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Physics-inspired Artificial Intelligence (AI) is at the forefront of methods development in 

molecular modeling and computational chemistry. In particular, interatomic potentials derived 

with Machine Learning algorithms such as Deep Neural Networks (DNNs), achieve the accuracy 

of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical 

force fields and allow performing massive simulations. The applicability domain of DNN 

potentials is usually limited by the type of training data. As such, transferable models are aimed to 

be extensible in the description of chemical and conformational diversity of organic molecules. 

However, most DNN potentials, such as the AIMNet model we proposed previously, were 

parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this 

work, we extend machine learning framework toward open-shell anions and cations. We introduce 
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AIMNet-NSE (Neural Spin Equilibration) architecture, which being properly trained, could 

predict atomic and molecular properties for an arbitrary combination of molecular charge and spin 

multiplicity. This model explores a new dimension of transferability by adding the charge-spin 

space. The AIMNet-NSE model is capable of reproducing reference QM energies for cations, 

neutrals, and anions with errors of about 2-3 kcal/mol, compared to the reference QM simulations. 

The spin-charges have errors ~0.01 electrons for small organic molecules containing nine chemical 

elements {H, C, N, O, F, Si, P, S and Cl}. The AIMNet-NSE model allows to fully bypass QM 

calculations and derive the ionization potential, electron affinity, and conceptual Density 

Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions with 

a speed up to 104 molecules per second on a single modern GPU. We show that these descriptors, 

along with learned atomic representations, could be used to model chemical reactivity through an 

example of regioselectivity in electrophilic aromatic substitution reactions. 
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Introduction 

A large body of research in the field of chemistry is concerned with the flow and behavior 

of electrons, which gives rise to important phenomena such as making and breaking chemical 

bonds. Quantum chemistry (QC) provides a mathematical framework for describing the behavior 

of atomistic systems thorough solution of Schrödinger equation, allowing for a detailed description 

of charge distribution and molecular energetics. QC provides the tools to accurately construct the 

potential energy surface (PES) of molecules, i.e., energy as a function of molecular geometry. 

Density Functional Theory (DFT) framework often underpins the methods of choice for such 

calculations when working with medium size molecules by providing a good balance between 

accuracy and computational cost. Unfortunately, standard DFT methods for the treatment of the 

N-electron system typically require ~O(N3) numerical cost. This cubic scaling has become a 

critical challenge that limits the applicability of DFT to a few hundred atom systems. This also 

limits the accessibility of longer dynamical simulation time scales, which are critical for simulating 

certain experimental observables. Consequently, a lot of progress has been made in the 

development of interatomic potentials providing a complex sought out PES functional (geometry 

-> energy) using machine learning (ML),1,2 which have been applied to a variety of systems.3–8  

Deep neural networks (DNN)9,10 are a particular class of ML algorithms proven to be 

universal function approximators.11 These DNNs are perfectly suitable to learn a representation of 

the PES for molecules. There are multiple distinct DNN models for ML potentials reported in the 

literature. They could be divided into two groups. The original Behler-Parrinello (BP)12 and its 

modifications ANI13,14 and TensorMol15 rely on 2-body (radial) and 3-body (angular) symmetry 

functions to construct a unique descriptor of atomic environment for a particular atom, then use a 

DNN to predict atomic properties as a function of that descriptor.  Other models, for example, Hip-
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NN,16 DTNN,4 SchNet,17 and PhysNet18 use non-invariant radial symmetry functions or 

interatomic distances and iteratively construct a representation of the atomic environment through 

message-passing techniques.19 

The ANAKIN-ME (ANI) method13,20 is one example of a technique for building 

transferable DNN-based molecular potentials. The key components of ANI models are the diverse 

training dataset21 and BP type descriptors12 with modified symmetry functions.13 The ANI-1ccx 

dataset was built from energies and forces for ~60K small organic molecules containing 5 and 0.5 

million non-equilibrium molecular conformations calculated at DFT and high fidelity Coupled 

Clusters (CCSD(T)) levels, respectively.21 Test cases showed ANI-1ccx model to be chemically 

accurate compared to the reference Coupled Cluster calculations and exceeding the accuracy of 

