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Abstract 

We present a new chemically intuitive approach, pairF-Net, to directly predict the atomic forces 

in a molecule to quantum chemistry accuracy using machine learning techniques. A residual 

artificial neural network has been designed and trained with features and targets based on 

pairwise interatomic forces, to determine the Cartesian atomic forces suitable for use in 

molecular mechanics and dynamics calculations. The scheme implicitly maintains rotational 

and translational invariance and predicts Cartesian forces as a linear combination of a set of 

force components in an interatomic basis. We show that the method can predict the 

reconstructed Cartesian atomic forces for a set of small organic molecules to less than 2 kcal 

mol-1 Å-1 from the reference force values obtained via density functional theory. The pairF-Net 

scheme utilises a simple and chemically intuitive route to furnish atomic forces at a quantum 

mechanical level but at a fraction of the cost, providing a step towards the efficient calculation 

of accurate thermodynamic properties.   

 

  



 

 

1. Introduction 

The mechanics, dynamics and thermodynamics of molecular systems is governed by the forces 

acting between atoms. The quest to obtain accurately predicted macroscopic properties from 

materials to biomolecules has advanced significantly in recent years, with developments in 

computational hardware and algorithms permitting longer time scale molecular dynamics 

(MD) simulations.1 These simulations are better able to probe the equilibrium behaviour of 

long time scale events such as a protein’s folding2 and binding to ligands,3 as well as the 

conformational manifold of small molecules in solution.4-5 However, the forces underpinning 

these long simulations are typically computed via empirically derived potential functions. The 

ability to more robustly compare experimental data, such as from NMR measurements, with 

converged simulated properties has exposed shortcomings in such force fields6 and points to 

the need for the use of higher accuracy forces in MD simulations. This is particularly true for 

small organic molecules, where the large diversity of chemistry present across this chemical 

space7 is coupled to a lack of maturity in the force field models of their behaviour.8  

 

The empirical function of a force field approximates the quantum mechanical (QM) 

interactions in a molecule. These forces contain electrostatic and van der Waals two-body 

effects but also subtle factors arising from electronic polarization and charge transfer that are 

less readily captured by force fields. Until recently, the ability to incorporate quantum chemical 

forces into molecular simulations has been limited to very short timescales, due to the aggregate 

computational expense of the QM force evaluation required at each time step. However, recent 

efforts have deployed machine learning (ML) approaches to bridge this gap,9 seeking to furnish 

energies10-13 and more recently forces14-19 of QM accuracy at a fraction of the computational 

cost. Using large datasets of molecular geometry, energy and forces, ML methods such as 

kernel-based methods and artificial neural nets (ANNs) have been trained to provide 



 

 

interpolated energy and force predictions. Commonly used benchmark data sets of QM data 

for this purpose include the QM7,20 QM921 and MD17 data sets,17 as well as the recently 

developed COMP6 set.22      

 

Within this broad philosophy, a range of approaches have been adopted: for example, in the 

SchNet method,18 a convolutional neural network is trained using QM energies and forces. The 

gradient-domain machine learning (GDML) method17 is a kernel-based method that learns 

forces directly. Similarly, the AGNI machine learned force field16 uses kernel ridge regression 

as the means to directly learn QM forces. In the ANAKIN-ME (ANI) approach,10, 15 the QM 

energy of a diverse range of molecules was learned via an ANN and then a force on the atoms 

was subsequently obtained by taking the derivative of the trained network. The ANI approach 

uses a modified version of single atom symmetry function as descriptors of the atomic 

environment.23 Determining these functions for diverse heteroatomic chemical systems is a 

challenging task. For direct learning of forces, a vector property, radial shells engendered by 

this characterisation of the atomic environment would not appear well suited.  

 

As an alternative to symmetry functions, Zhang et al.19 developed a molecular representation 

in terms of a local reference frame based on pairwise distances 𝑅𝑖𝑗 between atoms and a local 

environment for each atom. Specifically, within a given cutoff radius around an atom i, radial 

and angular information is gathered, forming the set, Dij= {1/𝑅𝑖𝑗,𝑥𝑖𝑗/𝑅𝑖𝑗
2 ,𝑦𝑖𝑗/𝑅𝑖𝑗

2 ,𝑧𝑖𝑗/𝑅𝑖𝑗
2 }. Based 

on these input features, a neural network with five hidden layers was then trained to reproduce 

the total potential energy of the configuration (the sum of atomic energies, 𝐸𝑖), using per atom 

energies, Cartesian forces and virial in the loss function. The method, which they called deep 

potential molecular dynamics (DPMD), was able to reproduce ab initio QM forces acting on 

water and ice at different temperatures and pressures to around 1 kcal mol-1 Å-1 of the PBE0 + 



 

 

vdW-TS density functional value;24-25 a similarly good performance was obtained for 

reproducing the PBE + vdW-TS forces within small organic molecules. 

 

In this work, we develop a neural network approach based on pairwise forces, which we denote 

the pairF-Net method. For this, we explicitly employ an interatomic internal representation of 

the molecular structure for the evaluation of translationally and rotationally invariant atomic 

Cartesian forces. Recognising that the atomic forces determined using a quantum mechanical 

potential are a combination of nuclear repulsion and electronic terms, we exploit this partition 

to use an appropriately trained residual feedforward neural network to predict the total or 

electronic contribution to the atomic forces in a molecule.  

 

In the spirit of the Coulomb matrix approach utilised by other workers as input to their energy 

prediction machine learning schemes,9 we explicitly use the negative derivatives of nuclear 

repulsion energies, the nuclear repulsion forces (NRFs), as input to our force-predicting 

network. Thus, the NRFs play a dual role, principally as features which usefully and completely 

encode the molecular structure; and secondly, to focus learning on the chemically important 

electronic contribution to the forces. As we shall show, as with molecular energies, because 

the total forces are the difference in nuclear and electronic terms, both of which have large 

magnitudes, it will be important that the predicted total resultant forces have a small variance 

and few outliers for accurate prediction of forces, rather than just a low mean error. 

