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Abstract: Dual palladium/photoredox-catalysis provides an effective method for the asymmetric synthesis of 

vicinal α,β-tri/tetra- or α,β-tetra-substituted homoallylic alcohols. Regio- and enantioselective decarboxylative 

allylic alkylation of vinyl cyclic carbonates is reported using Hantzsch type esters as radical precursors. The 

developed methodology combines the use of versatile and accessible reagents and can be operated under mild 

reaction conditions giving the target molecules in appreciable to good yields, high branch-selectivity and 

appreciable enantiomeric ratios of up to 94:6. This protocol marks a rare example of the use of prochiral 

electrophiles for the creation of vicinal congested carbon centers 

Introduction: Chiral quaternary carbon centers are ubiquitous in natural products and pharmaceuticals,1 but still 

present chemical challenges in their synthesis. While significant progress has been made over the recent decades 

in the asymmetric construction of quaternary carbon stereocenters,2 the enantioselective formation of acyclic 

vicinal tetrasubstituted carbon centers represents a more daunting challenge.1a+b,3 Among the strategies that have 

proven to be both versatile and effective, asymmetric allylic alkylation (AAA) represents one of the most powerful 

methods for the construction of carbon-carbon bonds resulting in quaternary carbon stereocenters.2a-b,g,4 Two 

main AAA approaches are known that exploit stereocontrol over either prochiral nucleophiles5 or prochiral 

electrophiles.6 Although various efficient metal-assisted protocols have been established, to date the 

enantioselective preparation of organic target molecules comprising acyclic vicinal tetrasubstituted carbon 

centers utilizing prochiral electrophiles remains underexplored (Scheme 1a). 

Pd-catalyzed asymmetric allylic substitution reactions of vinyl epoxides7 and vinyl cyclic carbonates (VCCs)8 

serving as prochiral electrophilic allylic surrogates have been recently reported as efficient approaches to forge 

compounds featuring a tetrasubstituted carbon stereocenter. While only a handful of studies report the efficient 

use of olefin-substituted VCCs in allylic alkylation (Scheme 1b, R2-R4 ≠ H)9 and more particularly towards branched 

allylic products,9h,i as far as we are aware only two reports exist that briefly discuss the use of more elaborate 

carbonate ring substituted congeners (Scheme 1b, R5 and R6 ≠ H).9f,g The successful conversion of these latter 

types of congested substrates in transformations leading to compounds having vicinal tetrasubstituted carbon 

mailto:akleij@iciq.es
mailto:blimburg@iciq.es


centers would greatly expand the application potential of VCCs and advance the synthesis of otherwise elusive 

carbon stereocenters. 

 

Scheme 1. (a) Limited Progress with Prochiral Electrophiles, (b) Limitations in the use of VCCs (b) and (c) Current Approach towards 
Elusive Stereocenters using AAA Strategies. 

In order to expedite the potential of these challenging functional substrates in allylic alkylation processes, we 

envisioned that the use of dual transition metal/photoredox catalysis10 could offer an alternative yet powerful 

approach that could circumvent the limitations encountered in classical catalytic allylic substitution reactions (cf., 

Scheme 1b). Herein, we report the combination of photoredox and Pd-catalyzed AAA of vinyl cyclic carbonates 

using Hantzsch type esters as radical precursors11 affording homoallylic alcohol products with either α,β-tri/tetra- 

or α,β-tetra-substituted carbon centers (Scheme 1c). The developed protocol combines mild reaction conditions, 

avoids the use of stoichiometric organometallic reagents and produces a series of products with acyclic vicinal 

tetrasubstituted carbon centers in good yields and high regio- and enantiocontrol. 



 

Figure 1. Phosphine-based ligands of Table 1. 

Results and discussion: We started our investigation by using VCC 1a and substituted Hantzsch ester 2a and 

examining the envisioned coupling while screening a variety of chiral ligands, Ir-based photocatalysts, solvents 

and base additives (Supporting Information, SI: Tables S1-S5). The most relevant selection of these data is 

provided in Table 1. After determining the most effective photocatalyst (PC, Ir(ppy)2(dtbbpy)PF6), type of base 

(Cs2CO3) and solvent (acetonitrile), a wide variety of chiral diphosphine ligands (see Figure 1 and SI) were 

scrutinized in the benchmark protocol.  