DFT in multiple applications.14 Finally, the AIMNet (Atoms-In-Molecules neural Network) 

architecture, a chemically inspired, modular deep neural network molecular potential improves the 

performance of ANI models for long-range interactions and continuum solvent effects.8 

Physical properties of molecular systems are often labeled as intensive or extensive 

properties. This nomenclature relates to the dependency of the property upon the size of the system 

in question.22 The notation has been introduced by Tolman over one hundred years ago.23 Only a 

few reports have attempted to use ML for intensive properties.24–29 independent of the system size, 

which pose a challenge ML techniques due to spatial non-locality and long-range interactions.  

In this work, we examine how DNN models like ANI and AIMNet can be applied to 

predicting intensive properties like electron attachment (electron affinity) and electron detachment 

(ionization potential). The conventional wisdom would be to fit different ML potentials for every 

quantum-mechanical state (neutral, cation, and anion) similar to TDDFT works.26 QM calculations 

for ionized states of the molecule are typically more expensive due to the unrestricted Hamiltonian 
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formalism and subsequent spin polarization of orbitals. Therefore, we seek to answer a critical 

question: Can we fuse information from different molecular charge states to make ML models 

more accurate, general and data efficient? With the success of deep learning in many applications 

involving complex multimodal data, this question can be addressed by learning different states of 

the molecules with one common ML model, and the goal is to use the data in a complementary 

manner toward learning a single complex problem. We explore two synergistic strategies for joint 

modeling: multitask learning24,30 and data fusion. One of the main advantages of joint learning is 

that a hierarchical representation can be automatically learned for each state, instead of 

individually training independent models. In addition to electron attachment and detachment 

energies, we also choose to learn spin-polarized charges for every state reflecting quantum 

mechanics of the wavefunctions. This choice of properties is deliberate, as it allowed us to compute 

reactivity descriptors such as philicity indices and Fukui functions based on conceptual Density 

Functional Theory (c-DFT) theory.31,32 c-DFT, or Chemical Reactivity Theory, is a powerful tool 

for the prediction, analysis, and interpretation of chemical reactions.33,34 Here all c-DFT indexes 

were computed directly from the neural network without additional training that permitted us to 

bypass quantum mechanical calculations entirely. 

 

Methods 

Machine learning models. High-dimensional neural networks (HDNNs)12 rely on the 

chemical bonding nearsightedness (‘chemistry is local’) principle by decomposition of the total 

energy of a chemical system into atomic contributions. For each atom in the molecule, HDNN 

models encode the local environment (a set of atoms within a pre-defined cutoff radius) as a fixed-

size vector and use it as an input to a feed-forward DNN function to infer individual atomic 
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contribution to the total energy. The ANI model (Figure 1a) transforms coordinates R of the atoms 

in the molecule into atomic environment vectors (AEVs): a set of translation, rotation, and 

permutation invariant two-body radial 𝑔𝑔𝑖𝑖𝑖𝑖
(𝑟𝑟) (gaussian expansion of interatomic distances) and 

three-body angular 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖
(𝑎𝑎) (joint gaussian expansion of average distances to a pair of neighbors and 

cosine expansion of angle to those atoms) symmetry functions, where index i corresponds to a 

“central” atom and  j and k refer to the atoms from its environment. Using the information of 

atomic species types Z, the AEV’s are reduced in a permutation-invariant manner into the 

Embedding vectors G, which encode both geometrical and type information of the atomic 

environment. The ANI model uses the concatenation of the sums of 𝑔𝑔𝑖𝑖𝑖𝑖
(𝑟𝑟) and 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖

(𝑎𝑎) which 

correspond to a distinct chemical type of neighbor, or a combination of the types for two neighbors. 

This is equivalent to multiplication of the matrices 𝒈𝒈𝒊𝒊
(𝒓𝒓) and 𝒈𝒈𝒊𝒊

(𝒂𝒂) with rows composed of AEV’s, 

and corresponding matrices A(r) and A(a) composed with one-hot (categorical) encoded atom or 

atom-pair types: 

 𝑮𝑮𝒊𝒊 = �𝒈𝒈𝒊𝒊
(𝒓𝒓)⊤𝑨𝑨(𝒓𝒓),𝒈𝒈(𝒂𝒂)⊤𝑨𝑨(𝒂𝒂)�   (1) 

This definition of the HDNN models suffer from the “curse of dimensionality” problem. 

