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ABSTRACT: A catalytic radical-polar crossover Ritter 
reaction is described. The transformation proceeds under 
acid-free conditions and tolerates a variety of functional 
groups. The catalyst design overcomes limitations in the 
substitution pattern of starting materials and enables hy-
droamidation of a diverse range of alkenes. Formation of 
hydrogen contributes to the background consumption of 
reductant and oxidant and competes with the desired path-
way, pointing to a mechanistic link between hydrogen 
atom transfer-initiated organic reactions and hydrogen 
evolution catalysis. 

Hydroamidation of alkenes with nitriles in the presence 
of a strong Brønsted acid, discovered by Ritter, allows for 
a convenient access to tert-alkylamines and their deriva-
tives from simple precursors.1 The Ritter reaction is used 
in production of tert-octylamine and its higher molecular 
weight homologs.2 Variants of the Ritter reaction have 
found application in pharmaceutical industry and aca-
demic research for installation of nitrogen-based func-
tionalities.3,4 The rate-determining protonation of the car-
bon-carbon double bond necessitates forcing conditions 
and application of strong Brønsted acids, which results in 
limited functional group tolerance. Here we demonstrate 
an acid-free Ritter reaction enabled by cobalt-catalyzed 
radical-polar crossover hydroamidation of alkenes. This 
transformation takes advantage of hydrogen atom transfer 
(HAT) followed by oxidation to generate the correspond-
ing carbocationic intermediates, accomplishing formal 
protonation of the carbon-carbon double bond and 
providing excellent tolerance of functional groups 
(Scheme 1). We show that catalysis by modified cobalt 
salen complexes overcomes limitations in the substitution 
pattern of the alkenes and allows for hydroamidation of a 
diverse range of substrates. We also present data indicat-
ing that the mechanism of background consumption of re-
ductant and oxidant includes formation of hydrogen, 
which competes with the desired pathway, explaining 
prior limitations in the substrate scope. 

During our investigations into HAT-initiated radical-  

 
Scheme 1. Catalytic radical-polar crossover Ritter reaction. 

polar crossover reactions of alkenes we observed that ap-
plication of acetonitrile as solvent occasionally resulted 
in formation of small amounts of side-products arising 
from apparent Markovnikov addition of acetamide to the 
carbon-carbon double bond.5,6 The electrophilic interme-
diates in this formal Ritter reaction were proposed to arise 
from direct oxidation of alkyl radicals following the HAT 
and diffusion from the solvent cage.7 Alternative path-
ways involve radical pair collapse to generate the corre-
sponding alkylcobalt(III) complexes, which undergo oxi-
dation to alkylcobalt(IV) species and subsequent nucleo-
philic displacement or dissociation to the carbocations 
(Scheme 2).8–10 Development of the radical-polar cross- 

 
Scheme 2. Pathways for generation of electrophilic interme-
diates in HAT-initiated radical-polar crossover reactions. 

over variant of the Ritter reaction is appealing because it 
is expected to improve the poor functional group toler-
ance associated with the application of strong Brønsted 
acids. Similar benefits were demonstrated in the previous 
HAT-initiated hydrofunctionalizations to install nitrogen-
based functionalities, including landmark reports of radi-
cal hydrohydrazidation and hydroazidation reactions and 
more recent radical-polar crossover hydroazolation and 
intramolecular hydroamidation methods (Scheme 3).11–16 
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Scheme 3. Examples of relevant hydrofunctionalizations. 

Our initial optimization efforts allowed for efficient 
conversion of dihydrocarvone to the corresponding hy-
droamidation product in the presence of catalyst 5 
(Scheme 4). At the same time, we observed significant  

 
Scheme 4. Initial studies in the catalytic radical-polar cross-
over Ritter reaction. 

limitations in the substitution pattern at the carbon-carbon 
double bond with only 1,1-disubstituted alkenes showing 
optimal performance. As a corollary, these limitations 
could be leveraged to achieve selective Ritter reactions of 
differentially substituted polyenes, such as limonene. No-
tably, similar challenges were previously associated with 
other relevant radical-polar crossover hydrofunctionali-
zations and also highlighted in a recent study of HAT-
initiated hydroamidation of alkenes.15,17 Here we over-
come these limitations using catalyst design and relate the 
substrate intolerance to competing hydrogen evolution. 

