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The discovery of new inorganic materials in unexplored chemical spaces necessitates calculating total energy
quickly and with sufficient accuracy. Machine learning models that provide such a capability for both ground-state
(GS) and higher-energy structures would be instrumental in accelerating the screening for new materials over vast
chemical spaces. Here, we develop a unique graph neural network model to accurately predict the total energy
of both GS and higher-energy hypothetical structures. We use ⇠16,500 density functional theory calculated total
energy from the NREL Materials Database and ⇠11,000 in-house generated hypothetical structures to train our
model, thus making sure that the model is not biased towards either GS or higher-energy structures. We also
demonstrate that our model satisfactorily ranks the structures in the correct order of their energies for a given com-
position. Furthermore, we present a thorough error analysis to explain several failure modes of the model, which
highlights both prediction outliers and occasional inconsistencies in the training data. By peeling back layers of
the neural network model, we are able to derive chemical trends by analyzing how the model represents learned
structures and properties.

1 Introduction
With the advances in computing power and methodologies,
computational chemistry and materials science has made
great strides in accelerating discovery of molecules and mate-
rials with tailored properties.1,2 The ability to perform large-
scale ab initio calculations, in particular those based on den-
sity functional theory (DFT), has been instrumental in inor-
ganic functional materials discovery.3–7 However, computa-
tional searches have largely focused on known materials doc-
umented in crystallographic databases. Currently, there are
⇠200,000 entries in the Inorganic Crystal Structure Database
(ICSD),8 which represents only a small part (>1012 plausi-
ble compositions considering up to quarternary compounds9)
of the vast chemical phase space of inorganic materials. The
need for accelerated exploration of uncharted chemical spaces
is shared by experimental and computational researchers.

The discovery of new inorganic compositions necessitates
accurate structure prediction methods, which is a burgeon-
ing field in itself. The general approach involves navigating
the configuration space defined by the structural parameters,
using a rapidly computable cost function such as total en-
ergy. The navigation of configuration space can use a variety
of techniques, including simulated annealing,10 genetic algo-
rithms,3,11 random structure searching,12,13 structure proto-
typing,14,15 and data mining,16,17 etc. In these techniques,
total energy is often predicted with DFT, although force field
methods have also been used.18,19 Thermodynamic phase sta-
bility, i.e., stability against decomposition, is another prereq-
uisite in the search for new compositions. Formation enthalpy,
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calculated from DFT total energy, has proven immensely use-
ful in assessing phase stability.20–23 However, DFT total en-
ergy calculations are still computationally expensive to sur-
vey large chemical spaces with > 10

6 compounds. Machine
learning (ML) models have emerged as a surrogate for fast
prediction of total energy, formation enthalpy, and phase sta-
bility.24–26 Here, we develop a graph neural network to pre-
dict the total energy of ground-state as well as hypothetical
higher-energy structures generated for structure prediction.16

Crystal graph convolutional neural networks (CGCNN)
have been developed to predict DFT total energy and for-
mation enthalpy.28–30 These deep learning models outper-
form traditional ML models with expert-designed feature rep-
resentations. In a crystal graph, the atoms are represented
by nodes and bonding interactions as edges connecting the
nodes, which naturally takes into account the periodicity of
crystal structures. Xie et al.28 trained a CGCNN model on
DFT-computed formation enthalpy of 46,744 crystal struc-
tures (predominantly from the ICSD) available in the Mate-
rials Project (MP) database.20 Chen et al. proposed a gener-
alized MatErials Graph Network (MEGNet) for molecules and
materials that was trained on 60,000 crystal structures from
MP.30 Park et al. developed an improved-CGCNN (iCGCNN)
by using Voronoi neighbors to represent the local environment
of each node,29 rather than connecting each node to the their
first 12 nearest neighbors as is done in CGCNN. They incorpo-
rate explicit three-body interactions in their convolution func-
tions as an improvement over only pairwise correlations in
the CGCNN model. The model is trained on DFT formation
enthalpy of 450,000 crystal structures in the Open Quantum
Materials Database (OQMD).22 The CGCNN and its variants
exhibit similar accuracy in predicting formation enthalpy, with
mean absolute error (MAE) of 0.03-0.04 eV/atom.28–31
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Fig. 1 CGCNN model trained on DFT total energy of ICSD structures from NREL Materials Database. 27 (a) The model predicts DFT total
energy of 500 held-out crystal structures with a mean absolute error (MAE) of 0.041 eV/atom (0.95 kcal/mol). (b) Histogram of prediction
errors (relative to DFT total energy) for the 500 test set structures; 82% of the structures are predicted within an error of ±0.05 eV/atom. (c)
Learning curve shows that > 10

4 training structures are needed to achieve MAE 0.05 eV/atom.

For structure and stability predictions, it is imperative that
the model is able to: (1) predict the total energy of both
ground-state (GS) and higher-energy (HE) structures with
similar accuracy, and (2) distinguish energetically favorable
(low energy) structures from those with higher energy. The
CGCNN models discussed above are trained primarily on ICSD
structures, that are GS or near-GS structures. As we show in
the Results and Discussion, these models are likely to be bi-
ased towards GS structures and therefore, inaccurate in pre-
dicting total energies of HE structures. While the iCGCNN
model29 is trained on both GS and HE structures, an explicit
demonstration of the model performance for GS and HE struc-
tures is missing. Since the focus of that study was to improve
the overall prediction accuracy, it is not clear if the resulting
model can, for a given composition, correctly rank the differ-
ent structures based on their total energy.

