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Abstract

The quantum mechanical bespoke (QUBE) force field approach has been devel-

oped to facilitate the automated derivation of potential energy function parameters

for modelling protein-ligand binding. To date the approach has been validated in the

context of Monte Carlo simulations of protein-ligand complexes. We describe here

the implementation of the QUBE force field in the alchemical free energy calculation

molecular dynamics simulation package SOMD. The implementation is validated by

computing relative binding free energies for two congeneric series of non-nucleoside in-

hibitors of HIV-1 reverse transcriptase using QUBE and AMBER/GAFF force fields.

The availability of QUBE in a modern simulation package that makes efficient use of

GPU acceleration will greatly facilitate future high-throughput alchemical free energy

calculation studies.
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Introduction

The ability to accurately predict protein-ligand binding affinity is invaluable in the early

stages of drug discovery. High-throughput alchemical free energy calculations are an at-

tractive tool for this task, enabling rigorous calculation of binding free energies. However,

accuracy remains limited by the description of interatomic interactions and the sampling of

conformational space.1–4 The potential energy surfaces of protein-ligand complexes are al-

most always described by molecular mechanics (MM) force fields, of which AMBER,5 OPLS,6

CHARMM7 and GROMOS8 are popular examples. These transferable biological force fields

all employ similar functional forms and their parameters are typically fit to reproduce the

quantum mechanical (QM) and/or experimental properties of small organic molecules.

Recently, an alternative approach to biomolecular force field design has been proposed,

named the QUantum mechanical BEspoke (QUBE) force field, in which virtually all potential

parameters are derived specifically for the molecule under study directly from a small number

of QM calculations. QUBE shares its functional form with the OPLS force field, and so is

rapid to evaluate in the context of alchemical free energy calculations. Full details may

be found elsewhere.9,10 In brief, non-bonded (charge and Lennard-Jones) parameters of the

QUBE force field are derived from atoms-in-molecule partitioning of the ground state QM

electron density,11,12 in particular, employing the Tkatchenko-Scheffler relations for van der

Waals interactions.13 QUBE bond and angle parameters are derived from the QM Hessian

matrix, using the modified Seminario method,14,15 while anharmonic dihedral parameters are

fit to relaxed QM torsion scans.9 Small molecule QUBE force fields may be derived using the

QUBEKit python package, and they have been extensively validated against experimental

liquid properties.9 Atoms-in-molecule protocols are available as part of the ONETEP linear-

scaling density functional theory software,16 and hence QUBE non-bonded parameters may

be readily derived for entire proteins comprising thousands of atoms. These parameters have

been supplemented by compatible libraries of bonded parameters, and simulations of protein

dynamics using the resulting QUBE force fields have been validated against experimental
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NMR observables.10

To date, the QUBE force field has been used to compute absolute binding free energies of

a series of benzene derivatives to the L99A mutant of T4 lysozyme17 and relative binding free

energies of several flexible inhibitors of p38α MAP kinase.18 In both cases, mean unsigned

errors (MUEs) in protein-ligand binding free energies of under 1 kcal/mol were reported.

Such accuracy was shown to be broadly similar to that of the widely-used OPLS force field

in these cases. In the initial development of QUBE, the OPLS functional form has been

retained for compatibility with existing MM software (for example, these studies used the

MCPRO software19). However, now that a baseline accuracy has been established, future

development strategies will target rapid and systematic evolution of the force field functional

form. Such a strategy involves identifying key mappings between QM observables (such as

the electron density) and force field parameters. Examples include the automated addition

of off-center charges to account for anisotropic electron density,9 which has not yet been

thoroughly explored in protein–ligand binding studies,11 and higher-order dispersion terms

to move beyond the dipole–dipole r−6 interaction.20,21

For rapid testing of these new force fields, it is desirable to interface with free energy soft-

ware that can be readily adapted to new force field functional forms whilst achieving efficient

performance on modern computing hardware. Options for high-throughput alchemical free

energy simulations include Schrödinger’s commercial FEP+ package,22 as well as AMBER5

and GROMACS.8 However, packages such as these tend to be developed specifically for a

given force field and file format, reducing interoperability and ease of comparison. Indeed,

a recent study of relative hydration free energies using different simulation packages, high-

lighted the careful steps required to reproduce this quantity across simulation packages.23 For

this reason, here we implement QUBE in the Sire molecular simulation framework24 which

includes the SOMD molecular dynamics engine for free energy calculations. SOMD interfaces

with the OpenMM toolkit for GPU acceleration.25 We also make use of the BioSimSpace

library which facilitates system setup and interoperability between a range of biomolecular
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simulation packages, such as AMBER, GROMACS, and CHARMM, to facilitate preparation

of QUBE inputs.26 SOMD has been used within the Sire molecular simulation framework

and successfully applied to alchemical free energy studies on a range of drug-like fragments,

carbohydrates and host-guest systems.27–37

The automated setup and processing of alchemical free energy calculations using Sire,