 

An attractive feature of the pairF-Net scheme is that both the NRFs and the predicted total 

forces are expressed in an interatomic basis, {𝑞𝐴𝐵
NR} and {𝑞𝐴𝐵

ANN} respectively, and are therefore 

invariant to translation and rotation of the molecule. The use of such an internal coordinate 

system allows us to draw upon chemically useful concepts of interatomic forces to aid our 



 

 

understanding of the nuances of the scheme, and provides a foundation for future 

approximations and transferability. The final step in our scheme is a simple linear 

transformation of the predicted interatomic forces {𝐐𝐴𝐵}, back to the Cartesian basis of the 

molecular structure to give the Cartesian atomic forces, {𝐅𝐴}, required for geometry 

optimisation or molecular dynamics simulations.  

 

In order to train the ANN, it is therefore necessary to decompose the total quantum mechanical 

Cartesian atomic forces to the interatomic basis. We linearly transform these Cartesian exact 

forces {𝐅𝐴
QM} into the interatomic basis by performing a pairwise decomposition using an 

approach previously used for vibrational analysis26 and in redundant coordinate optimisation 

schemes.27 An analogous scheme was used to generate internal forces to understand the 

mechanical stress in molecules.28-29 The resulting interatomic forces, {𝐐𝐴𝐵
QM}, form a complete 

set such that not only two-body but three-body and higher terms are also captured exactly. 

 

Overall, we may view the use of the ANN in the pairF-Net approach as either a functional of 

the NRFs, 𝐅[𝐪NR(𝐑)], or alternatively, as a predictor of corrections to the NRFs, to estimate 

accurate QM atomic forces. Although other machine learning approaches can be applied, here 

we have chosen to generate the predictions of {𝑞𝐴𝐵
ANN} via a sequentially constructed residual 

artificial neural network. This approach is able to fit unknown non-linear functions of great 

complexity, and also allows industry standard software such as TensorFlow30and Keras31 to be 

utilised.    

 

In the following sections, we describe in more detail the pairF-Net scheme and its 

implementation, including design of network architectures; we consider the ability of the 

decomposition of Cartesian atomic forces to produce chemically reasonable pairwise forces; 



 

 

and we evaluate the accuracy of pairF-Net in generating atomic forces for small molecule 

systems. 

 

2. The PairF Scheme 

2.1 Definition of Atomic Forces in a Cartesian framework 

Firstly, we introduce the definitions for Cartesian atomic forces, as required for molecular 

mechanics and dynamics calculations. For an isolated quantum mechanical molecular system, 

the total molecular potential energy, 𝐸QM, can be obtained from the Schrödinger equation 

within the Born-Oppenheimer approximation as a sum of nuclear and electronic Hamiltonians, 

 

𝐻̂(𝐫, 𝐑) = 𝐻̂nuc(𝐑) + 𝐻̂elec(𝐫, 𝐑)      (1) 

 

and hence the potential energy of the system will be  

 

𝐸QM(𝐫, 𝐑) = 𝐸NR(𝐑) + 𝐸elec(𝐫, 𝐑)      (2) 

 

where 𝐫 and R are the electron and nuclear coordinates, respectively. The nuclear repulsion 

energy (NRE) is given in atomic units as 

 

𝐸NR = ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑁
𝐵<𝐴

𝑁
𝐴              (3) 

 

where 𝑍𝐴 and 𝑍𝐵 are the charges of nuclei A and B, respectively. 𝑅𝐴𝐵 = |𝐑𝐵 − 𝐑𝐴| with 𝐑𝐴 

and 𝐑𝐵 the position Cartesian coordinates of atom A and B respectively. The second term, 

𝐸elec, is the electronic energy. The Cartesian forces acting on atom A, 𝐅𝐴
QM

, are then given by 



 

 

 

  𝐅𝐴
QM = −𝛁𝐴𝐸

QM = −𝛁𝐴𝐸
NR − 𝛁𝐴𝐸

elec = 𝐅𝐴
NR + 𝐅𝐴

elec   (4) 

 

where 𝛁𝐴 = (
𝜕

𝜕𝑅𝐴,𝑥
,

𝜕

𝜕𝑅𝐴,𝑦
,

𝜕

𝜕𝑅𝐴,𝑧
)
𝑇

 and 𝜕𝑅𝐴,𝑘 are the Cartesian displacements of atom A. 

This total atomic force is a vector in the Cartesian basis given by 

 

  𝐅𝐴
QM

= 𝑓𝐴𝐞𝐴          (5) 

 

where the magnitude and direction of the force are 𝑓𝐴 and 𝐞𝐴 respectively, with ‖𝐞𝐴‖ = 1. For 

an isolated system of N atoms, the Cartesian forces 𝐅QM
 will comprise all 3N Cartesian force 

components, {𝑓𝐴𝑒(𝐴,𝑘)}, arranged here as a vector rather than a 3 × 𝑁  matrix. The individual 

elements of this vector are 

 

  𝐹(𝐴,𝑘)
𝑄𝑀 = 𝑓𝐴𝑒(𝐴,𝑘) = −(

𝜕𝐸𝑄𝑀

𝜕𝑅(𝐴,𝑘)
)
𝐑𝐵

     (6) 

 

where 𝐸𝑄𝑀 is the total potential energy; and 𝑅(𝐴,𝑘) are the Cartesian components of 𝐑𝐴, the 

position vector of atom A, where 𝑘 = {𝑥, 𝑦, 𝑧}, with respect to the Cartesian origin.  

 

2.2 Interatomic Force Components 

To determine the interatomic force components according to the pairF scheme, we require the 

expression of Cartesian atomic forces within an internal coordinate frame. Let us consider the 

resolution of an atomic force acting on atom A, 𝐅𝐴 , in a Cartesian coordinate basis, into a set 



 

 

of interatomic force components, {𝐐𝐵𝐴}, each acting on atom A along the vector 𝐵𝐴⃗⃗⃗⃗  ⃗ from atom 

B,  

 

  𝐅𝐴 = ∑ 𝐐𝐴𝐵
𝑁−1
𝐵≠A   .       (7) 

 

Equation 7 simply states that a set of force component vectors 𝐐𝐴𝐵 acting on each atom A can 

be linearly combined to give a resultant force vector on each atom; this is illustrated for a model 

three atom system in Figure 1. The sum here is over all unique atom pairs and will be referred 

to as the interatomic basis. To maintain generality, we use the term intermolecular force 

components rather than intermolecular forces.   

 

Figure 1   Schematic of the internal resolution of the forces in a three-atom system, where A, B and C 

are atoms, O is the centre of mass, F are the forces in a Cartesian framework, Q are the interatomic 

force component vectors, and R and r are position vectors. 

