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Abstract  14 

Understanding the interactions formed between a ligand and its molecular 15 

target is key to guide the optimization of molecules. Different experimental and 16 

computational methods have been key to understand better these 17 

intermolecular interactions. Herein, we report a method based on geometric 18 

deep learning that is capable of predicting the binding conformations of ligands 19 

to protein targets. Concretely, the model learns a statistical potential based on 20 

distance likelihood which is tailor-made for each ligand-target pair. This 21 

potential can be coupled with global optimization algorithms to reproduce 22 

experimental binding conformations of ligands. We show that the potential 23 

based on distance likelihood described in this paper performs similar or better 24 

than well-established scoring functions for docking and screening tasks. 25 

Overall, this method represents an example of how artificial intelligence can be 26 

used to improve structure-based drug design.  27 
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Introduction 28 

There is no doubt that drug design is a challenging task. One of the difficulties 29 

arises from the fact that only a small portion of the large chemical space (circa 30 

1060 drug-like molecules1,2) will bind to a specific biological target resulting in a 31 

therapeutical effect. In this context, knowing up-front the biological target and its 32 

three-dimensional structure seems to be associated with higher success rates3. 33 

To a very large extent, this success results from the use of experimental and 34 

computational methods that can help understand the key interactions between 35 

a ligand and its molecular target to guide the optimization of molecules. In fact, 36 

it is known that these intermolecular interactions are a key factor driving drug 37 

potency and selectivity4. Experimental methods such as X-ray diffraction, NMR 38 

crystallography and more recently Cryo-EM have been of paramount 39 

importance for drug discovery projects to explore and understand these 40 

intermolecular interactions3,5. In a similar way, computational methods have 41 

also played an important role since they allow to virtually study compounds that 42 

have not been synthesized yet. In particular, molecular docking has been 43 

recently used to virtually screen ultra-large compound libraries6,7, although other 44 

methods such as molecular dynamics are also commonly used for drug 45 

discovery.  46 

In the recent years, the explosion of experimental structural data has also 47 

allowed the application of machine learning and artificial intelligence to study 48 

ligand-target interactions. For example, machine learning has been successfully 49 

applied to identify regions of a protein where a ligand can directly bind8–10. 50 

Additionally, a wide a variety of methods have been developed to predict 51 

binding affinity from the three-dimensional structure of a ligand-target 52 

complex11,12. Many of these methods make use of engineered descriptors that 53 

capture the main ligand-target interactions which can be fed into a predictive 54 

algorithm13–16, while others directly use convolutional neural networks (CNNs)17–55 

20 or graph convolutional neural networks (GNNs)21,22 for the prediction task. 56 

Despite the need for more computationally efficient methods for structure-based 57 

design, there are few efforts to accelerate or improve the structure prediction of 58 

a bound ligand by using artificial intelligence or machine learning. Most of 59 
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current artificial intelligence methods applied to structure-based drug discovery 60 

rely on the 3D structure of a ligand-target complex previously obtained either by 61 

experimental or computational approaches. Herein, we report DeepDock, a 62 

method based on geometric deep learning that is capable of predicting the 63 

binding conformation of ligands to protein targets. For this, the method learns a 64 

statistical potential based on distance likelihood which is tailor-made for each 65 

ligand-target. Statistical potentials have been used to sample small molecule 66 

conformations in an efficient manner23–26. In particular, the work of Klebe and 67 

Mietzner26 pave the road for using statistical potentials on torsion angles to 68 

generate molecular conformations. Nonetheless, learning these potentials using 69 

deep learning confers some advantages such as taking larger portions of the 70 

molecule into account or inferring the potential for a combination of atoms not 71 

included in the training set. Similar advantages have been observed in deep 72 

learning potentials recently used for protein structure prediction27. In this work 73 

we show that the proposed potential based on distance likelihood performs 74 

similar or better than well-established scoring function for docking and 75 

screening tasks. In addition, it can be coupled with global optimization 76 

algorithms to reproduce experimental binding conformations of ligands. 77 

Results 78 

Learning a customized potential based on distance likelihood 79 

Contrary to most computational methods that predict the binding conformation 80 

of a ligand (e.g., docking), our geometric deep learning approach learns a 81 

potential that is specific for each ligand-target complex and which global 82 

minimum corresponds to the optimal binding conformation. To learn this 83 

potential we trained DeepDock using experimental three-dimensional data of 84 

ligands bound to protein targets (e.g., X-ray crystallography), extracted from the 85 