In this work, we build a hybrid CGCNN model to accu-
rately predict the total energy of GS and HE structures by
training the model on DFT total energy of ⇠16,500 ICSD
structures from the NREL Materials Database27 and ⇠11,000
hypothetical structures generated by the ionic substitution
method.32,33 The overall prediction accuracy of our hybrid
model is at par with other CGCNN models (MAE = 0.04
eV/atom), with similar accuracy in predicting the total en-
ergy of GS and HE hypothetical structures. We demonstrate
the model’s capability to satisfactorily distinguish low- and
higher-energy structures for a given composition. Finally, we
investigate the prediction outliers and find that, in some cases,
the source of the error can be traced back to the inaccuracies
in the DFT total energy.

2 Results and Discussion

2.1 Model Trained on ICSD Structures

Previously reported graph neural network models for predict-
ing total energy and formation enthalpy28,30 were trained pri-
marily on ICSD crystal structures with DFT total energy and
formation enthalpy taken from the Materials Project.20 For
benchmarking, we train a CGCNN model on the DFT total en-
ergy of ICSD structures from the NREL Materials Database
(NRELMatDB).27 The model is trained on 15,500 crystal
structures with 500 structures each withheld for validation
and testing. We find that the prediction accuracy, gauged by
the mean absolute error (MAE), is 0.041 eV/atom (Figure 1a).
The standard deviation in the MAE is ±0.005 eV/atom, which
is obtained by training 4 different models and calculating the
corresponding MAE on test sets each containing 500 crystal
structures, with no overlap of structures between the test sets
(Figure S1). The optimized hyperparameters for the model
are provided in Table S1 of the supplemental information.
Hereafter, we reference this model as the “ICSD model”. The
learning curve is presented in Figure 1(c), which shows that
at least 10

4 crystal structures are required to achieve a test
MAE of <0.05 eV/atom, consistent with previous models.28

The formation enthalpy (DH
f

) of a crystal structure with a
chemical composition AxByCz can be calculated from the DFT
total energy as, DH

f

= E
total

� xµ0

A � yµ0

B � zµ0

C, where E
total

is
DFT total energy of AxByCz with DH

f

and E
total

expressed per
formula unit and µ0

i are the reference chemical potentials of
elements, typically under standard conditions. Since µ0 are
reference values, DH

f

is linearly dependent on E
total

. By de-
sign, the error in predicting DH

f

is the same as in predicting
E

total

. The ICSD model has an MAE of 0.041 eV eV/atom for
predicting DFT total energy. As such DH

f

can be predicted
with the same accuracy, which is at par with other CGCNN
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Fig. 2 Total energy of hypothetical structures (see Section 2.1 for
details) predicted with the ICSD model. The total energy is
systematically underpredicted for the high-energy hypothetical
structures suggesting model bias toward lower-energy structures.

models reported in the literature.28–30 Furthermore, the typi-
cal experimental error in measuring formation enthalpy is the
“chemical accuracy”, which on the order of 1 kcal/mol (0.043
eV/atom).23 Assuming DFT calculated DH

f

are reliable, the
prediction error of the ICSD model is comparable to the chem-
ical accuracy.

Figure 1(b) shows a histogram of the prediction errors rel-
ative to the DFT values, with 82% crystal structures (410 out
of 500) predicted within an error of ±0.05 eV/atom. Of the
remaining 90 structures lying outside the ±0.05 eV/atom er-
ror range, 51 structures are underpredicted, including PdN
(space group #221) and CoMnP (space group #62) that are
underpredicted by -0.733 eV/atom and -0.397 eV/atom, re-
spectively. We find that these are higher-energy structures
of those compositions reported in the ICSD, with PdN (space
group #221) 0.459 eV/atom and CoMnP (space group #1)
0.400 eV/atom above the respective GS structures PdN (space
group #225) and CoMnP (space group #62). Other under-
predicted structures such as SiCN (space group #216) and
AuN (space group #225) are highly unstable structures that
lie above their respective convex hulls by 2.168 eV/atom and
1.897 eV/atom, respectively. The vast majority of ICSD struc-
tures have been determined through XRD refinement of exper-
imentally grown crystal structures with some metastable and
computationally predicted hypothetical structures. As such,
ICSD is biased toward stable, GS structures; the underpredic-
tion of the high-energy/unstable structures is a testament to
this inherent bias, which so far has not been acknowledged in
previous studies.28–30

We further confirm this bias by using the ICSD model to
predict the total energy of ⇠5800 hypothetical structures. As

described in Section 4.2 (Methods), the dataset of hypotheti-
cal structures contain, in addition to the GS structures, a num-
ber of higher-energy hypothetical structures for a given com-
position. The ICSD model severely underpredicts the total
energy of the higher-energy hypothetical structures but accu-
rately predicts the energy of the corresponding GS structures
(Figure 2), which highlights the model bias toward GS struc-
tures. For structure and stability predictions, a model that is
accurate for both GS and higher-energy structures is desired.

2.2 Model Trained on ICSD and Hypothetical Structures

To address the underestimation of the total energy of the hy-
pothetical structures with the ICSD model, we first train a
graph neural network model on the hypothetical structures
separately i.e., not including the ICSD structures. The train-
ing, validation, and test sets are chosen in a way to avoid
overlap of compositions across them. For instance, all the hy-
pothetical structures associated with the composition KGeP
(ABX composition) appear only in the test set (Figure 3a) but
not in the training or validation set. By avoiding overlap of
compositions across the sets, we can eventually test the true
performance of the model in energetically ranking the differ-
ent structures associated with a given composition. In addi-
tion, at least one composition type (ABX , ABX

4

, . . .) is present
in each of the sets.