 

The force component vectors in the interatomic basis are defined as 

 

  𝐐𝐴𝐵 = 𝑞𝐴𝐵𝐞𝐴𝐵  or  𝑄(𝐴𝐵,𝑘) = 𝑞𝐴𝐵𝑒(𝐴𝐵,𝑘)                 (8) 

 



 

 

where 𝐞𝐴𝐵 =
(𝐑𝐵−𝐑𝐴)

‖𝐑𝐵−𝐑𝐴‖
=

(𝐑𝐵−𝐑𝐴)

‖𝐑𝐴𝐵‖
=

(𝐑𝐵−𝐑𝐴)

𝑅𝐴𝐵
= −𝐞𝐵𝐴 where ‖𝐞𝐵𝐴‖ = 1, and 𝐪 is the vector of 

the {𝑞𝐴𝐵} magnitudes, hereafter referred to as the interatomic or pair force components. For a 

two-body potential, the interatomic force for atom B acting on atom A would be given by 𝑞𝐴𝐵, 

where 𝐐𝐴𝐵 = 𝑞𝐴𝐵𝐞𝐴𝐵 = −𝑞𝐴𝐵𝐞𝐵𝐴, and the unit vectors 𝐞𝐴𝐵 = 𝐵𝐴⃗⃗⃗⃗  ⃗/|𝐵𝐴⃗⃗⃗⃗  ⃗| = −𝐞𝐴𝐵. This follows 

the normal convention that a positive value of q is indicative of repulsion, and negative of 

attraction. 

 

Although there are many other possible internal representations of a molecular structure, for 

example using specific combinations of bond lengths, angles and dihedrals, the full set of all 

interatomic distances between all atom pairs {RAB} used in this work serves to completely 

define any possible structure. Although the set may be reduced towards a minimal set of 3N–6 

terms required to define the structure of a non-linear molecule, dependence on specific 

conformers or isomers of the molecule, and problems with linear dependence of a reduced set, 

are avoided when using the full expansion. Nevertheless, the pairF-Net approach explored in 

this work can be readily adapted to a reduced basis, which may be prudent as the size of the 

system increases. 

 

In the absence of external forces, the Cartesian atomic forces will not be linearly independent 

since they should implicitly include the three translational and three rotational constraints such 

that 

 

  𝜺translation = ∑ 𝐅𝐴
QM𝑁

𝐴=1 = 𝟎      (9)  

  

and  

 



 

 

  𝜺rotation = ∑ (𝐫𝐴 × 𝐅𝐴
QM)𝑁

𝐴=1 = 𝟎     (10)  

  

respectively, where 𝐫𝐴 = 𝐑𝐴 − 𝐑0 and the rotational centre is given by 

 

  𝐑0 =
1

𝑁
∑ 𝐑𝐴

𝑁
𝐴=1    .       (11) 

 

Taking these constraints into account yields the familiar result that there are 3𝑁 − 6 linearly 

independent internal forces acting within the system. Equation 7 can now be rewritten in the 

interatomic basis with the following linear transformation, 

 

  𝐅𝐴 = 𝐓𝐴 𝐪 = ∑ 𝑞𝐴𝐵 ∙ 𝐞𝐴𝐵𝐵≠𝐴       (12) 

 

which can be generalised for a non-linear N-atom system to 

 

  𝐅 = 𝐓 𝐪        (13) 

 

where the transformation coefficients are given by 

 

  𝑇(𝐴,𝑘)
𝐴𝐵 = 𝑒(𝐴𝐵,𝑘) and  𝑇(𝐵,𝑘)

𝐴𝐵 = −𝑒(𝐵𝐴,𝑘)  .    (14) 

 

Since the total number of unique interatomic forces between all pairs of atoms is 𝑁(𝑁 − 1)/2, 

there will be twice as many, component force vectors Q𝐴𝐵, namely 𝑁Q = 𝑁(𝑁 − 1). The 

dimension of 𝐪, the total number of unique component force magnitudes, will therefore be 

𝑁q = 𝑁(𝑁 − 1)/2, i.e. 𝑁𝑄/2, since each vector has an equal but opposite partner, 𝐐𝐴𝐵 =

−𝐐𝐵𝐴. Importantly, as with two-body interactions, each interatomic force component has the 



 

 

property of translational and rotational invariance. This will mean that these components may 

be predicted independently and, no matter their individual errors, their sums, 

 

  𝜺translation = ∑ ∑ 𝐐𝐴𝐵
𝑁
𝐵≠𝐴

𝑁
𝐴 = 𝟎     (15) 

and    

  𝜺rotation = ∑ ∑ (𝐫𝐴 × 𝐐𝐴𝐵)𝑁
𝐵≠𝐴

𝑁
𝐴 = 𝟎     (16) 

 

and Cartesian forces obtained from these via Equation 13 will also be invariant, obeying 

Equations 9 and 10. 

 

2.3 Implementation of the pairF-Net Model 

In the Cartesian basis, the force on atom A arising from the nuclear repulsion term in the 

Hamiltonian (Equation 4) is given by, 

 

𝐅𝐶
NR = −𝛁𝐶𝐸

NR = ∑
𝑍𝐴𝑍𝐶

(𝑅𝐴𝐶)2
𝑁
𝐴≠𝐶 𝐞𝐴𝐶  .     (17) 

 

If expressed in an interatomic basis, the magnitude of the nuclear repulsion force for the atom 

pair A and B is 

 

  𝑞𝐴𝐵
NR = −

𝜕𝐸NR

𝜕𝑅𝐴𝐵
=

𝑍𝐴𝑍𝐵

(𝑅𝐴𝐵)2
   .      (18) 

 

We shall refer to 𝑞𝐴𝐵
NR as a nuclear repulsion force or NRF, although more precisely, it should 

be denoted as the internuclear repulsion force. Thus the total magnitude of the force for atom 

pair A and B in the interatomic basis is 



 

 

 

  𝑞𝐴𝐵
QM = 𝑞𝐴𝐵

NR + 𝑞𝐴𝐵
elec       (19) 

 

or  

 

  𝐪QM = 𝐪NR + 𝐪elec  .       (20) 

 

We emphasise that in the pairF-Net scheme, the force components {𝑞𝐴𝐵
QM} or {𝑞𝐴𝐵

elec} used to 

train the ANN are not directly derived as derivatives of the potential, but instead are obtained 

by decomposing the Cartesian atomic forces into the interatomic basis as described in the next 

section. We shall refer to the forces in the interatomic basis which are used to train the ANN 

as {𝑞𝐴𝐵
Ref} or 𝐪Ref. 

