 mL), and the mixture was cooled to 0 °C before PBr₃ (1.2 mL, 12.5 mmol, 0.5 equiv) was added. The reaction was left to stir overnight before H₂O was added, and the solution was extracted with ether (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure to afford **S25**. The crude residue was contaminated with cinnamyl bromide, so to facilitate purification, this crude material was dissolved in a 18:1:1 acetone:tBuOH:H₂O (130 mL combined) mixture, and OsO₄ (1.5 mL, 4.0% solution in H₂O, 0.02 equiv, 0.25 mmol) was added, followed by NMO (1.4 g, 12.3 mmol, 1.0 equiv). The reaction was left to stir overnight at room temperature before saturated Na₂S₂O₃ was added, and the mixture was extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was passed over a plug of silica gel (eluting with hexanes), to afford 0.84 g (20% yield over 3 steps) of **S25** as a clear oil.

Analytical data: ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.30–7.24 (m, 2H), 7.20–7.16 (m, 1H), 7.12–7.08 (m, 2H), 3.52 (dd, *J* = 10.2, 7.4 Hz, 1H), 3.43 (dd, *J* = 10.2, 7.8 Hz, 1H), 1.95 (ddd, *J* = 9.5, 5.7, 4.4 Hz, 1H), 1.66–1.56 (m, 1H), 1.22 (dt, *J* = 8.3, 5.5 Hz, 1H), 1.03 (dt, *J* = 8.9, 5.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 141.5, 128.5, 126.2, 126.1, 38.4, 26.4, 25.7, 18.0 ppm; **R**_f 0.8 (Hexanes; KMnO₄).

Rac-2-((1*S*,2*R*)-2-phenylcyclopropyl)acetonitrile (**S26**): **S25** (0.84 g, 4.0 mmol, 1.0 equiv) was dissolved in DMF (10 mL), and NaCN (0.24 g, 4.8 mmol, 1.2 equiv) was added(caution)¹⁶. The reaction was left to stir overnight at room temperature before sat. NaHCO₃ was added and the mixture was extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (slow gradient of 0–10% EtOAc:Hexanes) to afford 0.5 g (80% yield) of **S26** as a clear oil.

Analytical data consistent with that reported in the literature.¹⁵ ¹**H** NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.34–7.28 (m, 2H), 7.25–7.20 (m, 1H), 7.13–7.10 (m, 2H), 2.68–2.53 (m, 2H), 1.96 (ddd, *J* = 9.5, 5.5, 4.4 Hz, 1H), 1.44–1.35 (m, 1H), 1.14 (dt, *J* = 8.4, 5.6 Hz, 1H), 1.06 (dt, *J* = 9.0, 5.5 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 141.1, 128.5, 126.2, 126.0, 118.2, 22.9, 21.5, 17.6, 14.9 ppm; **R**_f: 0.3 (10% EtOAc/Hexanes; KMnO₄).

Rac-methyl 2-cyano-2-((1*R*,2*R*)-2-phenylcyclopropyl)acetate (**S27**) was prepared according to a modified literature procedure¹⁷: To a solution of **S26** (0.5 g, 3.2 mmol, 1.0 equiv) in PhMe (10 mL) was added dimethylcarbonate (0.59 mL, 7.0 mmol, 2.2 equiv) and NaH (0.28 g, 7.0 mmol, 2.2 equiv). The mixture was heated at reflux at 120 °C for 4 hours, before additional dimethylcarbonate (0.89 mL, 11 mmol, 3.3 equiv) and NaH (0.42 g, 11 mmol, 3.3 equiv) were added based on incomplete conversion (as determined by TLC). The reaction mixture was left to stir further overnight. Saturated NH₄Cl was added dropwise at 0 °C, and the mixture was extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (slow gradient of 0–40% EtOAc:Hexanes) to afford 0.42 g (61% yield) of **S27** as a yellow oil as a 1:1 mixture of diastereomers (as determined by ¹H NMR). Integrations refer to both diastereomers with overlapping signals.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.24–7.18 (m, 4H), 7.16–7.10 (m, 2H), 7.07–7.01 (m, 4H), 3.79–3.77 (m, 6H), 3.45–3.40 (m, 2H), 2.10–2.03 (m, 2H), 1.62–1.54 (m, 2H), 1.15–1.09 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 166.1, 140.2, 140.1, 128.7, 128.6, 126.6, 126.6, 126.4, 115.1, 115.1, 53.8, 53.8, 41.1, 41.0, 22.6, 21.6, 21.0, 20.7, 13.7, 13.2 ppm; **R**_f: 0.38 (20% EtOAc/Hexanes; KMnO₄).