First, the overall performance of this model with MAE =
0.055 eV/atom (Figure 3a) is significantly better than the per-
formance of the ICSD model on the same structures (Fig-
ure 2). We find that the total energy of certain composi-
tion types e.g., AX

2

(6 out of 191 compositions), that are
under-represented in the hypothetical dataset are predicted
with lower accuracy. In Figure 3(a), the prediction outliers
are predominantly of the AX

2

composition. Nonetheless, the
overall performance is comparable to the ICSD model. How-
ever, when we use this model, trained on hypothetical struc-
tures only, to predict the total energy of 1065 ICSD structures,
we again find that the model performs poorly with an MAE =
0.424 eV/atom (Figure S2). As with the ICSD model (Sec-
tion 2.1), this model appears to be again biased toward the
hypothetical structures used in the training. To overcome this
systematic bias, we find that it is practical to train a “hybrid”
model simultaneously on ICSD and hypothetical structures.

A hybrid model is trained on the DFT total energy of 14,845
ICSD and 9980 hypothetical structures (in 171 compositions)
and validated and tested on 800 ICSD and ⇠600 hypothet-
ical (10 compositions each) structures. An overall MAE of
0.04 is achieved across ICSD and hypothetical structures (Fig-
ure 3b), which is comparable to the prediction accuracy of
the ICSD model. The standard deviation in the MAE (0.005
eV/atom) is determined by training 4 different models and
calculating the corresponding MAE on test sets each contain-
ing 800 ICSD and ⇠600 hypothetical structures (10 composi-
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Fig. 3 (a) Predicted vs. DFT total energy of the model trained only on hypothetical structures. The data points are colored by their
composition type (see Section 4.2 for details). (b) Hybrid model accurately predicts the total energy for both ICSD and hypothetical structures,
with an overall MAE of 0.04 eV/atom (c) Comparison of prediction MAE of ICSD model (Figure 1a), model trained on only hypothetical
structures shown in (a), and hybrid model. The standard deviation (shown as error bars) is calculated from 4 different models with
non-overlapping test sets.

tions each) with no overlap in the structures (Figure S3). The
learning curve is presented in Figure S4, which shows that at
least 2⇥104 crystal structures (twice as required for the ICSD
model) are required to achieve test MAE of <0.05 eV/atom.
Figure 3(c) shows the individual MAEs for the ICSD and hy-
pothetical structures. For comparison, the prediction MAE of
the ICSD model (Section 2.1) and the model trained on the
hypothetical structures alone are provided. It is evident from
Figure 3(c) that the hybrid model improves the prediction ac-
curacy for both ICSD and hypothetical structures and over-
comes the model bias when each dataset is used separately to
train a total energy model.

2.3 Energy Ranking of Structures

While it is crucial to have a high accuracy model for predict-
ing total energy, it remains to be seen whether the model can
rank the different structures of a given composition in the cor-
rect order of their energies. As mentioned in the Introduction,
this energy ranking is desired for distinguishing energetically
favorable (low energy) structures from the higher-energy un-
favorable structures. Figure 4 shows the comparison between
DFT and our model-predicted relative total energy (E �E

min

)
of all the hypothetical structures for each of the 10 compo-
sitions present in the test set (Figure 3b). In general, the
predicted energy rankings are in fair agreement with DFT,
although there are noticeable differences depending on the
composition type.

The rankings for the ABX type compositions e.g., KGeP,
KZnSb, and NaBeAs are the most accurate i.e., the model cor-
rectly identifies the GS structure and also does not incorrectly
misassign a higher-energy structure as low energy (Figure 4).
The good ranking of ABX composition type can be attributed

to the fact that ABX comprises the largest fraction of the train-
ing dataset of hypothetical structures (139 out of 191 compo-
sitions). The ranking for CsAs, (AX type composition) is satis-
factory, with DFT ground-state structure predicted to be only
0.007 eV/atom higher than the GS structure predicted by the
model. Moreover, none of the higher-energy structures are
misassigned as low-energy structures. In the case of KGaAs

4

,
a ABX

4

type composition, the model correctly identifies the
GS structure and also does not misassign any of the higher-
energy structures as the ground state.

On the other hand, for the AX
2

type compositions (e.g.
ZnAs

2

, CdSb
2

, CdBi
2

), the energy ranking of the structures
requires a more detailed examination. The model correctly
identifies the GS structure of ZnAs

2

; however, a few high-
energy structures are also identified as low energy. This en-
ergy ranking can be considered satisfactory because in practi-
cal structure prediction implementations one would consider
a few lowest energy structures as candidates for the GS struc-
ture. Similarly, the DFT GS structure of CdSb

2

is predicted to
be only 0.009 eV/atom above the model-predicted GS, which
will qualify the true GS structure as one of the lowest energy
structures. The model-predicted GS structure has a DFT rela-
tive energy (E �E

min

) of 0.007 eV/atom. Finally, the energy
ranking for CdBi

2

is inaccurate since the DFT ground-state
structure is predicted to be 0.171 eV/atom above the model
predicted GS structure. It is evident from Figure 4 that the
relative energies of all the CdBi

2

structures lie in a limited
window of ⇠0.25 eV/atom, unlike the ABX , AX , and ABX

4

type compositions. It is a more challenging to rank the struc-
ture in the correct order of their energies when all or a large
fraction of the structures have similar energies i.e., the energy
differences cannot be sufficiently resolved.
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For AX
4

type compositions, the energy rankings are similar
to ZnAs

2

and CdSb
2

, wherein the GS structures of ZnAs
4

and
MgAs

4

are among the lowest energy structures predicted by
the model, with their DFT relative energies 0.023 eV/atom
and 0.036 eV/atom, respectively. At the same time, a few
high-energy structures are also identified as low energy.