 

The forces predicted by the ANN will be a functional of the input parameters used to encode 

the molecular structure. In this work, we have chosen the input features to the pairF-Net ANN 

to be the complete set of 𝑁q NRFs, {𝑞𝐴𝐵
NR}, rather than to decompose the Cartesian derivatives 

of the NRE. For expediency, in the residual network architecture which we have implemented, 

the NRFs are trivial to compute and it becomes convenient to fit the forces using one of the 

two following schemes.  

 

In the first training scheme, which we label D1, the goal is to predict the total interatomic force 

components directly,  

 

  𝐪 = 𝐪ANN,        (21) 

 



 

 

based upon fitting the ANN with 𝐪Ref = 𝐪QM.   

 

In the second training scheme, D2, the aim is to predict the forces by recombining the force 

predictions of an electronic component with the NRFs to give the total interatomic forces, 

 

  𝐪 = 𝑠NR   𝐪NR + 𝐪ANN       (22) 

 

based upon fitting the ANN with 𝐪Ref = 𝐪QM − 𝑠NR   𝐪NR. In the simplest case, where 𝑠NR =

1, the pairF-Net ANN is trained to predict solely the electronic component 𝐪Ref = 𝐪elec. 

Although this approach is fundamentally the same as Equation 13, we will subsequently show 

that since the force components are not exact potential derivatives, practical numerical issues 

will favour training using reference scheme D1. 

 

In both scenarios, the loss function ‖𝐪Ref − 𝐪ANN‖
2

2
 is minimised for the training set of 

structures and the recombination step to convert the forces to the Cartesian basis will be 

 

  𝐅ANN = 𝐓 𝐪ANN  .       (23) 

 

As noted in the previous section, each individual interatomic force component is invariant to 

translation or rotation of the molecular framework and the resulting atomic Cartesian forces 

will retain this property. This is an important feature of pairF-Net, since the invariance does 

not need to be explicitly included in the loss function, for example to ensure that 𝐅𝐴 = −𝛁𝐴𝐸, 

which is necessary for methods based on direct prediction of Cartesian forces.17 

 

2.4 Computation of Interatomic Force Components 



 

 

In order to train pairF-Net, it is necessary to transform each set of reference Cartesian atomic 

forces to an interatomic basis. Since both the Cartesian and full interatomic bases are over-

representative of the system, this may be accomplished using the generalised inverse of 

Equation 13,  

 

  𝐪 = 𝐓+𝐅 + (𝐈 − 𝐓+𝐓 ) 𝐦   .      (24) 

 

Here 𝐓+ = (𝐓𝑇𝐓)−𝟏 𝐓𝑇 = 𝐓−𝐓𝑇 is recognisable as the Moore-Penrose pseudoinverse (i.e. the 

left inverse), where 𝐓− = (𝐓𝑇 𝐓)−𝟏 and 𝐓+𝐓 = 𝐈 (noting T as the matrix transpose). Although 

this equation has general solutions, for any vector m, a somewhat unique solution, 

 

  𝐪𝟎 = 𝐓+𝐅 ,        (25) 

 

can be obtained by this approach with 𝐦 = 𝟎; this is the so-called solution with minimum 

Euclidian norm, such that ‖𝐪0‖2 ≤ ‖𝐪‖2. Although there are an infinity of other possible 

solutions (𝐦 ≠ 𝟎), this constraint on the norm implies that within the set 𝐪0, each individual 

force component will have its minimum magnitude allowed, provided the set as a whole 

satisfies Equation 13. This feature of the minimum norm 𝐪0 solution, together with it being a 

continuous function of 𝐑, usefully correlates with our expectations of a unique force 

component between each specific pair of atoms which is applicable to the whole potential 

energy surface. However, we must stress that the force components q are not derivatives of the 

original molecular potential and we must be careful to respect that their relative magnitudes, 

and particularly their signs, may not always correspond to a physical interpretation of an 

electronic or total force. 

 



 

 

In this work, the transformation coefficients are given by Equation 14. However, we note an 

alternative to obtaining alternative solutions from the full Moore-Penrose inverse with 𝐦 ≠ 0, 

such that we may use a biased transformation via a scaled basis, γ𝐴𝐵 ≠ 1, to obtain a different 

balance of forces between different atom pairs, 

 

  𝑇(𝐴,𝑘)
𝐴𝐵(bias) = γ𝐴𝐵𝑒(𝐴𝐵,𝑘) and 𝑇(𝐵,𝑘)

𝐴𝐵(bias) = −γ𝐴𝐵𝑒(𝐵𝐴,𝑘) .  (26) 

 

The force components obtained using the biased basis transformation, 𝐪bias, can then be re-

scaled to the original unbiased basis, 𝑞𝐴𝐵 = γ𝐴𝐵𝑞𝐴𝐵
bias, in order to train the ANN and predict 

unknown forces using the unbiased transformation. 

 

Since to train pairF-Net, it is necessary to decompose the reference Cartesian atomic forces to 

the internal interatomic basis,  

 

𝐪 = 𝐓+ 𝐅,         (27) 

 

an advantage of this approach is that the transformation of the Cartesian forces to the internal 

basis will remove any residual translational or rotational invariance which might be present in 

the Cartesian basis. It is not unsual for the atomic forces from QM methods to have some 

residual rotational and translational force, such that 𝜺rotation ≠ 0 and 𝜺translation ≠ 0 in 

Equations 9 and 10 respectively. This can particularly be the case for smaller atom-centred 

basis sets, or when numerical integration is used in density functional theory. If the QM forces 

have numerical issues, then it would be important to ensure that any assessments of the quality 

of predicted forces are also assessed against comparable invariant forces.  

 



 

 

To summarise, Cartesian forces obtained from QM calculation 𝐅𝐴
QM are decomposed into 

interatomic force components, 𝐪Ref (Figure 2); the latter then provide target values for training 

of the ANN, along with input features provided by the nuclear repulsion forces, 𝐪NR. The ANN 

is trained to predict 𝐪Ref, corresponding to either the total forces, 𝐪QM (D1), or the electronic 

component of these, 𝐪elec (D2); these interatomic forces are then recombined to provide total 

Cartesian forces acting on atoms.  

 

Figure 2  Summary of workflow to train pairF-Net and predict atomic forces F via training scheme D1 

or D2. 