BioSimSpace, SOMD and OpenMM has recently been implemented in Cresset’s Flare pack-

age,38 and benchmarked against 220 ligands bound to 14 protein targets, with accuracy

comparable to previous reports.3,8,22 Thus, the SOMD framework provides a promising basis

for implementation and future benchmarking of alchemical transformations using the QUBE

force field. In this paper, we develop and distribute the file parsers that allow users to run

QUBE simulations of protein-ligand complexes in the Sire and OpenMM molecular simula-

tion frameworks. We further demonstrate the use of the QUBE force field in alchemical free

energy simulations with focus on datasets created from extensive work on the HIV-1 reverse

transcriptase (HIV-1 RT) protein target by the Jorgensen group.39–43

HIV-1 is one of two strains of HIV which cause AIDS; the most advanced stage of the

HIV infection. The rapid replication of HIV-1 can lead to errors in viral replication and

virus evolution, causing difficulties for effective vaccine development.44 There are three viral

enzymes that are targeted for drug development, one of which is HIV-1 reverse transcriptase

(RT). HIV-1 RT is an asymmetric heterodimer with two subunits: p66, the larger of the two

subunits, which contains the active sites of the two enzymatic functions of RT, and p51, the

smaller subunit which has a structural role.44 HIV-1 relies on RT to copy its single-stranded

RNA genome into a double stranded DNA copy before it can be integrated into the host cell

genome; preventing this reduces viral replication. RT first binds to DNA or RNA, followed

by the binding of deoxynucleoside triphosphate (dNTP) in a two-step process, to form a

tertiary complex. This induces a conformational change, enabling the 3’-hydroxyl of the

elongating strand to attack the α-phosphate of dNTP, before the elongated DNA is released

from RT.45
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The molecules investigated here are potential non-nucleoside inhibitors of HIV-1 RT

(NNRTIs), which block polymerase activity of RT.39–42 NNRTIs are non-competitive in-

hibitors, binding to a hydrophobic allosteric pocket which is adjacent to the polymerase

active site, causing a conformation change in the enzyme, thus preventing the substrate

from binding.44 The allosteric site consists of 15 residues in the p66 subunit (L100, K101,

K103, V106, T107, V108, V179, Y181, Y188, V189, G190, F227, W229, L234, and Y318)

and one residue in the p51 subunit (E138). As shown in Figure 1(A), the binding pocket

accommodates well-packed aryl-aryl interactions with Tyr181, Tyr188, and Trp229.40 There

is room within the hydrophobic allosteric site for potential NNRTIs to venture toward Pro95,

located above Tyr181 and below Trp229.

Figure 1: (A) Example X-ray crystal structure of the HIV-1 RT NNRTI binding site
(PDB: 5ter) with a bound catechol diether inhibitor, and key amino acids highlighted.40

(B) Markush structures of group 1 (2-naphthyl analogs) and group 2 (indole, indolizine and
benzofuran analogs) compounds.39,40 (C) The fragments used to generate torsional param-
eters, with the dihedral angles that were fit for each fragment highlighted.

Jorgensen and co-workers have worked on the HIV-1 complex for over 20 years, developing

bicyclic NNRTIs targeting HIV-1 RT; initially pursuing diarylamines and pyrimidinyl- and

triazinyl-amines.40,41,46,47 In an effort to replace reactive cyanovinyl groups present in early

designs, the group used free energy perturbation (FEP) calculations to scan viable scaffolds,

and found indoles, indolizines and benzofurans to be the most viable options (Figure 1(B),
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group 2).39 Synthetic studies and assays were conducted, and structural characterisation

with X-ray crystallography confirmed their findings, showing good positioning in the al-

losteric binding site. This work uncovered novel, potent NNRTI agents that displayed low

cytotoxicity and good solubility.

Following their research with indolizine variants,39 Jorgensen and co-workers investigated

bicyclic replacements to overcome lower potency towards the Y181C viral mutation, subse-

quently focusing on naphthyl analogues.40 Using X-ray crystal structures for various catechol

diethers bound to wild type (WT) and other HIV-1 RT variants, the group used de novo

design and and free energy calculations40 to build alternative 2-naphthyl compounds (Fig-

ure 1(B), group 1). Despite their larger size, these are accommodated by the NNRTI binding

site and are viable if the cyano group is in the 7-position. This work subsequently generated

several analogs for synthesis, with good potency against both the WT virus, and mutant

strains.