While the model satisfactorily ranks the energies of hypo-
thetical structures, we also inspect the rankings of known
structures to establish the robustness of the model. We chose
the known polymorphs of MgO and ZnO from the ICSD
database as representative examples. Figure S5 shows the
comparison between DFT and hybrid model predicted en-
ergy rankings. Out of the 9 reported polymorphs of MgO,
the model correctly labels the GS rocksalt structure and also
does not misassign the higher-energy structures as low energy.
Similarly, out of the 5 reported polymorphs of ZnO, the model
correctly labels the GS wurtzite structure and accurately ranks
the higher-energy structures. In summary, the model satisfac-
torily ranks the energy of the structures for most of compo-
sition types. For 9 out of 10 hypothetical compositions (Fig-
ure 4), the predicted GS structure either exactly matches or is
within 0.025 eV/atom of the the DFT ground-state structure.

2.4 Analysis of Prediction Errors

We perform a thorough analysis of the large prediction er-
rors in Figure 3(b). Such an analysis is useful in attributing
the error to either prediction outlier or inconsistency in the
training data. The hybrid model, presented in Figure 3(b),
predicts the total energy of ⇠79% (1105 out of 1405) struc-
tures with <0.05 eV/atom error. However, 7 crystal structures
(labelled in the figure) are either over- or under-predicted by
0.500 eV/atom, which are, interestingly, all ICSD structures.
We analyze each of these structures on a case by case basis to
understand the source of the error.

Fe
13

Ge
3

(space group #221, ICSD id 150584) is severely
underpredicted by 1.039 eV/atom relative to the DFT total
energy. In this case, our analysis reveals that the DFT to-
tal energy is inaccurate. In magnetic compounds containing
transition metals, the total energy is sensitive to the configu-
ration of the magnetic moments.34 Fe

13

Ge
3

has a ferromag-
netic ground state; however, the DFT total energy in NREL-
MatDB is for the non-magnetic configuration. Upon recalcu-
lating the DFT total energy with ferromagnetic configuration,
the prediction error is reduced to +0.08 eV/atom. This exam-
ple highlights that DFT materials databases may contain oc-
casional inconsistencies that can be flagged through machine
learning regression.

The total energy of BaSiC (space group #107, ICSD id
168413) and CdC (space group #225, ICSD id 183177) are
underpredicted by 0.651 eV/atom and 0.582 eV/atom, respec-
tively. We find that both are hypothetical structures that were
proposed in computational studies but not experimentally re-
alized (ICSD contains a small fraction of hypothetical struc-
tures). These specific structures of BaSiC and CdC lie 0.795
eV/atom and 1.706 eV/atom above their respective convex
hulls, which indicates that these high-energy structures are
likely unstable. While the hybrid model is trained to predict
the total energy of both GS and higher-energy structures, the
training dataset of hypothetical structures span 24 elements
(see Methods), including Ba, Cd, and Si but not C. The under-
prediction in the case of BaSiC and CdC is indicative of the
remnant bias in the model towards lower-energy structures
for compounds containing elements that are not in the hypo-
thetical structure dataset.

The total energy for Ca
7

Ge (space group #225, ICSD id
43321) is underpredicted by 0.545 eV/atom. Upon analyzing
the crystal structure of this intermetallic compound, we find
that the Ca-Ge bond lengths associated with the Ca(4b) Wyck-
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by the model. Generally, the site energies are more negative when
the electropositive elements such as Na, K, Sr, and Ba are bonded
to more electronegative anions (halides) than when bonded to less
electronegative anions (pnictides, tetrels).

off site is 3.4 Å (Figure S6), which is significantly longer than
typical Ca-Ge bond length (3 Å) in other Ca-Ge compounds,
e.g. CaGe, Ca

2

Ge, and Ca
5

Ge
3

. We perform a k-Nearest
Neighbor (kNN) analysis on the penultimate site embeddings
(see Methods) to identify other structures in the training set
with embeddings that resemble Ca

7

Ge. The purpose of the
kNN is to find a number of training samples closest in dis-
tance to a point in the test set. Principal component analysis
(PCA) is first used to reduce the embedding space to 10 di-
mensions, and the ten nearest neighbors for each site in Ca

7

Ge
is found from embeddings for sites in the training dataset.
There are two unique Wyckoff sites of Ca (4b, 24d) in Ca

7

Ge;
their 10 nearest neighbors are shown in Figure S6, which sug-
gests that the 4b site more resembles Sr and Ba (larger ionic
radius than Ca), consistent with the long Ca-Ge bond lengths.
This could also explain why Ca

7

Ge is furthest from the convex
hull (0.093 eV/atom) compared to other Ca-Ge structures.

Another outlier, Nb
3

Si
2

(space group #127, ICSD id
645431), is overpredicted by 1.163 eV/atom. In training
the model, we directly use ICSD structures rather than DFT-
relaxed structures. While in most cases, the DFT-relaxed struc-
tures are not far from the ICSD structures, there are excep-
tions where this is not the case, such as for Nb

3

Si
2

. Using the
DFT-relaxed structure instead of the ICSD structure reduces
the error to 0.054 eV/atom.

Not all prediction errors are easily explainable as arising
from the underlying DFT database. The source of error for
ScFe

6

Sn
6

(space group #191), which is overpredicted by
0.470 eV/atom, could not be identified and we believe that

Fig. 6 t-SNE visualizations of the PCA-reduced elemental
embeddings of Na, K, Sr, and Ba, shown as representative
examples. The training set extracted embeddings are analyzed to
draw chemical trends learned by the model. The embeddings lie in
four major clusters, depending on the local environment (oxides,
chalcogenides, halides, pnictides, tetrels) of the element of interest.

it is a case of prediction outlier. We thus have identified sev-
eral causes of prediction errors, ranging from inconsistency in
DFT data to simply model inaccuracy.