 

3. Computational Details 

3.1 Network Design  

To learn and predict the pairwise forces 𝐪QM or 𝐪elec, we construct a series of neural networks 

with a modular feed-forward structure (Figure 3a). Each network comprises an input block (IB, 

Figure 3a), one or more hidden network blocks (NB) and then an output block. Each block is 

fully connected to the next. The input block of Nq neurons receives a matrix of input features, 

the nuclear repulsion forces 𝐪NR or a scaled version of them (see Supporting Information, 

Figure S1).  

 



 

 

These inputs provide a complete representation, in that there is a one-to-one mapping between 

the 𝐪NR and the molecular geometry. The hidden blocks comprise a layer of 1000 neurons 

followed by a layer of Nq neurons (e.g. for aspirin, Nq is 210). The two-layer block design seeks 

to mitigate the vanishing gradient problem.32 Retaining the dimensionality of the input and 

output forces is convenient for performing operations with them. Specifically, we draw 

inspiration from modern image classification networks, ResNets,33 introducing shortcut 

connections which skip forward to blocks deeper in the network. By having these sorts of 

connections, each block is only required to learn a small transformation of the inputs and any 

residual information not captured in the output of a block is preserved for subsequent blocks.  

 

As detailed above, we explore two different targets  𝐪NR as a reference for fitting, namely  𝐪QM  

(Equation 21, scheme D1) or 𝐪elec (Equation 22, scheme D2). As our networks use sigmoid 

activation functions in the final output layer, they can only yield values in the range 0 to 1. 

Consequently, we performed scaling of our reference training and predicted pairwise forces to 

this range. Details of these normalisation schemes for D1 and D2 are provided in Supporting 

Information (Figure S1). For all networks, the 𝐪NR input features were also normalised, as 

𝐪NR/|𝐪max
NR |. 

 



 

 

 

Figure 3   Artificial neural network architecture: (a) general structure of layers, network blocks (NB) 

and connectivity for input block (IB), NBs and output layer; (b) implemented network architectures 

PFN1, PFN2 and PFN3 and their training regimes. PFN3 networks were evolved blockwise whereas 

PFN1 and PFN2 were fixed architectures. Direct and shortcut connections indicated by arrows. 

 



 

 

3.2 Specific Network Architectures  

Based on the general network template described above, we implemented a simple static 

network with a single hidden block (PFN1, Figure 3b). We also constructed static networks 

with more than one hidden block which employed shortcut connections (PFN2, Figure 3b). 

Finally, we evolved a network architecture in a stepwise fashion (PFN3, Figure 3b): this 

involved starting from a trained PFN1 model, adding a further hidden network block with 

shortcut connections to the inputs; then retraining the network while freezing the weights of 

the preceding hidden block. This process, which we refer to as greedy blockwise training, was 

repeated until no further improvement in training performance was observed. Specifically, 

training was performed until no improvement was observed for 500 epochs or 100000 epochs 

had elapsed; this criterion proved suitable for ensuring convergence (for example, see Figure 

S2) and was applied to all three network types. The loss function that was minimised was the 

mean-square error in pairwise force, ‖𝐪Ref − 𝐪ANN‖
2

2
. The networks were constructed using 

Keras (version 2.2.4)31 with a TensorFlow backend (version 1.14.0). The Adam optimizer was 

used to minimise the loss function, applying the default parameters in Keras. In general, the 

networks were trained using a single NVIDIA V100 GPU and eight CPU cores and took 

approximately 3 - 10 s per epoch when training. 

 

3.3. Atomic Force Datasets 

To provide the reference atomic forces of different small organic molecule structures, needed 

for training and validating pairF-Net, we consider the MD17 database of Chmiela et al.17 

Specifically we consider three molecular entries in MD17 as suitably representative systems, 

namely aspirin, malonaldehyde and toluene (Figure 4). The geometries and forces in these 

datasets were generated as ab initio MD trajectories in the gas phase, with aspirin in its neutral 

form and malonaldehyde in its keto tautomer, conducted at a temperature of 500 K and timestep 



 

 

of 0.5 fs, using the PBE + vdW-TS density functional. We derived our own training and test 

subsets from this database by sampling evenly across their potential energies, with the goal of 

obtaining a training set of size up to but no more than 50000. For aspirin, in order to maintain 

the even sampling criteria, a total of 42353 training structures were sampled with the remaining 

169409 structures being added to the test set (Figure 4). No other criteria for selection of 

training data were used. The same process was carried out for the malonaldehyde and toluene 

sets (Figure 4).  

           

 

Figure 4   Structures, atom numbering and number of molecular structure-force datapoints for (a) 

aspirin, (b) malonaldehyde and (c) toluene. Number of molecule datapoints indicated in the format 

“(number in test set, number in training set)”. Dihedral angles 1 and 2 in aspirin and 1 and 2 in 

malonaldehyde also indicated. 

 

3.4 Network Performance 

The performance of the trained pairF-Net models is evaluated by considering the resultant 

Cartesian atomic forces assembled from the predicted interatomic force components. 

Following Chmiela et al.17, the error in magnitude of the Cartesian atomic forces is given as 

||F||  ||FQM||, where F is the predicted Cartesian force and FQM is the reference Cartesian QM 

force; for this metric, both mean absolute error (MAE) and root-mean-square error (RMSE) 

values are computed. The corresponding MAE and RMSE errors in the angular components of 

 a b c 

1 

2 1 2 

(169409, 42353) (508834, 46258) (405890, 36900) 



 

 

these forces are found by considering the measure, cos−1(
𝐅

‖𝐅‖
 .

𝐅QM

‖𝐅QM‖
). We also compute force 

error percentiles, presented as cumulative histograms of error plotted on a logarithmic scale; 

we refer to these below as S-curves. 

 

4. Results and Discussion 

4.1 Analysis of Pairwise Forces  

To show our decomposition of total Cartesian force, 𝐅QM, produces chemically reasonable 

pairwise forces, 𝐪QM, we first apply it to a series of structures of aspirin. These structures and 

their corresponding total forces were obtained from three potential energy surfaces, obtained 

at the B3LYP/6-31G* level of density functional theory. The optimisations34 were carried out 

for the aspirin conformer with minimum at τ1 = 0.4° and τ2 = 73.5°, where τ1 is defined as C7-

O6-C8-O11 and τ2 as C6-C7-O13-C9 (Figure 4a).  