Here, we chose 10 compounds from the 2-naphthyl dataset40 (group 1, Table 1) and 12

compounds comprising indoles, indolizines, and benzofurans from earlier work39 (group 2,

Table 2). We focused on these two datasets as group 1 exemplifies small side chain transfor-

mations, whilst group 2 covers a much wider potency range, including heterocyclic substitu-

tions that are expected to provide a challenge for force field design. The general structure of

each group is displayed in Figure 1(B). For each dataset we can compare computational find-

ings with experimental inhibitory activity measured in MT-2 cell assays, which are presented

in Tables 1 and 2.39,40

In what follows, we report the derivation of force field parameters for the protein and

small molecules with the QUBEKit software, and describe our new interface with the SOMD

package. We compute relative binding free energies for each of the inhibitors to the HIV-1

RT target, described above, and compare our data with experiment and with the widely

used GAFF2 and AMBER force fields.
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Table 1: Group 1 experimental EC50 inhibitory activity in WT HIV-1 RT assays.40

Compound R1 R2 R3 EC50 (nM)
1a F Cl H 5.0
1b F Me H 7.8
1c Cl Me H 6.2
1d Me Cl H 5.0
1e Me Me H 3.5
1f Et Me H 6.0
1g Pr Me H 21.0
1h iPr Me H 16.0
1i Me F F 58.0
1j Me Me F 1.9

Table 2: Group 2 experimental EC50 inhibitory activity in WT HIV-1 RT assays.39

Compound R1 R2 X Y Z EC50 (nM)
2a H H - N - 0.38
2b Me H - N - 0.9
2c Me F - N - 2.0
2d F F - N - 0.4
2e H F - N - 2.7
2f H Cl - N - 5.1
2g H F - - N 17
2h H F O - - 40
2i Me F O - - 260
2j H H NH - - 56
2k Me H NH - - 10
2m Cl H NH - - 340
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Computational Methods

Protein and Ligand Setup

Simulations for groups 1 and 2 were based on the initial crystal structures with PDB codes

5ter and 4mfb, respectively. The protein was pre-processed using the visualization software

Maestro.48 All residues further than 15 Å from the ligand binding site were removed, and

dangling bonds were capped using NME and ACE groups. The final system sizes were 376

and 384 residues for groups 1 and 2, respectively. The protein underwent a short minimiza-

tion and equilibration with backbone atoms restrained. Starting from the ligands in the two

crystal structures (that is, compound 1c for group 1, and compound 2a for group 2), initial

structures for all 22 ligands were built, and hydrogens added using Maestro.

For direct comparison with QUBE on this data set, we employ the widely-used Am-

berff14sb force field for the protein and GAFF2 for the ligands (hereafter referred to as

AMBER). BioSimSpace was used to parameterize the proteins and ligands, generating AM-

BER/GAFF2 parameters and their charges whilst utilizing the AM1-BCC charge model for

the ligands. Each ligand was combined with the corresponding protein, and both unbound

ligands and the complexes were solvated using the TIP3P water model with cubic box sizes

of 26 Å and 88 Å respectively. Short equilibration simulations were run using BioSimSpace

for every solvated system to produce files ready for use in free energy calculations.

Ligand Preparation with QUBEKit

QUBEKit9 interfaces with the Gaussian0949 and ONETEP16 QM software packages to per-

form bond, angle, torsion, charge and Lennard-Jones parameter derivation. BOSS/MCPRO

style z-matrices, and the corresponding PDB files, of the ligands were generated using the

LigParGen50 web server. Gaussian09 input files were prepared using QUBEKit. Struc-

tural optimizations and Hessian matrix calculations were performed with the ωB97X-D51

functional and a 6-311++G(d,p) basis set. Harmonic bond stretching and angle bending pa-
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rameters were derived using the modified Seminario method,14,15 with a vibrational scaling

factor of 0.957.15

Non-bonded parameter derivation was performed with the linear-scaling DFT code,

ONETEP,16 using previously reported protocols.9 The ground state electron density was

computed using an implicit solvent model with a dielectric of 4 to model induction effects in

an effective manner.11 The DDEC module implemented in ONETEP was used to partition

the electron density and assign atom-centered point charges and atomic volumes.9,12,52,53

Partitioning was performed with an IH to ISA ratio of 0.02. Lennard-Jones parameters were

derived by QUBEKit from the atomic volumes using the Tkatchenko-Scheffler method.11,13

No off-site charges were used in this work.9

Torsion parameter fitting follows the general methods used in previous studies,9,18 though

here we employ an interface between QUBEKit and the TorsionDrive package,54 which im-

proves the quality of both QM and MM torsion scans through its recursive wavefront prop-

agation algorithm. QM torsion scans use the same functional basis set as used to derive the

bond and angle parameters above. To aid QM optimization and save computational expense,

torsional scans were conducted on core fragments of the ligand sets (Figure 1(C)). The it-

erative fitting algorithm is described in the Supporting Methods. Non-flexible torsional

parameters (e.g. for ring systems) were taken from the OPLS force field as provided by the

LigParGen50 web server. For group 2, torsions involving the cyano group (N–C–C–C) were

assigned erroneous atom types by LigParGen, and so these parameters were manually set to

zero. Final force fields were output in xml format. A full list of commands for QUBEKit

can be found on our Github page (https://github.com/qubekit/QUBEKit).