Namely, the size of G depends on the number of unique combinations of atomic species included 

in parametrization (size of vectors in A(a)). Also, since the information about the type of the 

“central” atom is not included in G, it uses multiple independent DNNs defined for each atom type 

(ℱ(𝒵𝒵𝒾𝒾)) to model Interactions of the atom with its environment and outputs atomic energy  𝐸𝐸𝑖𝑖: 

 𝐸𝐸𝑖𝑖 = ℱ(𝒵𝒵𝒾𝒾)(𝑮𝑮𝒊𝒊)  (2) 
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Figure 1. Neural network architectures explored in this work. Models from literature: a) ANI13, b) 
AIMNet8; Here each model is separately trained for neutral species, cations and ions. Models introduced in 
this work: c) AIMNet-MT: a multitask model jointly trained on all data which concurrently predicts 
energies and charges for neutral species as well as cations and ions; and d) AIMNet-NSE, a Neural Charge 
Equilibration model which is capable to redistribute spin-polarized atomic charges according to a given 
molecular spin-charges, and predicts energy for specified (arbitrary) spin state of the molecule. The yellow 
blocks show input data (coordinates R, atomic numbers Z and total molecular spin charge Q) and output 
quantities (energies E and spin-polarized charges q). The green blocks denote trainable modules, and the 
blue blocks are fixed encodings.  
 
 

The AIMNet model (Figure 1b) was developed to address the dimensionality issue with 

the ANI model. Instead of one-hot encoding of atomic species, it uses learnable atomic feature 

vectors (AVFs) A in Eq. 1. The AFV vectors encode similarities between chemical elements. This 

approach eliminates dependence of the size of Embedding layer on the number of parametrized 

chemical species. The AIMNet model utilizes the idea of multimodal learning, making a 

simultaneous prediction of different atomic properties from several output heads attached to the 

common layer of multi-layer neural nets. This layer is enforced to capture the relationships across 

multiple learned modalities and serves as a joint latent representation of atoms in the molecule. 

Therefore, we call this layer an AIM vector. Finally, the architecture of AIMNet has a specific 

implementation of message passing through updating the AFV based on neighbor atoms atomic 

environments. This way, the model operates iteratively, at each iteration t predicting atomic 
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properties P and updated features A, using the same (shared across iterations) neural network 

function ℱ: 

 {𝑃𝑃𝑖𝑖𝑡𝑡 ,𝑨𝑨𝑖𝑖𝑡𝑡+1} = ℱ(𝑮𝑮𝒊𝒊𝑡𝑡 ,𝑨𝑨𝒊𝒊𝑡𝑡)   (3) 

The approach has an analogy with a solution of one-electron Schrodinger equation with self-

consistent field (SCF) iterations, where one-electron orbitals (AFV in case of AIMNet) adapt to 

the potential introduced by other orbitals in the molecule (embedding vectors G in case of 

AIMNet). Though there is no convergence guarantee for AIMNet due to the absence of the 

variational principle, in practice statistical errors decrease and converge at t = 3 being an empirical 

observation. 

The AIMNet and ANI models does not use total molecular charge and therefore could not 

discriminate between different charge states of the same conformer. The straightforward way to 

obtain reasonable predictions for is to train separate models for neutral, anionic and cationic 

species. Since AIMNet model works well in multi-task regime,8 we also build the AIMNet model 

that simultaneously predicts energies and spin-polarized atomic charges with multiple output heads 

from same AIM layer for predefined set of charge states (AIMNet-MT, Fig. 1c). All three states 

share the same AFV representation, Interaction, and Update blocks. This setting allows us to 

evaluate if the common feature representations can capture correlations across different states and, 

if possible, take advantage of that. 