 

The first two scans are along aspirin’s R(C7-O13) and R(C8=O11) coordinates, corresponding to 

an ester C-O single bond and carboxylic acid carbonyl double bond respectively. The resulting 

decomposed force components q along these geometries are obtained via Equation 27 and 

indicate the expected potential energy curve for bonded atoms (Figure 5a): indeed, a suitably 

steeper curve is observed for the stiffer double bond of C8=O11. For both bonds, the 

decomposed force components q have the required properties of being smooth and continuous, 

and possessing a zero value at the potential energy stationary points, at distances of 1.38 Å and 

1.22 Å for C7-O13 and C8=O11 respectively (Figure 5a). Furthermore, they also have the 

expected property of being repulsive when the bonds are compressed and attractive as the 

bonds are extended.  

 



 

 

The third potential energy scan is around dihedral angle τ3 of aspirin, defined as C1-C6-O8-C10 

(Figure 5b). This corresponds to a 14 interaction between atoms C1
...O10 within the phenyl 

and carboxylate groups respectively. Once again, the pairwise force components q vary 

continuously, in a characteristically sinusoidal fashion, and have a potential energy is zero at 

τ3 = –1.0°, corresponding to a 14 distance of 2.71 Å, between atoms C1
 and O10. 

 

 

Figure 5   Interatomic force component 𝑞𝐴𝐵 (black solid lines) for aspirin (a) as a function of 

interatomic distance RAB for bonds C7-O13 and C8=O11; and (b) as a function of torsion angle 3: (b) 



 

 

C1
...O10 14 interaction. The corresponding potential energy curves, Escan, (blue dashed lines) are also 

shown for the three potential energy optimisation scans used to obtain the structures. 

 

We also evaluate the suitability of nuclear repulsion force 𝐪NR as an input feature for prediction 

of 𝐪QM or its electronic component, 𝐪elec . Firstly, we plot 𝐪elec against 𝐪NR for all interactions 

within the structures of the aspirin training dataset (Figure 6a). We note a strong inverse 

correlation between 𝐪NR and 𝐪elec . Both quantities exhibit very large ranges, from zero to ~103 

kcal mol-1 Å-1 in magnitude. The addition of these two large quantities of opposite sign 

(Equation 22) may portend problems in numerical accuracy regarding training and prediction. 

Next, we consider the corresponding plot of total pairwise force 𝐪QM against 𝐪NR  (Figure 6b). 

Here, we note that the range of total force is considerably reduced, to ~102 kcal mol-1 Å-1. In 

addition, various bands may be seen (Figure 6b). Similar banded clusters are observed for the 

malonaldehyde and toluene datasets (Supporting Information, Figure S3). 

 

 

Figure 6   Plot of nuclear repulsion forces 𝐪NR against (a) 𝐪elec and (b) the total pairwise force 𝐪QM , 

for the aspirin training set. 

 

On further examination, these bands arise from the different types of interaction present in the 

molecules. For example, we focus on the separate bands arising from carbon-oxygen 

(a) (b) 



 

 

interactions: those at higher values of nuclear repulsion force correspond to interactions 

between directly bonded atoms, as would be anticipated (Figure 7a,b); those clusters with lower 

internuclear repulsion involve more distant 13, 14 and higher interactions (Figure 7c,d,e). 

We observe that the nuclear repulsion force seems to correlate more strongly with the pairwise 

force 𝐪QM for 12 bonding interactions. Nevertheless, the 𝐪NR  do indicate some ability to 

discriminate between physically distinct pairwise interactions, as is required for an effective 

input feature for network training. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 



 

 

 

 

Figure 7   Plot of total pairwise force 𝐪QM against nuclear repulsion force 𝐪NR  for different carbon-

oxygen interactions in the aspirin training set, (a) singly bonded atoms C7-O13 (b) doubly bonded atoms 

C8=O11 (c) 13 interacting atoms C5
…O12 (d) 14 interacting atoms C1

…O10 and (e) 15 interacting 

atoms C4
…O11. 

 

4.2 Network Optimisation 

Therefore, the pairwise forces 𝐪Ref  derived from the total Cartesian atomic forces F appear to 

exhibit suitable physical attributes of the molecular system. Next, we explore the ability of 

neural networks to predict F by learning the decomposed 𝐪Ref of the molecule. We focus here 

on aspirin (Figure 4a) as a challenging model system, with a variety of chemical functionality 

and conformational flexibility. A number of neural network architectures and training schemes 

are considered, as summarised in Table 1 (further details are given in Computational Details 

and Figure 3).  

 

Table 1  Summary of network models trained and assessed in this work, including reference 

for fitting, D1 (𝐪QM) and D2 (𝐪elec); and architecture, i.e. presence of shortcut connections 

(residual); whether network was static or evolved (greedy blockwise); and number of blocks 

(e) 

 



 

 

(Nblock). Input to all the networks were the derivatives of the internuclear repulsion energy as 

expressed in an interatomic basis, 𝐪NR.  

model  reference architecture Nblock 

PFN3a greedy blockwise/residual  1 

PFN2a static/residual 2 

PFN1a static 1 

PFN3b greedy blockwise/residual 5 

PFN1b static 1 

PFN2b  static/residual 4 

PFN2c  static/residual 6 

 

 

For training of the first pairF network, PFN3a (Table 1), we decompose the reference total 

forces FQM on atoms of aspirin for each of its ~50,000 structures into 𝐪elec pairwise forces 

(scheme D2). We apply a greedy blockwise scheme to evolve the network architecture. 

According to the convergence criterion, only a single additional block was added to the 

network. The PFN3a was then applied to prediction of the forces within the test set of 1.7 x 

105 aspirin structures, corresponding to 3.6 x106 force vectors. The resulting mean absolute 

error in total force was found to be 5.51 kcal mol-1 Å-1 (Table 2). To explore the effect of 

network architecture manually, we also trained network PFN2a against 𝐪elec, consisting of a 

fixed two-block architecture without freezing any weights (Figure 3b, Table 1). However, 



 

 

network PFN2a offered only a modest improvement on PFN3a, with an MAE of 4.83 kcal 

mol-1 Å-1 (Table 2). Static network PFN1a was also constructed, comprised of a single hidden 

block, but crucially trained against total pairwise forces 𝐪QM (scheme D1). The trained network 

yielded significantly improved performance, with a MAE in total force of 1.91 kcal mol-1 Å-1 

(Table 2).  