Protein Preparation with QUBEKit and Sire

The truncated protein target underwent parameterization using the QUBE force field. ONETEP

calculations were performed to obtain the ground state electron density, atomic charges and

atomic volumes, in the same way as the ligands, as previously described.18
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To facilitate set-up of QUBE simulations for proteins, the software QUBEKit-pro has

been developed and is used here to generate OpenMM xml files from pdb and ONETEP

output files. Using QUBEKit as a base has the advantage that most features can be eas-

ily applied to the protein, allowing for charge checking and symmetrization, for example.

QUBEKit-pro builds the xml by first reading the PDB file to obtain the full topology of

the protein or fragment. This provides atomic positions and connectivity, as well as some

other information, such as the amino acid sequence and whether the protein is split into

subunits. At this stage, certain groups of atoms are picked out for later symmetrization such

as hydrogen atoms on the same methyl or amine groups.

With the structure read in, a parametrization step is performed. A stored, general protein

xml file contains bond, angle and torsion parameters, which have been generated specifically

for compatibility with the QUBE force field10 and are available for all atoms in standard

residues, including NME/ACE caps. This general xml is used to map parameters to the

protein in question, using the now stored structure. As described above for the ligands,

atomic charges and volumes are extracted from the ONETEP output file, symmetrized (if

required), and used to calculate the Lennard-Jones parameters.11

QUBEKit is then used to write final pdb and xml files for use with OpenMM. If the

protein consists of multiple chains, each molecule is returned as a separate file. Since each

atom in the protein is in a unique environment, and therefore has unique charge and Lennard-

Jones parameters, each atom in QUBEKit-pro is assigned a unique type.

Molecular systems in Sire can be created using AMBER style input files. The molecule

is described primarily with two files: the prmtop (or prm7) file that holds all the parameters

and the inpcrd (or rst7) that contains the coordinates of the atoms. These files are generated

during the parameterization of the molecule of interest with the AMBER force field. Given

that all the molecules are now parameterized with the QUBE force field, functionality in

Sire was extended to include new features that support parsing of the new pdb and xml

input files and support the OPLS-type potential energy functional form. For the former,
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an algorithm was implemented that reads the parameters and the coordinates from the

xml and pdb input files respectively, and returns formatted AMBER files (prm7/rst7) that

contain exactly the same information and can be parsed by SOMD. Geometric combination

rules have also been implemented in SOMD to support OPLS-style force fields. Further

information and benchmarking of single point energies in OpenMM and SOMD are provided

in the Supporting Methods.

Free Energy Simulations

BioSimSpace was used to generate files for free energy calculations of the ligands in bound

and unbound states. Free energy simulations were run with SOMD using both AMBER and

QUBE force field parameterization methods for comparison. Perturbation maps for each

HIV-1 RT data set were constructed manually (Figure S3). For the 10 ligands used in

the group 1 data set the free energy map had 32 transitions, whilst the 12 group 2 ligands

comprised 42 transitions. In both cases, multiple cycle closures allow assessment of the

convergence of the computed free energies.

Each perturbation was carried out in two independent simulations, one in each direction.

Though this increased the overall computational cost, it provided an opportunity to assess the

precision of the calculations and check for hysteresis. Each bound and unbound simulation

was divided into 11 regularly spaced λ windows. The energy of the system was minimized

for 1000 cycles by using the steepest descent method and each λ window was run for a total

of 4 ns, using a time step of 2 fs. The first 5% of each simulation trajectory was discarded

as equilibration. Table S2 shows that the transformation of 2a to 2c (and the reverse) in

group 2 varies by less than 0.3 kcal/mol with respect to changes in simulation time (in the

range 2–4 ns).

Bonds involving hydrogen, that were not involved in an alchemical transformation, were

constrained to their equilibrium distances. Periodic boundary conditions and a 10 Å cut-off

distance for non-bonded interactions were applied. In the solvent simulations, an Andersen
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thermostat with collision frequency 10.0 ps−1 and a Monte Carlo barostat with a frequency

of 25 time steps were used to keep the temperature and the pressure constant. Finally,

the electrostatic interactions were calculated using reaction field with the water dielectric

constant (78.3).