2.5 Chemical Trends

Interpretability of predictive neural network models remains
intrinsically challenging. While direct physical interpretation
of the CGCNN model in this work may not be possible, we
compare trends in the model predictions with general chem-
ical principles. Specifically, we identify trends in the learned
elemental site energies (see Methods) through dimensionality
reduction techniques such as PCA and t-distributed stochastic
neighbor embedding (t-SNE). In conjunction, we also analyze
the probability density of the elemental site energies.

We chose electropositive elements from group 1 (Na, K)
and group 2 (Sr, Ba) as representative examples to identify
trends in the learned elemental site energies. Figure 5 shows
the probability density as a function of the elemental site en-
ergy for these elements. Figure 6 presents the corresponding
two-dimensional t-SNE projections performed on the elemen-
tal embeddings. The site energy distributions in Figure 5 are
calculated for all the sites in training set crystal structures for
a given element. Only ICSD structures are considered in this
analysis to avoid any unphysical effects arising from the hypo-
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thetical high-energy structures. For example, there are 1095
unique Na-containing structures, with 7056 unique Na Wyck-
off sites. We find that when the element of interest is bonded
to more electronegative anions – halogens (F, Cl, Br, I), oxy-
gen (O), or chalcogens (Se, Se, Te), the resulting elemental
site energies are more negative than when bonded only to less
electronegative anions – tetrels (C, Si, Ge, Sn, Pb) or pnicto-
gens (N, P, As, Sb, Bi). For example, out of 7056 sites for Na,
3458 sites bonded only to either halogens, oxygen, or chalco-
gens span an energy range of [-4.36, -1.97] eV whereas, the
1134 sites bonded only to tetrels or pnictogens span a lower
energy range of [-3.17, -1.06] eV.

Notably the energy distribution for oxides span a wider en-
ergy range overlapping with other anion types, which can be
attributed to the large variety of oxide compositions and struc-
tures and the different cation coordinations. Generally, Na, K,
Sr, and Ba prefer octahedral coordination (6-fold coordina-
tion) when bonded to oxygen (e.g. rocksalt Na

2

O, BaO) but
there can be a departure from this typical behavior depend-
ing on the presence of other cations. For instance, Na sites in
Na

17

Al
5

O
16

(space group #8) and Na
14

Al
4

O
13

(space group
#14) are 3-fold, 4-fold, and 5-fold coordinated with some of
the elemental site energies lying in the “tail” of the oxides
(near the peak of pnictides) energy distribution (Figure S7).
As such, some of the Na sites in these compounds behave as if
they are bonded to pnictogens rather than oxygen. The pres-
ence of Al, which generally prefers tetrahedral coordination,
causes this departure from the typical behavior.

The t-SNE projections in Figure 6 offer an additional di-
mension (compared to the 1-D site energy distribution in Fig-
ure 5) to visualize the learned elemental distributions. The
t-SNE projections reveal distinct clusters depending on the
anion type consistent with the observation of peaks in the
probability density energy distributions (Figure 5). The sepa-
ration into different clusters suggests that the chemical iden-
tity of the cation-anions bonds, at least for the 4 representa-
tive elements considered here, governs the learned elemental
embedding. Consistent with the elemental site energy distri-
bution, some Na sites in Na

17

Al
5

O
16

(space group #8) and
Na

14

Al
4

O
13

(space group #14) lie in the cluster of pnictide
embeddings (Figure S7).

2.6 Assessment of Thermodynamic Stability

Thermodynamic phase stability against decomposition into
competing phases is a prerequisite for searching new mate-
rials and can be assessed through a convex hull construc-
tion.23 Materials that lie on the convex hull are considered
stable, i.e., the energy above the hull (DE

hull

) is zero. Mate-
rials lying above the hull (DE

hull

> 0) are either unstable or
metastable. The convex hull is defined as a convex envelope
connecting the GS structures in a given chemical space and
can be computed from DFT total energy by calculating forma-

Compound N Space Group # DE
hull,DFT

DE
hull,pred

LiF 1 225 0 0
PbTe 1 225 0 0
CdTe 1 186 0 0
Mg

3

Sb
2

1 206 0 0
Li

2

S 2 62 0 0
Li

3

P 5 194 0 0
Ca

2

Ta
2

FO
6

6 227 0 0
Li

5

OCl
3

8 140 0 0
NaGaSb

4

8 62 0.01 0.012
Na

3

SbS
4

10 217 0.006 0.006
La

9

RbIr
4

O
24

13 12 0 0
Na

3

PS
4

19 114 0 0
Na

3

WFO
4

21 62 0 0
MgSr

2

Si
2

O
7

25 113 0 0
Na

2

Ba
3

N
8

C
4

27 14 0 0
K

2

Mo
3

Mn
2

O
12

40 1 0 0
FeKNaSi

4

O
10

70 2 0 0

CdTe–ZnTe 3 186:216 stable stable
CdTe–CdO 10 186:225 stable stable
CdTe–CuGaSe

2

22 186:122 stable stable

Table 1 Comparison of bulk thermodynamic phase stability
calculated with DFT and with total energies predicted by the
CGCNN model. N is the number of competing phases in the
chemical space, not including the elemental phases. The predicted
energy above the convex hull (DE

hull,pred

) for the unstable/metastable
structures are consistent with DFT (DE

hull,DFT

), which are both
expressed in eV/atom. Prediction of interface chemical stability is
also compared for three representative examples (CdTe–ZnTe,
CdTe–CuGaSe

2

, and CdTe–CdO).

tion enthalpy. For instance, in the binary Li-P chemical space,
the convex hull connects elemental Li and P, and stable phases
Li