 

Consequently, a second network with the PFN3 architecture was developed in a greedy 

blockwise fashion. However, the target this time was total pairwise force q according to the 

D1 scheme. This led to network PFN3b, with five hidden blocks (Table 1). This network 

exhibited further improvement on PFN1a and particularly over PFN3a, with a MAE in force 

of 1.72 kcal mol-1 Å-1 (Table 2). For the former, the increased accuracy in prediction appears 

to stem mainly from improved prediction in the direction of the total force vector, with a lower 

angle MAE of 0.027 kcal mol-1 Å-1 (Table 2).  

 

Table 2:  Accuracy of pairF network PFN3b for predicting Cartesian forces F of the aspirin, 

toluene and malonaldehyde test datasets. Errors in kcal mol−1Å−1. 

pairF 

network 

Total 

MAE       RMSE 

Magnitude  

MAE        RMSE 

Angle  

MAE         RMSE 

PFN3a 5.51 7.33 5.83 7.78 0.0898 0.1250 

PFN2a 4.83 6.50 5.28 7.17 0.0758 0.1070 

PFN1a 1.91 2.59      1.97  2.68 0.0303 0.0425 

PFN3b 1.72 2.39      1.96 2.80 0.0268 0.0402 

PFN1b 1.85   2.52      1.92    2.60    0.0296   0.0421 



 

 

PFN2b 2.98 4.02 3.19 4.33 0.0463 0.0662 

PFN2c 3.41 4.61 3.64 4.97 0.0530 0.0745 

 

 

In order to examine if the greedy blockwise training method produces better results than simply 

using fixed blocks, networks PFN2b and PFN2c were constructed, with four and six hidden 

blocks respectively; both were trained according to scheme D1 (Table 1). These networks 

exhibited a MAE in force of 2.98 and 3.41 kcal mol-1 Å-1 respectively, with lower accuracy 

than PFN3b in both magnitude and direction of predicted force vectors (Table 2). This suggests 

that the greedy blockwise training is more effective than simultaneous training of an entire 

network. Additionally, network PFN1b was constructed, consisting of a single block that had 

5000 rather than 1000 neurons in the first layer; the MAE in force was 1.85 kcal mol-1 Å-1, 

slightly higher than found for PFN3b (Table 2). 

 

Although it could be argued, based on MAE in force, that the performance of network PFN3b 

and e.g. PFN1a or PFN1b are very similar, it is important to consider not just the average force 

prediction error but also the distribution of errors. To this end, we also consider the percentage 

of pairwise force predictions made to an accuracy of 1 kcal-1 mol-1 Å-1, which we denote as 

metric, L1. We find the L1test value for PFN3b is 68.8% (Table 3), indicating that 68.8% of the 

3.6 × 106 force vectors in the aspirin test set were predicted to an accuracy of 1 kcal-1 mol-1 Å-

1 or better. By contrast, the L1test values for PFN1 and PFN1b were 48.0% and 49.0% 

respectively (Table 2). Furthermore, network PFN3a achieved an L1test of only 25.6%.  

 



 

 

Table 3  Fraction of points with MAE in pairwise forces 𝐪QM or 𝐪elecof less than kcal mol-1 Å-

1 for prediction of aspirin test set (L1test) and training set, L1train (in parentheses) by neural 

network models. 

pairF network L1test (L1train) 

PFN3a 25.8 (26.0) 

PFN2a 31.0 (32.0) 

PFN1a 48.0 (49.5) 

PFN3b 68.8 (76.7) 

PFN1b 49.0 (51.2) 

PFN2b 45.2 (46.3) 

PFN2c 37.6 (38.2) 

 

4.3 Application of PairF Network PFN3b 

Given the ability of pairF-Net PFN3b to provide the most accurate forces for aspirin, we next 

apply this network to two other small organic molecules, malonaldehyde and toluene (Figure 

4). As before, a network was trained for each molecule according to scheme D1, based on 

pairwise decomposition of the atomic force datasets of the MD17 database (Figure 4). The 

MAEs in total force for the trained PFN3b networks when applied to the malonaldehyde and 

toluene test sets were 0.54 and 1.25 kcal-1 mol-1 Å-1 respectively (Table 4). The very good 

performance of PFN3b for the malonaldehyde test set, which contains ten times more 

molecular structures than in its training set (Figure 4), does appear to arise in particular from a 

low angle MAE of 0.0099 kcal-1 mol-1 Å-1 (Table 4), i.e. it predicts well the sign of the force 

components as well as the magnitude. We also consider the spread of errors according to L1 

values: again, malonaldehyde has the best performance, with a L1test value of 87.9% compared 

to 58.4% for toluene and 68.8% for aspirin (Table 4).   



 

 

 

Table 4   Accuracy of pairF network PFN3b for predicting Cartesian forces F of the aspirin, 

toluene and malonaldehyde test datasets (L1 for training datasets given in parentheses). Errors 

in kcal mol-1 Å-1. 

Molecule Total 

MAE     RMSE 

      Magnitude 

MAE         RMSE 

      Angle  

MAE     RMSE 

L1test 

(L1train) 

aspirin 1.72 2.39 1.96 2.80 0.0268 0.0402 68.8 (76.7) 

malonaldehyde 0.54 0.72 0.58 0.77 0.0099 0.0147 87.9 (90.8) 

toluene 1.25 1.71 1.44 1.97 0.0200 0.0300 58.4 (65.8) 

 

We may also consider the spread of errors according to their force error percentiles; these 

cumulative distributions take an S-shaped form and we refer to them subsequently as S-curves. 

We observe broadly similar S-curve profiles for aspirin, malonaldehyde and toluene (Figure 

8). The value of these curves at an error of 1 kcal-1 mol-1 Å-1 corresponds to the L1 values 

reported in Tables 3 and 4. Specifically, the good performance in prediction of forces for 

malonaldehyde is reflected in a larger intercept value on the x-axis, of 18 kcal-1 mol-1 Å-1, as 

compared to values of 10 and 9 kcal-1 mol-1 Å-1 for aspirin and toluene, respectively (Figure 8). 

Furthermore, the S-curve plateaus at a lower error for malonaldehyde than the other two 

molecules, at a value of 3 kcal-1 mol-1 Å-1 (Figure 8b), indicating a narrower range of errors for 

this molecule.  