Free energy changes were calculated from the output using MBAR and thermodynamic

integration (TI) methods, as implemented in pymbar which is integrated into the Sire appli-

cation analyse freenrg. Only MBAR results are presented here for simplicity, though TI data

were checked to be similar (see Table S2, for example). The collection of MBAR relative

binding free energies was then processed by the software FreeEnergyWorkflows27 to produce

the free energy estimates, and associated errors, reported in this manuscript.

All parameterization and free energy protocols, example input files and output data may

be found at <insert github link>.

Results

We begin analysis with group 1, the catechol diether that incorporates a 7-cyano-2-naphthyl

substituent. Figure 2(A) shows an overlay of compound 1c from MD simulations using the

QUBE force field, with the corresponding crystal structure. As expected, the cyano group

projects out below Trp229 into a solvent-exposed channel. The 2-napthyl group maintains

close aryl-aryl contacts with Tyr188 and Trp229.40 Tyr181 has switched orientation from a

face-to-face interaction with the catechol diether ring of the ligand, to form closer contact

with the 2-napthyl group. However, Figure S4 reveals that Tyr181 is very flexible, forming

both edge-to-face and face-to-face interactions throughout the simulation that more closely

resemble the crystal structure. The observed flexibility of Tyr181 is consistent with previous

simulations55 and crystallography,39 which suggest that Tyr181 orientation is sensitive to the

identity of the ligand. One of the carbonyl oxygens of the uracil group maintains hydrogen

bonding interactions with the backbone of Lys103 throughout the MD simulations, while the
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nitrogen and second carbonyl remain solvent-exposed. The orientation of the ethoxy linker

connecting the uracil and catechol diether rings is different to that observed in the crystal

structure. However, again, MD trajectories sample multiple conformations over the time

scale of these simulations (Figure S4), and crystal structures of similar catechol diethers

support the feasibility of the alternate conformation.56

Figure 2: Overlay of (A) compound 1c and (B) compound 1g (orange) from group 1 with
the crystal structure of 1c (PDB: 5ter, grey/blue).

Figure 3 displays the binding affinities of the 2-napthyl ethers (relative to compound 1e),

computed using the QUBE force field and compared with experimental assays, using human

T-cells infected by wild-type HIV-1 (MT-2 cell assays),40 plotted as differences in pEC50. For

direct comparison, we also report relative binding free energies computed with the AMBER

force field, using the same computational set-up. Compounds 1a–1e differ from each other

through a series of small methyl and halogen transformations at the R1 and R2 positions
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(Table 1). With R2 = Me, the Me and Cl substitutions at R1 are favored over F (1e < 1c <

1b), an ordering which is recapitulated by QUBE while AMBER strongly favors compound

1c. Experimentally, the two compounds (1a and 1d) with R2 = Cl are equipotent and less

strongly bound than 1e. In this case, QUBE obtains the correct sign of the transformation

for 1a, but slightly favors compound 1d.

Figure 3: Binding free energies (relative to compound 1e) computed using the QUBE and
AMBER force fields (left axis), and compared with differences in experimental pEC50 assay
results (right axis).40

In contrast to the promising results above, the two compounds (1i and 1j) with R3 =

F are strongly over-bound with the QUBE force field. The small potency gain expected

from the R3 = H to F transformation (1e to 1j) is modelled well with AMBER, but over-

estimated by QUBE by around 2 kcal/mol. Figure S5 shows significant movement of

the catechol diether group of compound 1j towards the space between Tyr181 and Lys103,

which represents a larger change in conformation than was observed for the other inhibitors.

Compound 1i is expected to be the most weakly bound of the 2-napthyl ethers investigated

here, but is strongly over-bound by both AMBER and QUBE. Interestingly, we did not
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include a R2 = F substituent in our fragment torsion scans (Figure 1(C)), and it may be

that the electronegative F atom over-stabilizes the bound conformation in combination with

both the QUBE force field parameters and the transferable GAFF library. It is also worth

noting that the 2-napthyl ether, with R1 = R2 = H, has been shown to adopt an alternative

binding mode to the one shown in Figure 2.40 Compound 1i could be thus expected to

pose a challenge if the small R2 = F substituent causes a large conformational change in

the ligand. Table S3 reports a series of repeat runs for several transformations involving

compounds 1i and 1j. We do not observe very large differences between repeated runs, but

do see large hysteresis between forward/reverse transformations (close to 2 kcal/mol in some

cases), which is again indicative of sampling inadequacies.