In this paper we introduce an extension to the AIMNet architecture which allows the model 

to predict energy, properties and partial atomic charges for a specified state based on total 

molecular charge and spin multiplicity (or, alternatively, total α and β spin-charges) given as input 

for the model. The key component of the new model is Neural Spin-charge Equilibration unit 

(NSE, Fig. 1d), which makes prediction of partial spin-polarized atomic charges 𝑞𝑞�𝑠𝑠   and atomic 
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weight factors 𝑓𝑓𝑠𝑠 (conseptually related to atomic Fukui functions, ∂q/∂Q) from the AIM layer 

using fully-connected NN output head. The factors 𝑓𝑓𝑠𝑠 are used to re-distribute atomic spin-charges 

such as their sum is equal to the specified total molecular spin-charges: 

 𝑞𝑞𝑖𝑖𝑠𝑠 =  𝑞𝑞�𝑖𝑖𝑠𝑠 +  𝑓𝑓𝑖𝑖
𝑠𝑠

∑ 𝑓𝑓𝑗𝑗
𝑠𝑠𝑁𝑁

𝑗𝑗=1
�𝑄𝑄𝑠𝑠 − ∑ 𝑞𝑞�𝑖𝑖𝑠𝑠𝑁𝑁

𝑖𝑖=1 � (4) 

where index s corresponds to spin-component of the charge density, 𝑞𝑞� and 𝑞𝑞 are initial and re-

normalized charges, N is number of atoms and 𝑄𝑄 total is the total charge of the molecule. The 

consequent Update block injects normalized atomic charges into the AFV vector. This way, 

during the next AIMNet iteration, the information about charge distribution will be used in the 

Embedding block. We should note, that for AIMNet and AIMNet-MT models sum of atomic 

charges integer, but rather is very close to the total integer molecular charge and reflects 

uncertainty in charge prediction. However, by design of the AIMNet-NSE model, the charges are 

conserved and add up to the total charge. 

Dataset construction. For the training dataset, we randomly selected about 200k neutral 

molecules from the UNICHEM database35 with molecule size up to 16 ‘heavy’ (i.e., non-

hydrogen) atoms and set of elements {H, C, N, O, F, Si, P, S and Cl}.We choose molecular 

dynamics (MD) as a fast and simple method to explore molecular PESs around their minima. We 

expect that thermal fluctuations allow to model sufficiently well conformational structures of 

molecules near equilibrium as was exploited in previous reports.37,38Notably, all traditional 

molecular force fields are designed to describe closed-shell molecules only. Therefore, to 

overcome this limitation, we choose quantum mechanically derived force field (QMDFF39) as an 

efficient method to construct system-specific and charge-specific mechanistic potential for a 

molecule. We relied on the GFN2-xTB40 tight-binding model to obtain minimum conformation, 

force constants, charges, and bond orders that are needed for the QMDFF model. 
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Figure 2. The overall workflow targeting dataset generation for the energetics of neutral and 
charged molecular species. 

 

The workflow to generate molecular conformations is summarized in Figure 2. Starting 

from SMILES representations, we generated a single 3D conformation for each molecule using 

the RDKit41 library. The molecule in each of three charge states (i.e., neutral, cation and anion) 

was optimized using the GFN2-xTB method, followed by a calculation of force constants, charges 

and bonds orders to fit molecule-specific QMDFF parameters. This custom force field was used 

to perform 500ps NVT MD run, with snapshots collected every 50 ps for the subsequent DFT 

calculations. For each snapshot, we performed several single-point DFT calculations with a charge 

for the molecule set to the value at which the MD was performed, as well as its neighboring charge 

state, i.e., -1, 0 for anions, -1, 0, +1 for neutral, and 0, +1 for cations (Figure 2). This results in up 

to 70 single-point DFT calculations per molecule. For DFT calculations we selected PBE0/ma-

def2-SVP level of theory as a reasonable compromise between accuracy and computational 

expenses. PBE0 is a non-empirical hybrid DFT that is widely used to compute molecular 

properties. Exact exchange and diffuse functions in the basis set are need in order to describe 

anionic species. All DFT calculations were performed using ORCA 4.0 package.42 Atomic spin-

polarized charges were calculates NBO-7 software package43 for DFT wavefunction.s 
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We split all data into two subsets: Ions-12 dataset contains 6.44M structures with up to 12 

heavy atoms of which 45%, 25% and 30% are neutral, cations and anions, respectively. Ions-16 

dataset has 295k structures of 13-16 non-hydrogen atoms size with 48%, 24% and 26% of neutral, 

anionic and cationic species, respectively. Please see supplementary information (Table S1, 

Figures S1, S2) for more details. We used Ions-12 dataset for training and validation, whereas 

Ions-16 was utilized for testing. Ions-16 dataset has larger, more complex structures and thus 

probes the model transferability. 