 

An interesting comparison of these network predictions of total force is with that furnished by 

a quantum chemical model. Therefore, we compute forces on the aspirin atoms of aspirin in 

the training set via the semiempirical QM Hamiltonian, PM6.35 The S-curve for PM6 (the red 

curve in Figure 8a) appears significantly right-shifted relative to the PFN3b profile, with errors 



 

 

occurring in excess of 10 kcal-1 mol-1 Å-1. The PM6 predictions have an associated L1train value 

of only 38.1%, indicating notably poorer performance than the PFN3b network in reproducing 

the PBE + vdW-TS forces. 

 

 

Figure 8  Force error percentile S-curves for (a) aspirin, (b) malonaldehyde and (c) toluene, using neural 

network PFN3b applied to the training data set of forces (dotted black), the test data set of forces (solid) 

and, for aspirin, via the PM6 Hamiltonian (red) for the forces acting on the atoms in the training data set. 

The error is defined as ‖𝐪Ref − 𝐪ANN‖
2
.  

 

To assess how well the network PFN3b predicts interactions between different atom types, we 

consider the distribution of accuracy measure L1 across atom pairs (Figure 9). For aspirin, it is 

evident that the interactions fall into two approximately equally sized sets (Figure 9a), one with 

a set of L1 values of 70% or more, and a second set of less well predicted pairwise forces, with 

L1 values of 60% or less. This profile also appears to be reflected in other networks, eg. static 

PFN2b (Figure 9b). Within the latter set is a group of interactions indexed as #148 to #210 

(Figure 9a). These involve aromatic hydrogens H16, H17 and H18 of the phenyl group and the 

methyl group hydrogens; it would appear to suggest some complexity in their coupling to other 

regions of the aspirin molecule. Also less well predicted in aspirin are the forces for interactions 

#36 to #65 (Figure 9a) involving carboxylic acid oxygen atoms O10 and O11. Similarly lower 

predictive accuracy is found for the methyl hydrogens within toluene (#25 to #42, Figure 9d); 

this again may indicate some subtlety in their interatomic interactions.  

(a) 

 

(b) 

 

(c) 

 



 

 

 

 

 

Figure 9   The percentage of points with an error below 1 kcal-1 mol-1 Å-1 (L1) for each pairwise force 

prediction for networks (a) PFN3b and (b) PFN2b for the aspirin test set; and PFN3b for (c) 

malonaldehyde and (d) toluene test sets. 

 

However, as expected from preceding analyses above, the L1 values for interactions within 

malonaldehyde do not fall below 70%, indicating a good ability to reproduce the pairwise 

forces for test set geometries of this small molecule (Figure 9c). These test structures are ab 

initio MD simulation geometries of malonaldehyde, obtained from the reference MD17 

database (see Methods). Indeed, when we use the PFN3b network here for force prediction, to 

guide a molecular dynamics simulation of malonaldehyde in vacuo, we observe the generation 

of conformations lying within the manifold of the MD17 phase space (Figure 10): the PFN3b 

trajectory samples well in the broad low energy region around OCCC torsion angles (1,2) of 

b 

 

a 

 

d 

 

c 

 



 

 

(100,100) and begins to sample the symmetric (-100,-100) region (red, Figure 10). Both of 

these regions are well populated in the MD17 data set (black, Figure 10).  

 

Figure 10   Molecular dynamics trajectory of OCCC torsion angles 1 and 2 (in deg) of malonaldehyde 

in the gas phase over 20 ps, using forces generated by the PFN3b network (red); and comparison with 

sampled points from MD17 database (black). Angles 1 and 2 defined in Figure 4. Simulation performed 

in microcanonical ensemble with timestep of 0.5 fs and initial velocities calculated from the forces. 

 

5. Conclusions 

In this work, we have introduced the pairF-Net approach to predict atomic forces. For the small 

organic molecules considered here, the best pairF-Net model yields an MAE in total atomic 

Cartesian force prediction on the order of 1 kcal-1 mol-1 Å-1. This error in prediction is 

comparable to other machine learned force predictions methods such as GDML17 and DPMD.19 

The strength of the pairF-Net method is in its chemically intuitive simplicity, with the 

application of an artificial neural network to learn the pairwise forces between atoms, needing 

to make only scalar predictions to predict vector quantities in an intuitive manner. The pairwise 



 

 

forces obtained from decomposition of the total atomic forces are straightforward to obtain 

from decomposition of the total atomic forces and capture expected features of interatomic 

interactions, such as bond curves and periodic torsional potentials. In adopting this approach 

to constructing a force potential from pairwise forces, the method resembles a molecular 

mechanical force field approach but without making a priori assumptions about the functional 

form of atomic interactions.  

 

Our best performing network for prediction of force, PFN3b, is obtained via dynamic evolution 

of its architecture. We also find fitting of total pairwise force 𝐪QM is superior to fitting only the 

electronic term 𝐪elec. In part, the lower performance in fitting to 𝐪elec reflects the greater 

numerical challenge of fitting these very large magnitude quantities and then adding them to 

sizable 𝐪NR values to produce a smaller total 𝐪Ref and from that, the reconstructed total F. 

Furthermore, we note that 𝐪elec is obtained as the solution to coordinate transformation with 

minimum Euclidian norm; while the pairwise force q adopts the expected profile (eg. Figure 

5), there is no guarantee that 𝐪elec  will exactly equate to the physically correct electronic 

pairwise forces in the molecular system.   

 

Although the performance of the pairF-Net approach is encouraging, we note that some 

interactions, particularly within toluene and aspirin, are less well predicted. These are larger 

molecules than malonaldehyde and have rather more interactions to be learned. Consequently, 

further refinement of the scheme is underway to develop alternative decomposition schemes 

and input parameters, as well as to incorporate permutational invariance, which would aid in 

the accurate modelling of carboxylate oxygens and methyl hydrogens for example. A further 

point to note with respect to applying these force models within molecular dynamics 

simulations is the need for judicious selection of training data points. The training sets for these 



 

 

molecules, having been derived from AIMD simulations, and although acquired at 500 K, still 

largely sample around low energy structures (Figures 10 and S4). Thus, regions of transition 

between conformers are therefore less well represented and may lead to problems in force 

prediction when these intermediate structures are encountered during MD simulations. 

Consequently, more complete training sets may be required, eg. from adaptive sampling 

schemes15 or other methods to generate suitable datapoints.  

 

Supporting Information  

Information on normalisation scheme, network convergence and further analyses of pairwise 

forces and training data set.  
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