PDBbind database28. DeepDock is a neural network responsible for two main 86 

tasks: feature extraction from the input data and identify key ligand-target 87 

interactions, as shown in Fig. 1.  88 

In a first step, the neural network extracts relevant representations of the input 89 

data, namely ligand and target structures. Our approach directly uses the 90 

molecular surface of the binding site in the form of a polygon mesh. In this 91 
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mesh, a collection of nodes, edges and faces defines the shape of the 92 

molecular surface as a polygon (Fig. 1a). Moreover, the nodes also contain 93 

features encoding chemical and topological information at that specific point of 94 

the molecular surface, whereas edge features encode the connectivity between 95 

nodes. In a similar way, ligands are represented as a two-dimensional 96 

undirected graph, where atoms are designated by nodes and bonds are 97 

represented by edges (Fig. 1b). In this case, node and edge features encode 98 

the atom and bond types, respectively. Both, the target mesh and the ligand 99 

graph, are processed by independent residual graph convolutional neural 100 

networks (GNNs). Through this procedure, the processed node features not 101 

only contain information of an individual atom or point in the molecular surface, 102 

but also have information about the other nodes around them. In other words, 103 

the processed atom features encode all the atomic environment around a 104 

specific atom, whereas the target features encode a patch of the molecular 105 

surface around a specific point. A more detailed description of the feature 106 

extraction can be found in the Methods section. 107 

In a following step, the processed node features from the target and ligand were 108 

combined in order to model the interaction of the ligand with the target (Fig. 1c). 109 

For this, we concatenate all node features in a pairwise manner meaning each 110 

ligand atom will be paired with each node in the molecular surface of the target. 111 

In a final step, these concatenated features are processed by mixture density 112 

network (MDN)29. This network is composed by a feed forward neural network 113 

that predict a set of means, standard deviations and mixing coefficients needed 114 

to parametrize a mixture density model for each ligand-target node-pair. The 115 

mixture model represents the conditional probability density function of distance 116 

for any given ligand-target node pair 𝑃(𝑑𝑖𝑗|𝑣𝑖
𝑙 , 𝑣𝑗

𝑡). In other words, using this 117 

probability density function we can estimate the likelihood of finding ligand node 118 

𝑖 separated from a target node 𝑗 by any distance 𝑑𝑖𝑗. Using an MDN is essential 119 

since it allows to learn the distribution of distance data i.e., the distribution of all 120 

values 𝑑𝑖𝑗 separating ligand node 𝑖 from target node 𝑗 observed in the training 121 

set. On the contrary, a simple feed forward neural trained by minimizing the 122 

error (e.g., using RMSE or MAE as loss function) only approximates the 123 

average distance 𝑑𝑖𝑗
̅̅ ̅̅  that separates ligand node 𝑖 from a target node 𝑗 in the 124 
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training data. This would be inadequate to model the multi-valued nature of the 125 

data used to train the model since 𝑑𝑖𝑗  can take an infinite number of valid 126 

values, but some of them are more likely to be observed than others. 127 

Finally, the probability density functions of all pairwise combinations of ligand 128 

atoms and points in the molecular surface are aggregated into a statistical 129 

potential. This is simply done by adding up all the independent negative log 130 

likelihood values calculated for each ligand-target pair. This results in an energy 131 

function that can be minimized, and whose minimum correspond to the 132 

conformation of ligand in which all atoms are separated from all points in the 133 

target surface by the most likely distance.  134 

 135 

Fig. 1 Deep learning model used to learn a potential to predict binding 136 

conformations. a, The protein target is represented as a polygon mesh of the 137 

molecular surface with four properties encoded in each node, namely 138 

electrostatics, hydropathy, hydrogen bond donor / acceptor and shape index. b, 139 