3

P, LiP, LiP
7

, LiP
5

, and Li
3

P
7

.
To demonstrate the accuracy of the hybrid model in pre-

dicting bulk thermodynamic phase stability, we perform con-
vex hull analysis on a set of well-known materials (Table 1)
by using the model predicted total energy of all the com-
peting phases. Here, we consider all the competing phases
documented in the ICSD. The number of competing phases
(N) in each chemical space is shown in Table 1. We also
perform the convex hull analysis to determine the accuracy
of the model in predicting the interfacial chemical stability
between two different materials; stable solid-solid interfaces
are desired in various applications including solid-state batter-
ies (stable electrode-electrolyte interface)35,36 and solar cells
(stable absorber-contact layer interface).37

In Table 1, we find that the predicted bulk stability (with the
hybrid model) is consistent with the DFT stability. Moreover,
DE

hull

for Na
3

SbS
4

and NaGaSb
4

, the two compounds that lie
above the hull, the predicted and DFT values are in excellent
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agreement. CdTe–ZnTe, CdTe–CdO, and CdTe–CuGaSe
2

inter-
faces are predicted to be stable, again consistent with DFT.
Given the good agreement in bulk and interface stability pre-
dictions, we believe that the hybrid CGCNN model can be used
to reliably and rapidly assess the phase stability of new phases.

3 Conclusions
In summary, we have developed a graph neural network
model capable of reliably predicting DFT total energy of both
ground-state and higher-energy structures. A hybrid model
trained on both GS and higher-energy hypothetical structures
achieves a lower error than models trained on either GS or
hypothetical structures alone. The accuracy of the resulting
model is sufficient to rank the small differences in energy typ-
ically encountered between structures with the same compo-
sition. The model can, therefore, serve the purpose of rapidly
screening the energetics of different configurations for a given
composition, a critical step in elucidating the structure and
stability of new chemistries.

Some of the large errors in energy predictions are explained
by identifying their source of error as inconsistencies in the
underlying training data. In small-scale DFT studies, each cal-
culation can be carefully examined by the researcher to en-
sure convergence. In high-throughput DFT databases, how-
ever, manual analysis must be replaced with automatic con-
vergence criteria that can occasionally miss peculiar cases.
Therefore, the training and analysis of ML models is one way
that the consistency of high-throughput DFT databases can be
rapidly verified. ML predictions fail where the data is poorly
explained by neighboring trends, either because insufficient
similar examples exist, inconsistencies in the data, or extreme
sensitivity of the regressed variable with respect to structure.
In addition to highlighting data inconsistencies and where ad-
ditional data should be collected, prediction outliers can high-
light interesting and unique chemical functionality that might
otherwise go unnoticed in large databases.

There are a few limitations to the model, which remain to
be addressed. The hypothetical structures used for training
the hybrid model span only 24 elements, and their total en-
ergy are confined to a small range, in contrast to the wide
range in the total energy of ICSD structures. To overcome this
limitation, generation of additional DFT data for hypothetical
structures will be done in a future work. Additionally, the cur-
rent model was trained on hypothetical structures after DFT
relaxations, which limits its usefulness in the forward screen-
ing of new hypothetical structures, where relaxed coordinates
are not available. Generating accurate predictions with unre-
laxed structures remains an unresolved problem in the field of
structure prediction.
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4 Methods

4.1 Graph Neural Network Architecture

A crystal graph convolutional neural network (CGCNN) was
constructed as depicted in Figure 7. Crystal structures are
first converted to a graph using pymatgen,38 using atomic
sites as the graph nodes and distances between sites as the
graph edges. Each node in the graph has exactly 12 edges,
corresponding to the 12 nearest neighbor sites in the cys-
tal while accounting for periodic boundaries. Node features
include only the identity of the element at the atomic site,
and edge features only included the raw distances (in Å) be-
tween the two sites. This is in contrast to other CGCNN mod-
els28–30 that use several additional node and edge features
e.g., group and period number, electronegativity etc. An em-
bedding layer is used to convert the discrete element type of
each atomic site into a 256 parameter vector, functioning sim-
ilarly to a one-hot encoding of the atom type followed by a
dense layer of dimension 256. Edge features are initialized
from the raw distances through a radial basis function expan-
sion, ri(d) = exp [�h (d � ci)] for i 2 [1, . . . ,10], where d is the
edge distance and h ,ci are learned parameters initialized to
7 and [0,0.7,1.4,2.1, . . . ,6.3], respectively. In the CGCNN, the
node and edge features are updated by passing them through
a series of message layers, in which the nodes exchange infor-
mation with their neighboring edges.

The structure of the message passing layers is adapted from
Jørgensen et al.39 First, for each edge, the source and target
site features are concatenated with the edge’s features, passed
through a series of dense layers, and added to the input edge
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features in a residual fashion. Next, node features are up-
dated using the features of the neighboring sites and those of
the connecting edges. For each of the 12 edges pointing into a
given site, the feature vector of the source site are multiplied
by features of the corresponding edge before all 12 vectors are
summed together. The resulting feature vector is then passed
through a series of dense layers before being added to the
original site feature vector in a residual fashion. Outputs from
each message block are then fed as inputs into a subsequent
message block for a total of 6 message layers. Final total en-
ergy predictions are produced by feeding the final site features
into a 1-d output layer, producing a single energy prediction
for each site. These predictions are added to a learnable mean
energy for each element before being averaged over all sites
in the crystal to produce a mean energy prediction.40 Site-
level contributions to the total predicted energy can therefore
be extracted from this penultimate layer.