It has been hypothesized that bulkier groups at the R1 position in the 2-napthyl ethers

might be accommodated, and confer extra benefit in the common Y181C mutant viral strain

of HIV-1 RT.40 Hence, compounds 1f–1h were added to our benchmark data set. Both

AMBER and QUBE force fields strongly over-estimate binding in these cases. There is

evidence of a change in binding mode of these bulkier ligands (Figure 2(B)), particularly for

1g and 1h. Alongside the large error bars on these computed data and the insensitivity to

the choice of force field, this indicates that insufficient sampling may an issue here. Although

we have investigated typical convergence of the free energies over simulation time scales of

2–4 ns (Table S2), it may be that significantly longer simulation times and/or enhanced

sampling are required here.57

We turn now to group 2, where the 2-napthyl group is replaced by a series of indolizines,

indoles, and furans, which exemplify the challenge of optimizing heterocycles in early stage

drug discovery. A crystal structure is available for compound 2a,39 and this is shown in

Figure 4, overlaid with the final frame from our MD simulations with the QUBE force field.

The main interactions formed are similar to those discussed above. Tyr188 and Thr229 form

aryl-aryl interactions with the indolizine, and the single uracil hydrogen bond with Lys103

is retained. In this case, Tyr181 adopts a T-shaped stacking interaction with the central
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catechol ring. In MD simulations, both the orientation of Tyr181 and the conformation of

the ethoxy linker are stable and in agreement with the X-ray crystal structure. Some rotation

of the indolizine group is visible, but again this is flexible throughout the MD simulation

(Figure S6).

Figure 4: Overlay between compound 2a of group 2 (orange) and the crystal structure (PDB:
4mfb, grey/blue).

As before, we have computed the relative binding affinities of each of the group 2 com-

pounds in Table 2 with both the AMBER and QUBE force fields, and compared with

available assays.39 Figure 5 reveals very good agreement with experimental trends across

all compounds for both force fields. Compounds 2a to 2f represent a series of indolizines,

with methyl and halogen substitutions in the R1 and R2 positions. Compounds 2a, 2b and

2d are all sub-nanomolar inhibitors, and are predicted by our simulations using the QUBE

force field to be essentially equipotent. Although AMBER predicts the correct sign for the

transformation of 2c to 2d, it does underestimate the potency of 2a and 2b (to the extent

that they may not have been synthesized in a prospective study). Both force fields correctly

describe the drop in affinity of compounds 2e and 2f. It is interesting that 2c–2f, with halo-

gen subsititutions at the R2 position, are modelled well with QUBE which contrasts with the
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issues observed for halogen substitutions at R3 in group 1. This may point to a lack of space

in which to accommodate the F substitution in the latter, and possible associated sampling

issues. The isomeric indolizine (2g) was included in our test set to analyze the effects of more

subtle electrostatic aryl-aryl interactions on binding. Both QUBE and AMBER recapitulate

the expected drop in potency, though QUBE (in agreement with Monte Carlo simulations

performed with the OPLS force field39) likely over-estimates the magnitude of this change.

Figure 5: Binding free energies (relative to compound 2c) computed using the QUBE and
AMBER force fields (left axis), and compared with differences in experimental pEC50 assay
results (right axis).39

Finally, series of benzofurans (2h and 2i) and indoles (2j–2m) were investigated. Both

force fields successfully recover the drop in potency (relative to the indolizines), which is

encouraging for future prospective heterocycle scans. QUBE slightly over-estimates the

affinity of the two furans, and under-estimates that of the indole with a methyl substitution

at R1 (2k), relative to the other indoles, but is in otherwise very good agreement with

experimental trends.
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Discussion and Conclusions

In this paper, we have described an interface between the QUBEKit force field engine, and

the Sire molecular simulation framework, for the calculation of alchemical relative binding

free energies. As an example application, we have retrospectively analyzed the binding of

22 small molecule allosteric inhibitors of HIV-1 reverse transcriptase. As discussed earlier,

both AMBER and QUBE perform well for small substitutions on the 2-napthyl of group 1,

but uniformly over-bind compounds with bulkier hydrocarbon chains and (to some extent)

those with halogens in the R3 position. With the significant caveat that EC50 is not a

direct measurement of binding, we can estimate experimental binding free energies from the

available data. The mean unsigned error in QUBE predictions, relative to experiment, is

then 1.85 kcal/mol, which is slightly higher than AMBER (1.66 kcal/mol). It has been shown

previously, in the context of Monte Carlo simulations, that enhanced sampling is required

to mitigate the effects of quasi-ergodic sampling for some bulky inhibitors in this particular

binding site.58 We propose that the present group 1 set may represent an interesting test

case for such sampling protocols.

In contrast, the group 2 set seems to represent a ‘well-behaved’ test case for free en-

ergy methods. Overall, compared with group 1, the conformational dynamics of group 2

compounds retain much stronger agreement with the available crystal structure, which may

help to explain the relatively better performance of both QUBE and AMBER on this set.