The ligand is represented as a graph where each node corresponds to one 140 

atom and each edge to one bond. c, Ligand and target representations are 141 

processed by a neural network that extracts features using graph convolutions, 142 

which then are pairwise concatenated and used as input of a mixture density 143 

network. As a result, the model predicts a set of probability distributions that are 144 

assembled into a potential. 145 
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Potential based on distance likelihood can be used as an accurate scoring 146 

function 147 

We used the CASF-2016 benchmark30,31 in order to evaluate if our approach is 148 

suitable to be used as an accurate scoring function for an optimization 149 

algorithm. The CASF-2016 benchmark is composed of 285 protein-ligand 150 

complexes carefully selected to contain diverse proteins in terms of amino acid 151 

sequence and unique ligands with a wide binding affinity range. This particular 152 

benchmark is designed to assess scoring functions in four demanding tasks, 153 

namely scoring power, ranking power, docking power and screening power. 154 

Since DeepDock is not specifically trained to predict binding affinities, only the 155 

docking and screening power tasks are relevant in this study. 156 

The evaluation of docking power measures the ability of a scoring function to 157 

identify native ligand binding poses among a set of decoys. For this, the CASF-158 

2016 benchmark provides a set of ~100 decoy conformations for each of the 159 

285 ligand-protein complexes, with an RMSD ranging from 0 to 10 Å from the 160 

native binding pose. The scoring function under evaluation is used to rank all 161 

decoys expecting those with similar conformations to the native ligand-binding 162 

pose (i.e. RMSD < 2 Å) to be among the top-ranked. Fig. 2a shows the results 163 

of our approach compared to results obtained for other 34 frequently used 164 

scoring functions evaluated in the same benchmark by Su et al.31. In 87% of the 165 

cases, the top ranked decoy using our approach was within an RMSD < 2 Å 166 

from the native ligand-binding pose and this amount increased to 94.7% if the 3 167 

top-ranked decoys are considered. Based on these results, DeepDock is 168 

ranked among the top 5 best performing scoring function in this benchmark, 169 

and not far from the best performing scoring function, Autodock Vina, in which 170 

the conformation of the best ranked decoy was similar to the native binding 171 

pose in 90% of the cases. In addition, it is important to mention that our 172 

approach presented a Spearman’s rank correlation of 0.83 between the 173 

computed score and the decoy RMSD from the native binding pose 174 

(Supplementary Fig. 1). In other words, this value indicates that the more similar 175 

the decoy conformation is to the native binding pose, the higher the score 176 

computed by the scoring function. This correlation has been used as an 177 

indicator of the efficiency of a scoring function since it is believed that scoring 178 
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functions with a high rank correlation can improve conformation sampling to find 179 

the native pose31.  180 

The evaluation of screening power in CASF-2016 is designed to measure the 181 

ability of a scoring function to identify true binders of a specific target from a 182 

pool of random compounds. The CASF-2016 benchmark is composed of 57 183 

protein targets each with a set of 5 true ligands (i.e., a total of 285 compounds) 184 

covering a wide range of binding affinity (at least 100-fold). The benchmark 185 

provides 100 precomputed binding conformations for each of the 285 ligands in 186 

each of the protein target (i.e., 28,500 conformations per target and 1,624,500 187 

in total). First, the scoring function is used to assess all conformations in each 188 

target, then all compounds are ranked based on the score of their best 189 

conformation, and it is expected that true binders are among the top ranked 190 

compounds. The ability of distinguishing true binders from random molecules is 191 

evaluated using an enhancement factor (EF)30,31. DeepDock presented a mean 192 

EF of 16.41 (90% CI, 12.67 - 19.91) when the top 1% ranked compounds are 193 

considered, which is the highest compared to other scoring functions previously 194 

evaluated in this benchmark (mean EF < 12) as shown in Supplementary Fig. 2. 195 

In addition, Fig. 2b shows the success rate of identifying the most potent true 196 

binder among the top 1%, 5% or 10% ranked compounds using different 197 

scoring functions previously evaluated31. Our approach showed the best 198 

performance by finding the most potent ligand among the top 1% ranked 199 

compounds for 25 protein targets (43.9%), among the top 5% for 35 targets 200 

(61.4%) and among the top 10% for 47 targets (82.5%). Other scoring functions 201 

among the best performers are ΔVinaRF20, GlideScore-SP, ChemPLP@GOLD 202 

and Autodock Vina which were able to rank the most potent ligand among the 203 

top 10% ranked compounds for just 37 targets or less (< 65%). 204 

The above framework can also be used to evaluate the reverse screening 205 

power of a scoring function, that is the ability of identify the real target of a 206 

molecule among a set of random targets. Fig. 2c shows the reverse screening 207 

power of our approach compared to the performance of other scoring functions 208 

previously evaluated31. Our approach identified the true target among the 1% 209 

top ranked targets for 68 ligands (23.9%), among the 5% for 112 ligands 210 

(39.3%) and among the 10% for 145 ligands (50.9%).  211 



 8 

 