Rac-2-cyano-2-((1*R*,2*R*)-2-phenylcyclopropyl)acetic acid (8): **S27** (1.1 g, 5.1 mmol, 1.0 equiv) was dissolved in a 1:1 mixture of MeOH:H₂O (14 mL), and cooled to 0 °C before LiOH (0.24 g, 10 mmol, 2.2 equiv) was added. The reaction was warmed to room temperature and stirred for 45 min before 1 M HCl was added and the mixture was extracted with EtOAc (x2). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure to afford 1.0 g (*quant*.) of **8** as a yellow oil as a 1:1 mixture of diastereomers (as determined by ¹H NMR). Integrations refer to both diastereomers with overlapping signals.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) δ_{H} 7.32–7.26 (m, 4H), 7.23–7.18 (m, 2H), 7.15–7.19 (m, 4H), 3.58–3.53 (m, 2H), 2.21–2.13 (m, 2H), 1.72–1.64 (m, 2H), 1.28–1.20 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) δ_{C} 170.3, 170.3, 140.0, 139.9, 128.7, 128.7, 126.7, 126.6, 126.4, 114.6, 114.5, 41.2, 41.1, 22.8, 21.7, 20.9, 20.6, 13.8, 13.2 ppm.

Rac-1,3-dioxoisoindolin-2-yl 2-cyano-2-((1*R*,2*R*)-2-phenylcyclopropyl)acetate (**6**) was prepared according to general procedure 2 using **8** (1.0 g, 5.0 mmol, 1.0 equiv), (COCl)₂ (0.51 mL, 6.0 mmol, 1.2 equiv), DMF (2 drops), and CH_2Cl_2 (15 mL, 0.30 M) followed by N-hydroxyphthalimide (0.98 g, 6.0 mmol, 1.2 equiv), NEt₃ (0.84 mL, 6.0 mmol, 1.2 equiv), and THF (15 mL, 0.3 M). The crude material was purified by column chromatography on silica gel (2% MeOH/CH₂Cl₂) to afford 0.98 g (56% yield) of **6** as a thick oil and as a 1:1 mixture of diastereomers (as determined by ¹H NMR). Integrations refer to both diastereomers with overlapping signals.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) δ_{H} 7.95–7.89 (m, 4H), 7.85–7.81 (m, 4H), 7.33–7.28 (m, 4H), 7.25–7.16 (m, 6H), 3.97 (d, *J* = 7.1 Hz, 1H), 3.89 (d, *J* = 7.5 Hz, 1H), 2.37–2.28 (m, 2H), 1.88–1.78 (m, 2H), 1.38–1.31 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) δ_{C} 162.8, 162.7, 161.1, 139.5, 139.4, 135.3, 128.8, 128.7, 128.7, 126.9, 126.8, 126.7, 113.4, 113.2, 39.0, 39.0, 23.0, 22.3, 20.8, 20.7, 13.8, 13.1 ppm; **R**_f: 0.8 (2%MeOH/CH₂Cl₂; KMnO₄); **IR (neat):** 3030, 2261, 1820, 1790, 1741, 1467, 1353, 1185, 1079, 972, 692 cm⁻¹.

Figure S19: Radical Clock Experiment:

(*E*)-5-phenylpent-2-enenitrile **7**: An 8 mL threaded culture tube was equipped with a stir bar, fit with a size 19 rubber septum, flame dried under vacuum, and cooled under N₂. **6** (0.11 g, 0.31 mmol, 1.0 equiv) and Zn (0.16 g, 2.5 mmol, 8.0 equiv) were added on the bench top. The tube was sealed with a septum and electrical tape and evacuated and backfilled with N₂ (x3). A solution of TMSCI (0.12 mL, 0.93 mmol, 3.0 equiv) in DMA (0.3.1 mL, 0.1 M) was then added to the tube in one portion and the mixture was stirred vigorously at room temperature (23–25 °C). After 60 min, the reaction was exposed to air, diluted with EtOAc, quenched with 1 M HCl, extracted with EtOAc (x2), passed directly over a short plug of silica gel, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (gradient 0– 10% EtOAc:Hex) to afford 11 mg of **7** as a slightly yellow oil as a 7:3 mixture of isomers.