Relative to experiment, the mean unsigned errors are 1.05 and 1.08 kcal/mol for the QUBE

and AMBER force fields, respectively. In fact, we may also compare these results with the

CHARMM36/CGenFF force field, which was employed as part of a λ-dynamics protocol by

Vilseck et al.55 For similar indole and indolizine test sets, they report mean unsigned errors

of 1.13 and 0.70 kcal/mol, respectively, though note that they did not directly transform

between these scaffolds as we have done here. Thus, for both transferable (AMBER and

CHARMM) and bespoke (QUBE) force field parameter sets, the errors reported on this

set are in agreement with the current consensus on the accuracy of free energy methods in
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computer-aided drug design.8,22,38

Despite the relatively similar overall performance of AMBER and QUBE on these datasets,

Figure S7 shows that there is little similarity between predictions of individual relative

binding free energies using the two force fields. This is perhaps to be expected given the

fundamentally very different approaches to parameter derivation. While, at first sight, there

is no particular reason to use QUBE over, for example, the AMBER or CHARMM force

fields at this time, our bespoke parameter derivation methodologies do offer the potential for

substantial improvements in accuracy down the line. By deriving as many force fields param-

eters as practical directly from QM, rather than fitting to experiment, the process of force

field design becomes an exercise in accurately mapping QM data onto physically-motivated

parameters and functional forms.9,59,60 We emphasize that in developing the QUBE non-

bonded parameters for protein-ligand complexes such as these, only seven parameters have

been directly fit to experiment (the van der Waals radii of seven elements), with the remain-

der being derived from QM. Thus, future parameter and functional form updates should be

relatively straightforward to automate. In contrast, similar adjustments of the functional

forms of the aforementioned transferable force fields would be a substantial undertaking,

requiring a complete re-fit of all force field parameters to experimental data (admittedly a

process that is gradually becoming more achievable through efforts such as the Open Force

Field Initiative61). As an example, a polarizable force field, supplemented by higher order

(C8) dispersion coefficients derived from QM, has recently been shown to perform very well in

liquid simulations of alkanes.21 Indeed, it has been shown that such parameters, or force field

precursors, may be derived from the same atoms-in-molecule technique used by QUBEKit

to parameterize force fields.20,62 Overall, this first generation interface between QUBE and

SOMD offers a robust, adaptable platform, with access to GPU-accelerated dynamics, that

will substantially improve our ability to validate and apply bespoke QM-derived force fields

in computer-aided drug design.
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25



Classical Force Fields for Alchemical Binding Free Energy Calculations of Protein-

Carbohydrate Complexes. J. Chem. Theory Comput. 2015, 11, 3333–3345.

(38) Kuhn, M.; Firth-clark, S.; Tosco, P.; Mey, A. S. J. S.; Mackey, M.; Michel, J. Assess-

ment of Binding Affinity via Alchemical Free-Energy Calculations. J. Chem. Inf. Model.

2020, 60, 3120–3130.

(39) Lee, W.-G.; Gallardo-Macias, R.; M. Frey, K.; A. Spasov, K.; Bollini, M.; S. Ander-

son, K.; L. Jorgensen, W. Picomolar Inhibitors of HIV Reverse Transcriptase Featuring

Bicyclic Replacement of a Cyanovinylphenyl Group. J. Am. Chem. Soc. 2013, 135,

16705–16713.

(40) Lee, W.-G.; H. Chan, A.; A. Spasov, K.; S. Anderson, K.; L. Jorgensen, W. Design,

Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV

Agents. ACS Med. Chem. Lett. 2016, 7, 1156–1160.

(41) Thakur, V. V.; Kim, J. T.; Hamilton, A. D.; Bailey, C. M.; Domaoal, R. A.; Wang, L.;

Anderson, K. S.; Jorgensen, W. L. Optimization of pyrimidinyl- and triazinyl-amines

as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. 2006,

16, 5664–5667.

(42) Ruiz-Caro, J.; Basavapathruni, A.; Kim, J. T.; Bailey, C. M.; Wang, L.; Anderson, K. S.;

Hamilton, A. D.; Jorgensen, W. L. Optimization of diarylamines as non-nucleoside

inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. 2006, 16, 668–671.

(43) Jorgensen, W. L. Computer-aided discovery of anti-HIV agents. Bioorg. Med. Chem.

2016, 24, 4768–4778.

(44) Sarafianos, S. G.; Marchand, B.; Das, K.; Himmel, D.; Parniak, M. A.; Hughes, S. H.;

Arnold, E. Structure and function of HIV-1 reverse transcriptase: molecular mecha-

nisms of polymerization and inhibition. J. Mol. Biol. 2009, 385, 693–713.