 212 

Fig. 2 Results of the distance likelihood potential in the CASF-2016 benchmark 213 

compared to other scoring functions reported by Su et al.31. a, Success rate of 214 

detecting real binding pose of a ligand (with an RMSD < 2 Å) among the top 1, 215 

2, and 3 ranked poses during the docking power evaluation task. b, Success 216 

rate of detecting the highest affinity ligand for a given target (among the top 1%, 217 

5%, and 10% candidates) during the forward screening task. c, Success rate of 218 

detecting the best target protein for a given ligand (among the top 1%, 5%, and 219 

10% possible targets) during the reverse screening task.  220 

 221 

Potential based on distance likelihood can reproduce experimental 222 

binding conformations 223 

An advantage of this deep learning approach is that it can be easily combined 224 

with optimization algorithms in order to find the ligand conformation associated 225 

with the global minimum of the potential. In other words, it can find the ligand 226 

conformation with highest likelihood of binding. For this, the optimization 227 

algorithm carefully rotates each rotatable bond in the molecule, and at the same 228 

time it translates and rotates the whole ligand using a transformation matrix until 229 

it finds the conformation that best fits the binding pocket (Fig. 3a). In this case 230 

we used differential evolution32 as the optimization algorithm, but others such as 231 

particle swarm optimization (PSO), simulated annealing (SA), or even gradient-232 

based algorithms can be adapted to DeepDock. For example, gradient descent 233 
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has recently been used to minimize a potential learnt by neural networks in 234 

order to predict protein structures27. 235 

To assess if an optimization algorithm can minimize a potential based on 236 

distance likelihood, we tried to reproduce real binding poses of different ligand-237 

target when starting from a random conformation and position. For a more 238 

realistic test, this was done using the 285 ligand-target pairs in the CASF-2016 239 

coreset plus 1,367 ligand-target pairs used as the validation set. It is worth 240 

mentioning that none of these complexes were included in the training set. 241 

DeepDock was able to find conformations corresponding to a minimum for 225 242 

(87%) of the compounds in the CASF-2016 coreset and for 917 (67%) of the 243 

molecules in the validation set. Interestingly, the optimization failed for most of 244 

the compounds with more than 10 rotatable bonds (Fig. 3g-h). The effect of the 245 

number of rotatable bonds on optimization has been noticed before and is 246 

linked to the inefficiency of the optimization algorithms when dealing with a 247 

large number of degrees of freedom33. In general, all compounds for which the 248 

optimization finished correctly presented a conformation very similar to the real 249 

binding pose, that is, a median (IQR) RMSD of 1.33 (0.81 to 1.99) Å for the 250 

CASF-2016 molecules and a median (IQR) RMSD of 1.47 (1.00 to 2.11) Å for 251 

molecules in the validation set (Fig. 3i-j). These similarities are also evident 252 

from the high correlation between the scores produced by the predicted and the 253 

real binding pose (R2 = 0.81 for CASF-2016 coreset and R2 = 0.82 for the 254 

validation set). It is important to mention that no correlation was found between 255 

the compound binding affinity and the score of the predicted or real binding 256 

pose (Supplementary Fig. 3-4). 257 
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 258 

Fig. 3 Use of distance likelihood potential to predict ligand binding 259 

conformations. a, Representation of the optimization process where a ligand 260 

conformation is represented by a vector of the values of all rotatable bonds in 261 

the molecule, the displacement across the three dimensions of the Euclidean 262 

space and the three Euler angles that represent the rotation of the molecule. 263 

This conformation is scored using the distance likelihood potential and then 264 

optimized using differential evolution to produce a new conformation, which 265 

follows the same procedure until the optimization has successfully finished. b, 266 

Example of the predicted binding conformation of 2-phosphoglycolic acid to rat 267 