The use of BINAP as a chiral ligand (entry 1) did not lead to any asymmetric induction and 3aa was produced in a 

low yield (25%). The utilization of Segphos type diphosphines proved to be more productive (entries 2-4), and 

variation of the P-aryl groups gave 3aa in 60% yield with excellent regio- (b:l >95:5) and appreciable enantio-

selectivity (er = 86:14). Structurally related BIPHEP and Garphos ligands (entries 4-8) also provided good results, 

with the use of L5 being most efficient (entry 5: 71%, b:l >95:5, er = 89:11). 

 

  



Table 1. Part of the Screening Data towards the Synthesis of Homoallylic Alcohol 3aa.a 

 

entry L* yield (%)a b/la era 

1 L1 25 65:35 0 

2 L2 26 64:36 64:36 

3 L3 31 70:30 63:37 

4 L4 60 >95:5 86:14 

5 L5 71 >95:5 89:11 

6 L6 66 >95:5 84:16 

7 L7 65 >95:5 86:14 

8 L8 60 93:7 85:15 

9 L9 12 22:78 - 

10 L10 16 31:69 50.5:40.5 

11 L11 12 28:72 - 

12 L12 28 73:26 40:60 

13 L13 30 61:39 63:37 

14 L14 11 27:73 - 

15 L15 12 22:78 - 

16b L4 65 >95:5 87.5:12.5 

17c L4 25 61:39 87.5:12.5 

18d L4 0 - - 

19e L4 71 >95:5 88:12 

20e L5 75 >95:5 89:11 

a1a (0.10 mmol), 2a (0.15 mmol), Ir(ppy)2(dtbbpy)PF6 (1.0 mol%), Pd2(dba)3 (2.5 mol%), L* (6.0 mol%), Cs2CO3 (0.10 mmol) were combined 
in CH3CN (2.0 mL) at 25 °C under blue LED radiation (445 nm, 0.7 A, corresponding to a photon flux of 1.2 µeinstein/s) for 2 h. Yields and 
b/l ratios were determined by 1H NMR analysis using CH2Br2 as an internal standard. Enantiomeric ratios (er) were determined by UPC2. 
bIn the absence of Cs2CO3. cIn the absence of Ir(ppy)2(dtbbpy)PF6. dIn the dark. eIn the absence of Cs2CO3, under blue LED radiation (445 nm, 
1.0 A, corresponding to a photon flux of 1.6 µeinstein/s). 

 



The use of other diphosphine ligands (L9-L15) did not improve the process outcome (entries 9-15). Further 

variations of the protocol (entries 16-19) were first carried out with (R)-DTBM-SegPhos being cheaper than (R)-

3,5-tBu-MeOBIPHEP, but providing nearly the same regio- and enantiocontrol (cf., entries 4 versus 5). In the 

absence of Cs2CO3, 3aa was obtained in a slightly higher yield and er (entry 16 versus 4), and therefore was omitted 

for the optimized conditions (vide infra). Omitting the iridium PC (entry 17) gave 3aa in 25% yield suggesting that 

Hantzsch ester 2a could itself also serve as a photoreductant to form a radical cation that subsequently generates, 

through homolytic cleavage, the requisite alkyl radical for the CC coupling.12 As expected, no product was 

detected without blue LED irradiation, but by further increasing the light intensity, the yield of 3aa increased to 

71% (entry 19). With these alternative conditions in hand, we then re-used (R)-3,5-tBu-MeOBIPHEP L5 as ligand, 

which afforded the product in 75% yield and with an er of 89:11 (entry 20). 

 

Scheme 2. Product scope using various VCCs to generate quaternary carbon stereocenters. Reaction conditions: 1 (0.10 mmol), 2a (0.15 
mmol), Ir(ppy)2(dtbbpy)PF6 (1.0 mol%), Pd2(dba)3 (2.5 mol%), (R)-3,5-tBu-MeOBIPHEP L5 (6.0 mol%), CH3CN (2 mL),  2 h, blue LED (445 nm, 
1 A, corresponding to a photon flux of 1.6 µeinstein/s). Yields of the isolated, column-purified products are reported. The enantiomeric 
ratios (er values) were determined by UPC2. The b/l ratios were determined by 1H NMR analysis. 

With these optimized conditions we then examined the generality of similar substrate combinations providing 

homoallylic alcohols with quaternary carbon stereocenters (Scheme 2, 3aa-3ja). Variation of the aryl substituents 

on the VCC in the presence of Hantzsch ester 2a generally provided the homoallylic alcohols with remarkable 

branch-selectivity (b:l >95:5) and in appreciable isolated yields of up to 78% (3ga). Good enantio-induction levels 

of up to 89:11 er for the majority of the products were achieved except for 3fa, 3ha and 3ja. Whereas for 3ha the 

presence of the thiophen-2-yl group could interfere through coordination to Pd(allyl) intermediates, the use of a 



VCC with an additional substituent (R1 = Ph, 1j) on the vinyl group hence increasing the steric demand substrate 

activation was detrimental to both the product yield (33%) and optical purity (62.5:37.5 er). 