CGCNNs are trained for 500 epochs over the training data
with a batch size of 64 crystals using the Adam optimizer with
weight decay. The learning rate was decayed starting from
an initial value of 1e�3, according to 1e�3/(1 + epoch/50),
and the weight decay was similarly decayed according to
1e�5/(1 + epoch/50). The loss function minimized was the
mean absolute error between predicted and DFT total energy.

4.2 Data and Preparation

Three distinct datasets of DFT-computed total energy are used
in training the CGCNN models. First, we use DFT total energy
of ⇠14,000 ordered and stoichiometric crystal structures from
the Inorganic Crystal Structure Database (ICSD)8 that are
available in the NREL Materials Database (NRELMatDB).27

The DFT calculations are performed with VASP;41 details of
the calculations are available in Ref. 23.

During data cleanup, we identified that the DFT calcula-
tions for 1,677 structures containing fluorine were insuffi-
ciently convereged. We recalculated the DFT total energy of
874 (out of the 1677) structures with a recommended larger
plane-wave energy cutoff of 540 eV. The remaining 803 struc-
tures contain transition elements that require an exhaustive
search of the different magnetic configurations to determine
the ground-state (GS) structure. Given the high computa-
tional cost associated with the search for the magnetic GS con-
figurations, these 803 structures were not recalculated, and
also, not included in the training data. With future applica-
tions of our CGCNN model in mind, we expanded the dataset
to including DFT total energy of ⇠3,900 ICSD structures con-
taining mixed anions e.g., ZrOS, which are not currently in
NRELMatDB. The DFT methodology (GGA-PBE42) and calcu-
lation parameters for the mixed anion compounds are consis-
tent with those used in NRELMatDB. Combined, we use DFT
total energy of ⇠16,500 ICSD structures to train, validate, and
test the CGCNN models. The ICSD collection IDs along with

Element Type (n,1)

Embedding (n,256)

Distance (r,1)

RBF Expansion (r,10)

Dense (r,256)

Concatenate (r,768)

Target Site (r,256)

Source Site (r,256)

Dense (r,512)

Dense (r,256)

++
Dense (r,256)

Sum (n,256)

Dense (n,256)

Dense (n,256)

+ Message
Block (x6)

Embedding
(n,1) +

Dense (n,1)

Mean (1,1)

site energy
predictions

total energy

n crystal sites r = 12 n edges

Fig. 7 Schematic of the neural network architecture. Node (atomic
sites) and edge features (interatomic distances) output from each
message block are fed as inputs into the subsequent block. The
model predicts energy per site for all the sites in a given structure,
which are averaged to get the total energy.

their total energy are made available through a public GitHub
repository.43 This dataset of ICSD structures span 60 elements
and 12,760 unique compositions, with 2113 compositions ex-
isting in more than one one structure.

We also leverage a dataset of ⇠11,000 hypothetical struc-
tures that were created by ionic substitutions in known pro-
totype structures from the ICSD.32,33 Upon ionic substitution,
the decorated structures are relaxed and their total energy are
calculated with DFT. The relaxed structures (as VASP POSCAR
files) and the total energy are available through the GitHub
repository.43 The dataset is created for the purpose of discov-
ering new Zintl phases.32,33 As such, it spans 24 elements in
191 unique compositions of the type ABX (139, 6087), AX

4

(18, 318), AX (15, 3775), ABX
4

(13, 410), and AX
2

(6, 444),
where the first number in paranthesis is the number of com-
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positions and the second number is the number of structures.
Here, element A includes Li, Na, K, Rb, Cs, Ba, Mg, Sr, Zn,
Cd, element B are Si, Ge, Sn, Pb, Zn, Cd, Be, and X are group
15 elements (pnictogens) such as P, As, Sb, and Bi. KSnSb,
MgAs

4

, CdSb, KGaSb
4

, and ZnAs
2

are representative compo-
sitions from this hypothetical structure dataset.

4.3 Analysis of Atomic Site Energy

The learned elemental site energies (Figure 7), which are
the site-level contributions to the total energy, are analyzed
to identify chemical trends. For specific elements, we calcu-
late the probability density of the atomic site energies from
all the ICSD structures in the dataset. We do not include
the hypothetical high-energy structures in the analysis of the
site energies to avoid biasing the chemical trends toward un-
stable structures. The distribution of pairwise distances be-
tween the learned elemental embeddings (Figure 7) will en-
code the relation between materials. We utilize common di-
mensionality reduction techniques such as principal compo-
nent analysis44 and t-distributed stochastic neighbor embed-
ding (t-SNE),45 as implemented in scikit-learn,46 to analyze
the multi-dimensional elemental embeddings.
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1. Optimized Hyperparameters

The hyperparameters include parameters used to generate the crystal graphs, parameters of the neural net-

works, and parameters that control the training process. The hyperparameters are optimized through a

train-validation process, on a fixed validation set. The following ranges of hyperparameters are searched: (1)

batch size: 32–64, (2) embedding dimensions: 64–256, (3) number of message blocks: 4-8, and (4) learning

rate: 1e�n, n = 3-5. The mean absolute error of total energy prediction is reduced by 0.005 eV/atom by

using a weight decay compared to when not using it.

Table S1: List of optimized hyperparameters in this work

Hyperparameter Optimized value

Batch size 64
Embedding dimension 256
Number of message blocks 6
Learning rate 1e1�3

Weight decay 1e�5

Number of epochs 500
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2. Performance of the Models Trained on Total Energy of ICSD Structures

To estimate the uncertainty in the mean absolute error (MAE) of total energy prediction, four di↵erent

models are trained on the DFT total energy of ICSD structures. The uncertainty in the MAE is the

standard deviation across the four models, each tested on a di↵erent hold-out test set.