PEPCK (PDB ID: 2RKA). Experimental binding conformation is in depicted in 268 

cyan lines and the polygon mesh in gray lines. c, Optimization process of 2-269 

phosphoglycolic acid to rat PEPCK. d-f, Examples of predicted distance 270 

probability distributions between ligand atoms and target nodes for 2RKA. The 271 

dashed line indicates the distance of between ligand atoms and target node for 272 

the predicted binding conformation. g-h, Scatter plots for 285 compounds in 273 

CASF-2016 (g) and 1,367 compounds in the validation set (h) showing that 274 

RMSD between predicted and experimental binding conformations is lower for 275 

compounds with less rotatable bonds. The optimization using differential 276 

evolution successfully finished for most compounds bearing less than 10 277 

rotatable bonds. g-h, Distributions of RMSD between predicted and 278 

experimental binding conformations in CASF-2016 (g) and in the validation set 279 

(h). Color code refers to compounds for which the optimization successfully 280 

finished or not.   281 
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Conclusions 282 

In this work, we report a method that exploits geometric deep learning to predict 283 

ligand binding conformations. Contrary to docking methods where a one-fits-all 284 

scoring function is used, here a deep neural network learns a potential that is 285 

specific for each protein-ligand complex, which is then used to find the optimal 286 

binding conformation. In a first instance, the deep neural network learns the 287 

parameters of a mixture model that is employed as a probability density 288 

function. This probability density function is used to determine the most likely 289 

distance separating a ligand atom from a specific point in the molecular surface 290 

of the binding site. The potential is determined as the combination of the 291 

negative log likelihood of all pairwise combination of ligand atoms and points in 292 

the molecular surface. The optimal conformation is the one that minimizes the 293 

potential, that is, the ligand conformation in which every atom is separated from 294 

the target surface by the most likely distance. We demonstrate that this 295 

potential can be used as an accurate scoring function for molecular docking and 296 

virtual screening. In fact, this potential performs equally or better than many of 297 

the most widely used scoring functions in the CASF-2016 benchmark. It is 298 

important to mention that this benchmark only contains a small number of 299 

compounds compared to real screening libraries (usually composed by millions 300 

of molecules). Finally, we also show that this potential can be minimized using 301 

global optimization methods, such as differential evolution32, in order to find the 302 

most likely binding conformation of a ligand. More in concrete, we reproduce the 303 

binding conformation of 868 ligands (177 from CASF-2016 and 691 form the 304 

test set) with an RMSD < 2 Å from the experimental structure using the method 305 

described in this paper. Overall, we have presented evidence that geometric 306 

deep learning can be used to predict the binding conformation of ligands to their 307 

biological target. Although the results presented in this work were mainly 308 

focused on small molecules, similar approaches can be used to predict binding 309 

conformations of larger molecules such as peptides or even protein-protein 310 

interactions. We anticipate that further developments in geometric deep 311 

learning will help to significantly improve and speed up structure-based virtual 312 

screening.  313 

 314 
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Methods 315 

Data set: The model reported in this study was trained using the general set of 316 

the PDBbind database (v.2019)28, which contains a collection of 17,679 protein-317 

ligand structures with their respective potency (e.g., IC50, Kd, etc). From these, 318 

we removed those complexes that are included in the CASF-2016 benchmark 319 

and those that failed during the pre-processing step leaving a total 16,367 320 

protein-ligand complexes which were randomly divided in a training set 321 

containing 15,000 complexes and a test set with 1,367. Each of these 322 

complexes was processed in order to be used as an input for the model.  323 

The chemical structures of ligands were represented as undirected graphs 𝒢𝑙 =324 

(𝒱𝑙 , ℰ𝑙) where nodes 𝑣𝑖
𝑙  ∈ 𝒱𝑙 represent atoms in the molecule and edges 𝑒𝑖,𝑗

𝑙  ∈325 

ℰ𝑙  represent bonds. In this case each node 𝑣𝑖
𝑙  is represented by a one-hot 326 

vector that indicates the atom type among 28 possibilities (Be, B, C, N, O, F, 327 

Mg, Si, P, S, Cl, V, Fe, Co, Cu, Zn, As, Se, Br, Ru, Rh, Sb, I, Re, Os, Ir, Pt, Hg). 328 

Similarly, each edge 𝑒𝑖,𝑗
𝑙  is represented by a one-hot vector that indicates the 329 

bond type, either single, double, triple or aromatic. It is important to mention that 330 

no information regarding the three-dimensional conformation of the ligand was 331 

used for training the model. 332 

The protein targets were processed using a pipeline based on the one 333 

previously described by Gainza et al.34. As in MaSIF, protein surfaces were 334 

triangulated using MSMS35 with a density of 3.0 𝑛𝑜𝑑𝑒𝑠
Å2⁄  and a probe radius of 335 