26



(45) Ray, A. S.; Yang, Z.; Shi, J.; Hobbs, A.; Schinazi, R. F.; Chu, C. K.; Anderson, K. S.

Insights into the molecular mechanism of inhibition and drug resistance for HIV-1 RT

with carbovir triphosphate. Biochem. 2002, 41, 5150–5162.

(46) Kim, J. T.; Hamilton, A. D.; Bailey, C. M.; Domoal, R. A.; Wang, L.; Anderson, K. S.;

Jorgensen, W. L. FEP-guided selection of bicyclic heterocycles in lead optimization for

non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2006, 128,

15372–15373.

(47) Jorgensen, W. L.; Ruiz-Caro, J.; Tirado-Rives, J.; Basavapathruni, A.; Anderson, K. S.;

Hamilton, A. D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse

transcriptase. Bioorg. Med. Chem. 2006, 16, 663–667.

(48) Schrödinger Release 2020-3: Desmond Molecular Dynamics System. 2020; https://

www.schrodinger.com/desmond.

(49) Frisch, M. J. et al. Gaussian09 Revision E.01. Gaussian Inc. Wallingford CT 2009.

(50) Dodda, L. S.; De Vaca, I. C.; Tirado-Rives, J.; Jorgensen, W. L. LigParGen web server:

An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res.

2017, 45, W331–W336.

(51) Chai, J. D.; Head-Gordon, M. Long-range corrected hybrid density functionals with

damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–

6620.

(52) Manz, T. A.; Sholl, D. S. Chemically meaningful atomic charges that reproduce the

electrostatic potential in periodic and nonperiodic materials. J. Chem. Theory Comput.

2010, 6, 2455–2468.

(53) Lee, L. P.; Limas, N. G.; Cole, D. J.; Payne, M. C.; Skylaris, C. K.; Manz, T. A.

27

https://www.schrodinger.com/desmond
https://www.schrodinger.com/desmond


Expanding the scope of density derived electrostatic and chemical charge partitioning

to thousands of atoms. J. Chem. Theory Comput. 2014, 10, 5377–5390.

(54) Qiu, Y.; Smith, D. G.; Stern, C. D.; Feng, M.; Jang, H.; Wang, L. P. Driving torsion

scans with wavefront propagation. J. Chem. Phys. 2020, 152, 244116.

(55) Vilseck, J. Z.; Armacost, K. A.; Hayes, R. L.; Goh, G. B.; Brooks, C. L. Predicting

Binding Free Energies in a Large Combinatorial Chemical Space Using Multisite λ

Dynamics. J. Phys. Chem. Lett. 2018, 9, 3328–3332.

(56) Frey, K. M.; Bollini, M.; Mislak, A. C.; Cisneros, J. A.; Gallardo-Macias, R.; Jor-

gensen, W. L.; Anderson, K. S. Crystal structures of HIV-1 reverse transcriptase with

picomolar inhibitors reveal key interactions for drug design. J. Am. Chem. Soc. 2012,

134, 19501–19503.

(57) Lim, N. M.; Wang, L.; Abel, R.; Mobley, D. L. Sensitivity in Binding Free Energies

Due to Protein Reorganization. J. Chem. Theory Comput. 2016, 12, 4620–4631.

(58) Cole, D. J.; Tirado-Rives, J.; Jorgensen, W. L. Enhanced Monte Carlo sampling through

replica exchange with solute tempering. J. Chem. Theory Comput. 2014, 10, 565–571.

(59) Kantonen, S. M.; Muddana, H. S.; Schauperl, M.; Henriksen, N. M.; Wang, L. P.;

Gilson, M. K. Data-Driven Mapping of Gas-Phase Quantum Calculations to General

Force Field Lennard-Jones Parameters. J. Chem. Theory Comput. 2020, 16, 1115–1127.

(60) Spicher, S.; Grimme, S. Robust Atomistic Modeling of Materials, Organometallic, and

Biochemical Systems. Angew. Chem. Int. Ed. 2020, 59, 15665–15673.

(61) Mobley, D. L.; Bannan, C. C.; Rizzi, A.; Bayly, C. I.; Chodera, J. D.; Lim, V. T.;

Lim, N. M.; Beauchamp, K. A.; Slochower, D. R.; Shirts, M. R.; Gilson, M. K.; East-

man, P. K. Escaping Atom Types in Force Fields Using Direct Chemical Perception.

J. Chem. Theory Comput. 2018, 14, 6076–6092.

28



(62) Chen, T.; Manz, T. A. A collection of force field precursors for metal-organic frame-

works. RSC Adv. 2019, 9, 36492–36507.

29



Graphical TOC Entry

30