Figure S1: Convolutional neural networks trained on DFT total energy of ICSD structures from the NREL
Materials Database. (a)-(d) Performance of the models trained and tested on four di↵erent sets of crystal
structures. The mean absolute errors (MAEs) for the four di↵erent test sets are (a) 0.036 eV/atom, (b)
0.041 eV/atom, (c) 0.042 eV/atom, and (d) 0.045 eV/atom. The overall MAE across the four models is
0.041±0.005 eV/atom.
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3. Performance of Model Trained on Total Energy of Hypothetical Structures

The model trained exclusively on the hypothetical structures is used to predict the total energy of the ICSD

structures. Only a subset of ICSD structures, which contain the same 24 elements present in the hypothetical

structure dataset, are chosen. The model poorly predicts the total energy of the ICSD structures with a

large mean absolute error.
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Figure S2: The total energy of 1065 ICSD structures is predicted with the model trained on the hypothetical
structures alone (see Section 2.2 in the main text). The predicted total energy has large errors compared
to the DFT values. The mean absolute error (MAE) of the test set prediction is 0.424 eV/atom, suggesting
the model is biased towards hypothetical structures.
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4. Performance of the Hybrid Model Trained on Total Energy of ICSD and

Hypothetical Structures

To estimate the uncertainty in the mean absolute error (MAE) of total energy prediction, four di↵erent

models are trained on the DFT total energy of ICSD and hypothetical structures. The uncertainty in the

MAE is the standard deviation across the four models, each tested on a di↵erent hold-out test set. The

training, validation and test sets are chosen with no overlap of compositions for the hypothetical structures.

Figure S3: Convolutional neural networks trained on DFT total energy of ICSD and hypothetical structures.
(a)-(d) Performance of the models trained and tested on four di↵erent sets of crystal structures. The mean
absolute errors (MAEs) for the four di↵erent test sets are (a) 0.035 eV/atom, (b) 0.038 eV/atom, (c) 0.040
eV/atom, and (d) 0.044 eV/atom. Gray(red) datapoints correspond to ICSD(hypothetical) structures The
overall MAE across the four models is 0.040±0.005 eV/atom.

5



5. Learning Curve of the Hybrid Model

A learning curve compares the performance of a model on a test set for varying number of training instances

and therefore, can provide insights into whether a model is overfitted. The learning curve for the hybrid

model shows that: (1) there is a systematic improvement in the model performance with the number of

training crystal structures, and (2) the minimum number of training structures to achieve an MAE<0.05

eV/atom is ⇠ 2⇥ 104.
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Figure S4: Learning curve for the hybrid model, showing that at least 2⇥104 crystal structures are required
to achieve an MAE of <0.05 eV/atom.
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6. Predicted Energy Rankings of MgO and ZnO Polymorphs

Figure 4 in the manuscript presents the energy rankings for di↵erent compositions in the hypothetical

structures dataset. Here, we examine the energy rankings of two well-known binary compounds, MgO and

ZnO, for which several experimentally realized and computationally proposed polymorphs are documented

in the ICSD. There are 9 and 5 unique polymorphic structures reported for MgO and ZnO, respectively.

The hybrid model correctly identifies the ground-state structures (rocksalt MgO, wurtzite ZnO) and also,

satisfactorily ranks the other polymorphic structures.
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Figure S5: Predicted relative energy (E � Emin) of MgO and ZnO polymorphs reported in the ICSD is
compared with DFT values. The model correctly identifies the known ground-state structures of both MgO
(rocksalt, space group #225) and ZnO (wurtzite, space group #186).
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7. k-Nearest Neighbor Analysis of Ca7Ge

The total energy of Ca7Ge is severely underestimated (-0.545 eV/atom relative to the DFT value) by the

hybrid model (Figure 3b). The intermetallic compound Ca7Ge lies above the convex hull (see manuscript

for details). To understand the source of the error, we perform a k-Nearest Neighbor (kNN) analysis of the

elemental embeddings for all Ca and Ge sites in Ca7Ge. From this analysis, we identify the first 10 NNs

and their elemental identities. The Ca(4b) Wycko↵ site has 9 NNs that are Ba atoms, while 1 NN is Sr.

In contrast, the Ca(24d) Wycko↵ site has 3 Ca NNs, 2 Sr, and 5 Ba. Moreover, the Ca-Ge bond lengths

associated with the Ca(4b) site are larger compared to the Ca(24d) site. The Ge(4a) site has all 10 NNs

that are Ge.
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Figure S6: k-Nearest Neigbor (kNN) distances of the first 10 nearest neighbors for each Ca (4b, 24d and
Ge (4a) Wycko↵ sites in Ca7Ge. The elemental identities of the 10 nearest neighbors for each Wycko↵ site
are labelled.
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8. Site Energies and t-SNE Projections: Na17Al5O16, Na14Al4O13

Chemical trends are identified by analyzing the probability density distribution of the elemental site energies

(Figure 5) and t-SNE analyis of the elemental embeddings (Figure 6). In some cases, there can be a departure

from the general trends. For example, some of the Na sites in Na17Al5O16 (space group #8) and Na14Al4O13

(space group #14) are 3-fold and 4-fold coordinated with elemental site energies in the “tail” of the oxides

(near the peak of pnictides) energy distribution. The elemental embeddings for those same Na sites lie in

the pnictogen cluster in the t-SNE projection. The other Na sites that lie closer to the peak of the oxides

energy distribution (in the oxides cluster in t-SNE projection) are 5-fold coordinated.
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Figure S7: Elemental site energy and t-SNE projection of elemental embedding of Na sites in (a, c)
Na17Al5O16 and (b, d) Na14Al4O13 are marked with open circles.
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