1.5 Å. The resulting meshes were down sampled to a resolution of 1 Å and 336 

processed using pymesh. The resulting mesh 𝒢𝑡 = (𝒱𝑡 , ℰ𝑡) is composed of a 337 

fixed set of nodes 𝑣𝑖
𝑡  ∈ 𝒱𝑡 and edges 𝑒𝑖,𝑗

𝑡  ∈ ℰ𝑡 . Each node 𝑣𝑖
𝑡  is represented by 338 

vector of four features calculated using MaSIF, namely, Poisson-Boltzmann 339 

continuum electrostatics, free electrons and proton donors, hydropathy and 340 

shape index. In a similar way, each edge 𝑒𝑖,𝑗
𝑡  is represented by a vector defining 341 

the relative cartesian coordinates of the linked nodes i.e., 𝑟𝑖,𝑗 = (𝑝𝑖 − 𝑝𝑗) where 342 

𝑝𝑖  ∈  ℝ3  represents the coordinates of 𝑣𝑖
𝑡  in a three-dimensional Euclidean 343 

space. It is worth mentioning that only nodes defining the binding site (i.e., 344 

within 10 Å or less from any ligand atom) were used to train the model.     345 
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Model: The model construction can be divided into three stages: feature 346 

extraction, feature concatenation and a mixed density network. In the first 347 

stage, features are extracted by two independent residual graph convolutional 348 

neural networks (GNNs), one for the ligand and the other for the target. Despite 349 

being independent, both residual GNN have the same architecture. First, the 350 

node and edge features are projected to a 128-dimensional embedding using a 351 

linear layer as in Eqs. ( 1 ) and ( 2 ). Then we used a sequence of three GNNs 352 

to update each node and edge based on their neighbouring nodes and the type 353 

of edges connecting them. The GNN first updates each edge in the graph by 354 

applying a multi-layer perceptron (MLP) on the concatenation of the edge 355 

features and the features of the two connecting nodes as shown in Eq. ( 3 ). 356 

The updated edge features 𝑒𝑖,𝑗
ℓ  are used to update the node features as shown 357 

in Eq. ( 4 ). The updated edge and node features (𝑒𝑖,𝑗
ℓ  and 𝑣𝑖

ℓ , respectively) 358 

contain information of the central atom but also of the neighbouring atoms 359 

around it and can be used as input of another convolution round (Eqs. ( 3 ) and 360 

( 4 )). In this case, we used three convolutions, i.e. up to ℓ = 3. 361 

 𝑒𝑖,𝑗
0 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑖,𝑗) ( 1 ) 

 𝑣𝑖
0 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑣𝑖) ( 2 ) 

 𝑒𝑖,𝑗
ℓ = 𝑀𝐿𝑃([𝑣𝑖

ℓ−1, 𝑣𝑗
ℓ−1, 𝑒𝑖,𝑗

ℓ−1 ]) ( 3 ) 

 𝑣𝑖
ℓ = 𝑀𝐿𝑃 ([𝑣𝑖

ℓ−1,
1

‖𝑗‖
∑ 𝑀𝐿𝑃([𝑣𝑗

ℓ−1, 𝑒𝑖,𝑗
ℓ ])

𝑗

  ]) ( 4 ) 

After the initial processing by the GNNs, the node and edge features were 362 

processed by 10 residual GNN blocks. Each residual block starts by projecting 363 

the node and edge features (𝑣𝑖
ℎ−1 and 𝑒𝑖,𝑗

ℎ−1, respectively) to a 32-dimensional 364 

vector using an MLP as shown in Eqs. ( 5 ) and ( 6 ). The resulting vectors are 365 

used as inputs to a GNN (Eq. ( 7 )) resulting in aggregated node and edge 366 

features 𝑣𝑖
′ and 𝑒𝑖,𝑗

′ , respectively, which are projected back to 128-dimmensional 367 

vectors 𝑣𝑖
𝑢𝑝

 and 𝑒𝑖,𝑗
𝑢𝑝

 as shown in Eqs. ( 8 ) and ( 9 ). Finally, the resulting 368 

vectors (𝑣𝑖
𝑢𝑝

 and 𝑒𝑖,𝑗
𝑢𝑝

) are added to the input vectors (𝑣𝑖
ℎ−1 and 𝑒𝑖,𝑗

ℎ−1,) to create 369 
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a skip connection and later modified by an activation function (Eqs. ( 10 ) and ( 370 