To address the identified limitations in the scope of al-
kenes, we focused our efforts on substrates that appeared 
inert towards reaction conditions that successfully en-
gaged 1,1-disubstituted alkenes in the HAT-initiated Rit-
ter reaction. Thus, attempted hydroamidation of fully sub-
stituted alkene 6 in the presence of catalyst 5 did not in-
duce any significant reactivity of the substrate (Table 1). 
Application of complexes 3 and 9, commonly employed 
in other HAT-initiated reactions, produced a mixture of 
amides 7 and 8, but returned the majority of material in 
the form of starting alkene 6. Similar outcome was ob-
served in the presence of complex 10, which contained  

Table 1. Effect of the Catalyst Structure on the Catalytic 
Radical-Polar Crossover Ritter Reaction of Alkene 6a

 

 
ayields and ratios were determined by 1H NMR analysis. 

Isolated yield with catalyst 15 was 76%. 

unsubstituted ethylenediamine motif. Increased reaction 
times, additional amounts of the oxidant and reductant, 
and changes in the order of addition did not lead to im-
proved outcomes.18 Subsequent modifications in the salen 
ligand were more fruitful and produced several instruc-
tive trends. Thus, application of complexes containing o-
substituted aromatic motifs in the ethylenediamine-de-
rived fragment delivered improved yields of products 7 
and 8, as seen in the cases of catalysts 11 and 12. 
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Table 2. Preliminary Substrate Scope of the Catalytic Radical-Polar Crossover Ritter Reactiona 

 
aunless noted otherwise, reactions were conducted with 5 mol % of catalyst, 3 equiv. of oxidant and silane, and 5 equiv. of 

water. Yields in parentheses correspond to isolated, analytically pure material. bwith catalyst 15. cwith 4·BF4. ddetermined by 
1H NMR analysis. ewith catalyst 23. fwith 4·OTf. gwith catalyst 5. hwith 3 equiv. of water. iwith 10 mol % of catalyst, 6 equiv. 
of silane and oxidant, and 10 equiv. of water. 

Introduction of o-aryl and o-cyclohexyl substituents led 
to similar outcomes, suggesting that the effect was largely 
steric in nature. At the same time, presence of extended 
aromatic motifs in the salicylaldehyde-derived fragment 
was beneficial, and good yields of the hydroamidation 
products were obtained with catalyst 13 and 14. Ulti-
mately, complex 15 containing an electron-rich salen mo-
tif provided a somewhat improved performance among 
the evaluated catalysts. In all cases, amides 7 and 8 were 
formed in the same ratio, accompanied by small amounts 
of the hydrogenation and hydration products.19–20 

Brief evaluation of different tetrasubstituted alkenes re-
vealed suitability of our protocol for generation of the cor-
responding Ritter products. Exocyclic alkenes related to 
compound 6 underwent hydroamidation in similar yields 
and produced mixtures of regioisomeric amides (products 

16–18, Table 2). Application of simple acyclic and cyclic 
tetrasubstituted alkenes was comparably successful 
(products 19 and 20). Citronellyl acetate (21) also under-
went efficient hydroamidation under the optimized con-
ditions (product 22). Brief assessment of the catalyst ef-
fect in reactions with alkene 21 re-affirmed superior per-
formance of electron-rich salen motifs containing o-
biaryl substituents in the ethylenediamine-based frag-
ment, where catalyst 23 offered slight improvement over 
complex 15. In comparison, reduced efficiency was ob-
served with catalyst 5, and similar observations were rec-
orded for several other substrates. 

Hydroamidation of several citronellol and prenol deriv-
atives (e.g., product 24) revealed remarkable compatibil-
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27 and 28), N-Boc-protected amines (e.g., product 29), 
and acetals (products 30 and 32), including protected gly-
cosides (product 31). Aliphatic aldehydes, ketones, hal-
ides, and alcohols were also found to be suitable sub-
strates (products 33–36), including a labile tertiary ben-
zhydryl derivative (product 37). Prenylated motifs con-
taining nucleophilic functionalities properly positioned 
for intramolecular capture by the carbocationic interme-
diates also underwent successful hydroamidation, includ-
ing aryl ethers (product 38) and indoles (products 39 and 
40).21 Other trisubstituted alkenes demonstrated satisfac-
tory reactivity under the conditions (products 41 and 42). 
Cyclic substrates also participated in the hydroamidation 
events (products 43–45), but a silylated bisabolol deriva-
tive underwent selective reaction at the terminal prenyl 
unit (product 46). 