Analytical data is consistent with that reported in the literature.¹⁸ H_M proton signal for major isomer (E), H_m proton signal for minor isomer (Z).

¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.33–7.14 (m, 5H_m, 5H_M), 6.72 (dt, *J* = 16.3, 7.0 Hz, 1H_M), 6.52–6.44 (m, 1H_m), 5.35–5.29 (m, 1H_m, 1H_M), 2.81–2.74 (m, 2H_m, 2H_M), 2.60–2.51 (m, 2H_m, 2H_M). ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 154.7, 153.8, 139.8, 139.8, 128.6, 128.6, 128.4, 128.3, 126.5, 126.4, 117.3, 100.5, 100.4, 39.4, 34.3, 33.9, 33.2 ppm; **R**_f: 0.22 (10% EtOAc/hexanes; KMnO₄, UV).

G. Preparation of Aryl Iodide Starting Materials

The following aryl iodides were prepared according to literature procedures: **S28**¹⁹, **S29**²⁰, **S30**²¹, **S31**.²²

5-iodobenzo[*b*]thiophene (**S32**) was prepared according to a literature procedure.²³

A round bottom flask was charged with 5-bromobenzo[*b*]thiophene (1.1 g, 5.0 mmol, 1.0 equiv), Cul (95 mg, 0.50 mmol, 10 mol %) and NaI (1.5 g, 10 mmol, 2.0 equiv), and was then evacuated and backfilled with N_2 (x3) and sealed with a rubber septum and electrical tape. Then, dimethylethylenediamine (0.11 mL, 1.0 mmol, 20 mol %) was added followed by dioxane (5 mL,

1 M) and was then submerged in a pre-heated oil bath at 110 °C overnight. Upon completion, the reaction was quenched with NH₄Cl (sat.) and extracted with CH_2Cl_2 (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude material was sonicated in hexanes for 2 minutes and collected by filtration to afford 1.2 g (91% yield) **S32** as a brown solid.

Analytical data consistent with that reported in the literature.²⁴ ¹**H NMR** (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 8.18 (dd, J = 1.6, 0.6 Hz, 1H), 7.63 (dt, J = 8.5, 0.7 Hz, 1H), 7.60 (ddd, J = 8.5, 1.6, 0.5 Hz, 1H), 7.43 (dd, J = 5.5, 0.5 Hz, 1H), 7.25 (dd, J = 5.4, 0.7 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 141.9, 139.2, 132.8, 132.6, 127.8, 124.2, 123.0 ppm.

N-(4-iodophenyl)benzamide (**S33**): 4-iodoaniline (2.2 g, 10 mmol, 1.0 equiv) was dissolved in THF (10 mL, 1 M) and the mixture was cooled to 0 °C before NEt₃ (1.7 mL, 12 mmol, 1.2 equiv) was added followed by benzoyl chloride (1.4 mL, 12 mmol, 1.2 equiv). The reaction was allowed to stir for 30 minutes before H₂O (30 mL) was added. The solid was filtered and washed with EtOAc (10 mL) to afford 2.6 g (81% yield) of **S33** as a purple solid which was used directly in the next step.

N-(4-iodophenyl)-*N*-methylbenzamide (**S34**): A round bottom flask was charged with NaH (0.18 g, 4.5 mmol, 1.5 equiv) and cooled to 0 °C before DMF (6 mL, 0.5 M) was added. **S33** (0.97 g, 3.0 mmol, 1.0 equiv) was then added in one portion and the mixture was left to stir at the same temperature for 30 minutes. Then, iodomethane (0.28 mL, 4.5 mmol, 1.5 equiv) was added dropwise and the mixture was left to stir for 1 hour. Upon completion, the reaction was quenched with NH₄Cl (sat.) and extracted with EtOAc (x3). The combined organic layers were washed with brine (x1), dried over MgSO₄, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (gradient 0–20% EtOAc/hexanes) to afford 0.87 g (87% yield) of **S34** as a white solid.

Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ 7.57–7.50 (m, 2H), 7.30–7.26 (m, 3H), 7.24–7.17 (m, 2H), 6.81–6.76 (m, 2H), 3.47 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm C}$ 170.7, 144.9, 138.4, 135.7, 130.1, 128.8, 128.8, 128.1, 91.2, 38.4 ppm; IR (neat): (neat): 1633, 1565, 1578, 1483, 1446, 1419,1360 cm⁻¹.

H. References

¹ DMA purchased from other vendors generally resulted in decreased yields (by ~10–20%).

³ Fieser, L. F.; Fieser, M. Fieser and Fieser's Reagents for Organic Synthesis, Volume 1; John Wiley and Sons, Inc.: New York, 1967.

⁴ Care was taken that the stir-rate wasn't too high such that the concentrated solution didn't splatter on the sides of the reaction tube. For 1 mL total volume (0.2 mmol scale reaction), a stir-rate of ~700 rpm was optimal.

⁵ Initially after work up the product exists as the TMS-protected phenol, however, the free phenol was obtained after purification on silica gel.

⁶ Jiao, Z.; Chee, K. W.; Zhou, J. *J. Am. Chem. Soc.* **2016**, *138*, 16240-16243.

⁷ Sun, H.; Ye, D.; Jiang, H.; Chen, K.; Liu, H. *Synthesis* **2010**, *15*, 2577-2582

⁸ The reaction also proceeded in the absence of DMAP

⁹ In general the R_f of NHP esters on TLC were 0.6–0.8 in a solvent system of CH_2Cl_2 (streaky), and 0.8–0.95 in a solvent system of 1.5% MeOH/CH₂Cl₂.

¹⁰ D. C. Crowley, D. Lynch, A. R. Maguire. *J. Org. Chem.* **2018**, *83*, 3794–3805.

¹¹ Cativiela, C.; Diaz-de-Villegas, M. D.; Gálves, J. A. J. Org. Chem. **1994**, *59*, 2497-2505

¹² Malmedy, F.; Wirth, T. *Eur. J. Org. Chem.* **2017**, *2017*, 786–789.

¹³ Jain, K.; Chaudhuri, S.; Pal, K.; Das, K. New. J. Chem. **2019**, 43, 1299-1304.

¹⁴ Sugahara, K.; Kimura, T.; Kamata, K.; Yamaguchi, K.; Mizuno, N. *Chem. Commun.* **2012**, *48*, 8422-8424

¹⁵ Weweler, J.; Younas, S. L.; Streuff, J. Angew. Chem. Int. Ed. **2019**, 58, 17700-17703.

¹⁶ NaCN is toxic and should be handled exclusively in a well-ventilated fumehood and kept away from all sources of acid. The reaction should be treated as if unreacted NaCN is present and the aqueous work-up solution should be disposed of in a separate container.

¹⁷ Zhang, X.; Ren, J.; Tan, S. M.; Tan, D.; Lee, R.; T, C-H. *Science* **2019**, *363*, 400-404.

¹⁸ Hayashi, C.; Hayashi, T.; Kikuchi, S.; Yamada, T. *Chem. Lett.* **2014**, *43*, 565-567.

¹⁹ Xu, S; Chen, H-H; Dai, J-J; Xu, H-J. *Org. Lett*, **2014**, *16*, 2306-2309.

²⁰ Dansereau, J.; Gautreau, S.; Gagnon, A. *ChemistrySelect* **2017**, *2*, 2593-2599.

²¹ Zhang, Y-M.; Wang, X.; Li, W.; Zhang, W.; Li, M.; Zhang, S, X-A. *Chem. Commun.* **2014**, *50*, 13477-13480.

²² Sarie, J. C.; Thiehoff, C.; Mudd, R. J.; Daniliuc, C. G.; Kehr, G.; Gilmour, R. *J. Org. Chem.* **2017**, *82*, 11792-11798.

²³ Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. **2002**, 124, 14844-14845

²⁴ Caddy, B.; Martin-Smith, M.; Norris, R. K.; Reid, S. T.; Sternhell, S. *Aust. J. Chem.* **1968**, *21*, 1853-1866

² Singh, K.; Kabadwal, L. M.; Bera, S.; Alanthadka, A.; Banerjee, D. *J. Org. Chem.* **2018**, *83*, 15406-15414.