 

 

Scheme 3. Product scope using various VCCs to generate chiral homoallylic alcohols having vicinal tetrasubstituted carbon centers. Reaction 
conditions are the same as in Scheme 2. Yields of the isolated, column-purified products are reported. The enantiomeric ratios (er values) 
were determined by UPC2. The b/l ratios were determined by 1H NMR analysis. bReaction time was 4 h. cThe corresponding Hantzsch nitrile 
was used. 

In a second, more dedicated embodiment of the substrate scope we primarily selected VCCs with further 

substitution on the carbonate ring (Scheme 3). VCC 1k (incorporating a spiro-fused cyclohexyl group) was first 

chosen and combined with several Hantzsch esters furnishing 3ka-3kg.  In these sterically frustrated 

transformations, the b:l ratios remained in most cases practical allowing to isolate the pure, branched homoallylic 

alcohols in moderate to good yields (48-72%). Furthermore, the conversion of 1k proceeded smoothly with a 

quantum yield 6.8% leading to complete conversion within 20 min (see SI).13 Despite the more complex nature of 

these couplings compared to the ones presented in Scheme 2, slightly higher enantiomeric ratios of up to 92.5:7.5 

were noted. Increasing the size of the spiro-cycloalkyl group in the VCC (3la, 3lb and 3ld) was feasible and the 

protocol was effective towards the formation of chiral homoallylic alcohol products in reasonable yields and with 

X-ray of

(R)- 3ma



er values of up to 94:6. Next, an acyclic substitution on the tetrasubstituted VCC substrates was examined (i.e., 

1m) delivering the target products 3ma and 3mb with slightly higher b:l ratios and isolated yields (for 3ma, 74%, 

and 3mb, 86%). 

 

Scheme 4. (a) Scale-up and (b) product diversification. Reaction conditions: (i) BH3·THF, dry THF, 0 ºC, 3 h; then NaOH, H2O2. (ii) acryloyl 
chloride, DIPEA, CH2Cl2, rt, 2 h; then H2O + work up; then 2nd generation Hoveyda-Grubbs cat. (10 mol%), dry toluene, 80 ºC, 24 h. (iii) same 
as under (i). (iv)  SOCl2 (2 equiv), pyridine (5 equiv), CH2Cl2, 0 ºC, 2 h; then H2O at 0 ºC. See SI for further details. 

We also studied the use of a trisubstituted VCC (1n). Despite the excellent regioselectivity, the enantiocontrol was 

significantly lower while producing the product with low diastereocontrol.14 Finally, we used Hantzsch esters that 

would produce secondary radicals under the experimental conditions, leading to vicinal quaternary-tertiary 

carbons through a different route. In all these cases (3ah, 3ai and 3aj), the products were formed with high 

regiocontrol and er values adding further diversity to the developed methodology. The absolute configuration of 

the major enantiomer of compound 3ma was determined to be (R) by X-ray diffraction.15 

The synthesis of homoallylic alcohol 3ka could be conveniently scaled up (10-fold) as shown in Scheme 4a. We 

then used 3aa and 3ka for product diversification studies (Scheme 4b). Hydroboration/oxidation of 3aa provided 

access to 1,4-diol 4 in 72%; X-ray analysis revealed that the absolute configuration of the major enantiomer was 

(S).15 A metathesis/cyclization of 3aa in the presence of acryloyl chloride gave unsaturated lactone 5 (79%). Under 

similar reaction conditions as for 4, the hydroboration/oxidation of 3ka gave a Markovnikov type product (1,3-

diol 6, 94%)16 as an approximate 2:1 mixture of diastereoisomers. Dehydration of 3ka using thionyl chloride 

produced 1,4-diene 7 in 88% yield. 

Conclusion: In summary, we here describe a Pd-mediated dual catalysis approach that allows for transformation 

of previously unreactive VCCs into chiral homoallylic alcohols featuring vicinal, highly congested carbon atoms. 

The developed protocol combines an atypical preference for the formation of branched regioisomers in a 

X-ray of 4



sterically challenging allylic substitution event, and produces the products with enantiomeric ratios of up to 94:6. 

The present results mark a significant step forward in the use of modular VCCs in challenging enantioselective 

syntheses. 
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