For the further evaluation of model performance, transferability, and extensibility we 

compiled a dataset which should be close to real-world application. We randomly selected 800 of 

organic molecules from ChEMBL database44,45 with 13-20 non-hydrogen atoms, 100 per 

molecular size. Neutral state of each molecule was optimized with B97-3c composite DFT 

method46, and on that geometry energy calculation were performed for anion and cation radicals. 

We call this dataset as ChEMBL-20 and it covers equilibrium conformations of “drug-like” 

molecules.  

Training protocol.  

The ANI model and AIMNet variants were trained using minibatch gradient descent 

powered by the Adam optimizer.47 For training performance considerations, all minibatches were 

composed of molecules with the same number of atoms, to avoid padding. Proper data feed 

shuffling was achieved with mutli-GPU Data-parallel approach: gradients on model weights were 

averaged after 8 random batches were evaluated in parallel. The effective combined batch size was 

2048. Training was performed on 8 Nvidia V100 GPUs, with about 200s for AIMNet-MT model 

and 130s for AIMNet-NSE model per epoch of Ions-12 dataset with 6.4M data points. With 

reduce-on-plateau learning rate schedule training typically converged within 400-500 epochs. 
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The training objective was minimization of weighted multi-target mean squared error 

(MSE) loss function with included errors in energy and charge predictions. The AIMNet 

architecture shares weights of Embedding, Interaction blocks and fully-connected output heads for 

all “SCF-like” iterative passes. The models were trained with 3 passes. The outputs from each pass 

were included into weight function, except for AIMNet-NSE model. Due to architecture of the 

AIMNet-NSE model during first pass it makes predictions without use of information about total 

spin charge. Therefore, for this model only, outputs from the two last passes were included in the 

loss function. Although all final predictions of the AIMNet models were obtained with t=3, we 

found it beneficial to restrain a network to give reasonably accurate results on earlier iterative 

passes, as it provides regularization to the model. Additional details about the loss function are 

given in the SI. 

The baseline ANI and AIMNet models were trained independently for each of the three 

charge states of the molecules. For AIMNet-MT and AIMNet-NSE, joint training for all charge 

states was performed, and errors for each charge state were included in the loss function. The 

training was done against 5-fold cross-validation data splits. These five independent models were 

used to build an ensemble for more accurate predictions, denoted as “ens5” later in the text. All 

AIMNet model variants, as well as the ANI model, were implemented with PyTorch framework48 

and is available in a public code repository at https://github.com/isayevlab/aimnet-nse. 

 

Results and Discussions 

A summary of the performance for all four models is presented in Table 1. Vertical 

ionization potentials (IP) and electron affinities (EA) were computed directly from the 

corresponding differences of energies of neutral and charged states: 
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 𝐼𝐼𝑃𝑃 = 𝐸𝐸𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛; 𝐸𝐸𝐸𝐸 =  𝐸𝐸𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛 − 𝐸𝐸𝑎𝑎𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐    (6) 

The prediction errors are evaluated on the Ions-12 (up to 12 non-H atoms) dataset which 

provides a measure of the performance of the model with respect to the data points similar to those 

used for training. On the other hand, errors on Ions-16 (13-16 non-H atoms) can be seen as a more 

appropriate testbed that is probing generalization capabilities of the model across the unknown 

chemical and conformational degrees of freedom (i.e., unseen molecules). Further, we evaluate 

performance of the models on the dataset of equilibrium conformations of neutral drug-like 

molecules ChEMBL-20 (13-20 non-H atoms) as a realistic example application of the model. We 

report root-mean-square errors (RMSE), rather than more popular in the field5,17,49 mean absolute 

errors (MAE). MAE is less sensitive to severe prediction errors and could often mislead about the 

generalization capabilities of the models.  
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Table 1. Root mean square errors (RMSEs) in kcal/mol for individual models and ensemble of 5 models 
(ens5) on validation subset of Ions-12 dataset, Ions-16 and ChEMBL-20 external test sets. The resulting 
RMSEs for vertical ionization potentials (IP) and electron affinities (EA) are computed from the respective 
total energies.  