In all cases, formation of the desired acetamides was 
accompanied by varying amounts of the corresponding 
alcohols. Analysis of the hydroamidation and hydration 
products obtained from citronellyl acetate (21) in the 
presence of H2

18O revealed nearly identical extent of la-
belling (92% of 18O), suggesting that the alcohol arises 
primarily from the capture of carbocationic intermediates 
and not from radical reaction with adventitious molecular 
oxygen.22,23 The observed contribution of the hydration 
pathway was proportional to the excess of added water 
and could be attenuated accordingly when necessary (see 
product 42 in Table 2). Experiments with heavy water did 
not afford any deuterium-labelled products, arguing 
against the possibility of direct protonation of the alkene 
and in agreement with the proposed involvement of radi-
cal intermediates. 

The difference in reactivity of cobalt salen complexes 
in the hydroamidation events (see Table 1) coupled with 
complete consumption of the silane and oxidant prompted 
us to investigate pathways that did not lead to apparent 
engagement of the alkene in HAT. We reasoned that for-
mation of molecular hydrogen from the putative cobalt 
hydride intermediates, which was previously proposed to 
occur in HAT-initiated reactions, could contribute to the 
background reactivity.24–27 Our analysis of the headspace 
in the hydroamidation of alkene 6 and citronellyl acetate 
(21) and corresponding experiments in the absence of 
substrates revealed formation of H2 in all cases, but also 
highlighted striking differences in the behavior of cobalt 
complexes (Table 3). Catalysts 3 and 9 rapidly produced 
large quantities of molecular hydrogen both in the pres-
ence and absence of the substrates, pointing to significant 
contribution of this pathway to consumption of the silane 
in these cases.28 These observations were also consistent 
with the typical need for large excess of the correspond-
ing reagents in relevant transformations.7,15 Complex 5 
demonstrated a somewhat different reactivity profile, 
where production of H2 was significantly reduced in the 
presence of citronellyl acetate (21), suggesting direct 
competition of this pathway with the HAT to the alkene. 
No difference in formation of hydrogen was found in the 

Table 3. Yield of Hydrogen Under the Conditions of the Cat-
alytic Radical-Polar Crossover Ritter Reactiona

 

 
ayields of H2 were determined after 1 h 15 min by GC-

TCD analysis of the headspace in a closed vessel. 

presence and absence of alkene 6, which was consistent 
with the lack of desired reactivity for catalyst 5 observed 
during the optimization studies. In contrast, only trace 
amounts of hydrogen were detected in the presence of cat-
alysts 15 and 23 under all conditions examined.29 

Taken together with complete consumption of the 
silane, our data demonstrate that background wasting of 
the reductant and oxidant catalyzed by the cobalt com-
plexes involves production of H2, but is not limited to this 
pathway. These observations raise a possibility of contri-
bution from catalytic processes that are not dependent on 
generation of the putative cobalt hydride intermediates. 
For example, collidinium radical cation, generated to-
gether with cobalt(III) fluoride upon oxidation of the co-
balt(II) complex with N-fluorocollidinium salt, may react 
with the silane to generate the collidinium salt and a silyl 
radical (Scheme 5).30,31 Subsequent fluorine abstraction  

 
Scheme 5. Proposed mechanism for background consump-
tion of the reductant and oxidant without formation of H2. 

from the cobalt(III) fluoride by the silyl radical would 
complete the catalytic cycle.32,33 Irrespective of the mech-
anistic detail, the superior performance in the hydroami-
dation combined with minimal production of molecular 
hydrogen suggest that catalysts 15 and 23 offer improved 
partitioning of reaction pathways available to the putative 
cobalt hydride intermediates in favor of HAT to alkenes. 
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In summary, we disclose a radical-polar crossover Rit-
ter reaction that allows for hydroamidation of alkenes 
with diverse substitution patterns. In contrast to the orig-
inal acid-catalyzed transformation, our process offers re-
markable tolerance of functional groups. The structure of 
cobalt complexes plays key role in enabling a broad scope 
of substrates, where optimal catalysts overcome the com-
monly observed limitations and allow for efficient en-
gagement of tri- and tetrasubstituted carbon-carbon dou-
ble bonds. We demonstrate that formation of hydrogen 
contributes to consumption of the reductant and oxidant 
and competes with the desired hydroamidation events, 
suggesting a mechanistic link between HAT-initiated or-
ganic reactions and hydrogen evolution catalysis.34,35 We 
also show that the ligand environment in a cobalt complex 
has a significant effect on the course of these background 
pathways, pointing to superior reactivity profile of puta-
tive cobalt hydride intermediates in the case of optimal 
catalysts. These studies can facilitate better understanding 
of intermediates involved in the HAT and identification 
of new catalysts with improved reactivity towards alkenes 
in other relevant hydrofunctionalizations. 
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