11 )). 371 

 𝑒𝑖,𝑗
𝑑𝑜𝑤𝑛 = 𝑀𝐿𝑃(𝑒𝑖,𝑗

ℎ−1) ( 5 ) 

 𝑣𝑖
𝑑𝑜𝑤𝑛 = 𝑀𝐿𝑃(𝑣𝑖

ℎ−1) ( 6 ) 

 𝑣𝑖
′, 𝑒𝑖,𝑗

′ = 𝐺𝑁𝑁(𝑣𝑖
𝑑𝑜𝑤𝑛 , 𝑣𝑗

𝑑𝑜𝑤𝑛 , 𝑒𝑖,𝑗
𝑑𝑜𝑤𝑛) ( 7 ) 

 𝑒𝑖,𝑗
𝑢𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝐿𝑖𝑛𝑒𝑎𝑟(𝑒𝑖,𝑗

′ ))) ( 8 ) 

 𝑣𝑖
𝑢𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐿𝑖𝑛𝑒𝑎𝑟(𝑣𝑖

′))) ( 9 ) 

 𝑒𝑖,𝑗
ℎ = 𝐸𝐿𝑈(𝑒𝑖,𝑗

ℎ−1 + 𝑒𝑖,𝑗
𝑢𝑝) ( 10 ) 

 𝑣𝑖
ℎ = 𝐸𝐿𝑈(𝑣𝑖

ℎ−1 +  𝑣𝑖
𝑢𝑝) ( 11 ) 

The extracted node features by the GNNs and residual GNNs for both target �̅�𝑟
𝑡  372 

and ligand �̅�𝑠
𝑙 are then pairwise concatenated and used as input of a mixture 373 

density network (MND)29. The MND uses an MLP to create a hidden 374 

representation ℎ𝑟,𝑠 that combines the concatenated target and ligand node 375 

information as shown in Eq. ( 12 ). The hidden representation is used to 376 

compute the outputs of the MND, which consist of the means (𝜇𝑟,𝑠), standard 377 

deviations (𝜎𝑟,𝑠) and mixing coefficients (𝛼𝑟,𝑠) that are necessary to parametrize 378 

a mixture of gaussians (Eqs. ( 13 )- ( 15 )). In this particular case, the mixture 379 

model uses 10 gaussians to simulate the probability density distribution of the 380 

distance between the ligand and target nodes (�̅�𝑠
𝑙 and �̅�𝑟

𝑡 , respectively). 381 

 ℎ𝑟,𝑠 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐿𝑃([�̅�𝑟
𝑡 , �̅�𝑠

𝑙])) ( 12 ) 

 𝜇𝑟,𝑠 = 𝐸𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑟,𝑠)) + 1 ( 13 ) 

 𝜎𝑟,𝑠 = 𝐸𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑟,𝑠)) + 1 ( 14 ) 

 𝛼𝑟,𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑟,𝑠)) ( 15 ) 
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In addition, the extracted ligand node features �̅�𝑠
𝑙 were used to predict auxiliary 382 

tasks, namely atom type and bond type with connecting neighbouring nodes. 383 

These auxiliary tasks help to learn molecular structures which accelerates 384 

training. All MLPs used are composed by a linear layer followed by batch 385 

normalization and an ELU activation function. The dropout rate used was of 0.1 386 

in all experiments. 387 

Training: We employed the Adam optimizer with a learning rate of 0.002 to 388 

update model weights. The model was trained to minimize the loss function 389 

shown in Eq. ( 16 ) where ℒ𝑀𝐷𝑁  represents the loss of the mixture density 390 

network whereas  ℒ𝑎𝑡𝑜𝑚𝑠  and ℒ𝑏𝑜𝑛𝑑𝑠  are the cross-entropy cost functions of 391 

predicting atom and bond types, respectively, that were used as auxiliary tasks. 392 

In particular, ℒ𝑀𝐷𝑁  minimizes the negative log-likelihood of 𝑑𝑟,𝑠 , which 393 

represents the distance separating the target node 𝑣𝑟
𝑡  from the ligand node 𝑣𝑠

𝑙, 394 

computed using the mixture model formed by 𝑘 = 10  gaussians and 395 

parametrised by 𝛼𝑟,𝑠, 𝜇𝑟,𝑠 and 𝜎𝑟,𝑠 that were predicted by the model (Eq. ( 17 )). 396 

The model was trained for 150 epochs using a batch size of 16 protein-ligand 397 

complexes. Contributions of ligand-target node pairs separated by a 𝑑𝑟,𝑠 > 7 Å 398 

were masked since we considered that those atoms cannot form relevant 399 

interactions. 400 

 ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑀𝐷𝑁 + ℒ𝑎𝑡𝑜𝑚𝑠 + ℒ𝑏𝑜𝑛𝑑𝑠 ( 16 ) 

 ℒ𝑀𝐷𝑁 = − log 𝑃(𝑑𝑟,𝑠|𝑣𝑟
𝑡 , 𝑣𝑠

𝑙  ) = − log ∑ 𝛼𝑟,𝑠,𝑘𝒩(𝑑𝑟,𝑠|𝜇𝑟,𝑠,𝑘 , 𝜎𝑟,𝑠,𝑘  )

𝐾

𝑘=1

 ( 17 ) 

 𝑈(𝑥) = − ∑ ∑ log 𝑃(𝑑𝑟,𝑠|𝑣𝑟
𝑡 , 𝑣𝑠

𝑙  )

𝑆

𝑠=1

𝑅

𝑟=1

 ( 18 ) 

The loss function shown in Eq. ( 17 ) can be easily used to define a potential 401 

𝑈(𝑥) which is tailored for a particular target-ligand complex (Eq. ( 18 )). It is 402 

possible to use this potential to score the 3D structure of a target-ligand 403 

complex by computing the distances 𝑑𝑟,𝑠 separating each target node 𝑣𝑟
𝑡  from 404 

each ligand node 𝑣𝑠
𝑙 in that specific conformation, calculating the negative log 405 

likelihood − log 𝑃(𝑑𝑟,𝑠|𝑣𝑟
𝑡 , 𝑣𝑠

𝑙  )  for each target-ligand node pair, and summing 406 
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across all possible pairs. The lower the value of 𝑈(𝑥), the more likely is to find 407 

the target-ligand complex in that specific conformation.   408 

Benchmark: This approach was evaluated using the CASF-2016 409 

benchmark30,31, which contains 285 protein-ligand complexes carefully curated. 410 

Structures from this benchmark were preprocessed in the same way as the 411 

training set. There are four different tasks in this benchmark in order to evaluate 412 

the scoring power, ranking power, docking power and screening power of a 413 

scoring function. Only the docking and screening power are relevant for this 414 

evaluation. The former evaluates the ability of the scoring function to identify the 415 

real binding conformation among generated decoy conformations of the same 416 

ligand. The latter evaluates if the scoring function can identify true binders for a 417 

particular target using the enhancement factor (Eq. (19)) as metric. Results can 418 

be directly compared with other scoring functions previously evaluated by Su et 419 

al.31. The complete protocol and scripts are fully described in the original 420 

publication30.  421 

 𝐸𝐹1% =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑏𝑖𝑛𝑑𝑒𝑟𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑚𝑜𝑛𝑔 1%

(𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑏𝑖𝑛𝑑𝑒𝑟𝑠) × 1%
 ( 19 ) 

Prediction of binding conformations: We represent the ligand conformation 422 

as vector of the Euler angels, the relative position of the ligand in the Euclidean 423 

space and the dihedral angles of all rotatable bonds in the molecule. We 424 

employed differential evolution32 to find the ligand conformation that minimize 425 

the potential 𝑈(𝑥)  learnt by the model for that specific complex, that is, the 426 

resulting ligand conformation will be the most likely to interact with target 427 

binding site according to the model. We run the global optimization for a 428 

maximum of 500 iterations using a population size of 150, the mutation constant 429 

was randomly changed each generation from a (0.5, 1) interval and with a 430 

recombination constant of 0.8. The values of dihedrals of rotatable bonds and 431 

Euler angles were restricted to be between - 𝜋  and 𝜋 . In interest of 432 

reproducibility, the calculation was seeded but this is not a requirement. 433 

 434 

 435 
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