  Model    Test Dataset 
Total energy RMSE IP 

RMSE 

EA  

RMSE 
Cation Neutral Anion 

ANI 
Ions-12 8.4 5.1 5.0 9.4 6.9 
Ions-16 10.8 4.4 4.9 11.0 5.9 

Ions-16 (ens5) 10.0 4.0 4.6 10.2 5.3 

AIMNet 

Ions-12 4.1 3.7 3.0 4.7 4.4 
Ions-16 6.3 3.2 3.4 6.5 4.0 

Ions-16 (ens5) 5.3 2.6 2.8 5.3 3.1 
ChEMBL-20 (ens5) 12.8 5.3 6.0 9.2 2.9 

AIMNet-MT 

Ions-12 3.5 3.4 2.8 4.1 3.9 
Ions-16 5.4 3.0 3.2 5.5 3.5 

Ions-16 (ens5) 4.9 2.5 2.7 5.0 3.0 
ChEMBL-20 (ens5) 13.0 4.3 5.4 10.3 3.0 

AIMNet-NSE 

Ions-12 3.6 3.4 2.9 4.1 3.9 
Ions-16 3.9 3.1 3.1 4.1 3.6 

Ions-16 (ens5) 3.4 2.5 2.6 3.5 3.0 
ChEMBL-20 (ens5) 4.0 3.4 3.8 2.7 2.4 

 

While ANI models are known to achieve state-of-the-art performance14,50 on 

conformational energies and reaction thermochemistry in drug-like molecules, the problem 

addressed here is challenging due to the presence of charged species. Similarly to our previous 

results for neutral molecules,8 all AIMNet flavors substantially improve upon ANI, especially for 

the total energy of cations and vertical IPs. The original ANI model does not include explicit long-

range interactions. All interactions are described implicitly by the neural network; therefore, the 

interactions described by the model do not extend beyond the AEV cutoff distance (Rcut = 5.2 Å 

in this work). Since the ANI model performs well on neutral molecules and is completely short 

sighted and has no capability to perform charge equilibration either explicitly or implicitly, we use 

it as a baseline for comparison. Because both extra electrons (in case of anions) and holes (in case 
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of cations) are spatially delocalized, the non-local electrostatics extends beyond the cutoff distance 

and spatially spans over the molecule. 

 

 

Figure 3. Correlation between DFT PBE0/ma-def2-SVP and AIMNet-NSE predictions for total 
molecular energies (top row), non-equilibrium vertical ionization potentials and electron affinities 
(middle row) and NBO atomic charges (bottom row) calculated for three charge states for Ions-16 
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dataset. DFT total energies were shifted by sum of atomic self-energies (ESAE) to allow comparison 
for molecules with different composition. Element-specific ESAE calculated using linear 
regression, correspond to average atomic energies in the entrie training dataset that include all 
charge states. See also Figure S4 and S5 for all models results.  
 
 While the AIMNet and AIMNet-MT models show reasonable accuracy for neutral and 

anionic species, the errors for cations are few times larger, especially for ChEMBL dataset. This 

indicates the  shortcoming in extensibility of implicit charge equilibration with “SCF-like” passes. 

Overall, data-fused AIMNet-MT model performs marginally better then separate AIMNet models 

for each charge state. Contrary, the AIMNet-NSE model with explicit charge equilibration shows 

consistent performance across charge states and molecule sizes, both for near and off-equilibrium 

conformers. The RMSE errors on IP and EA values are approaching to 0.1 eV for optimized 

structures and to 0.15 eV for off-equilibrium geometries. Figure 3 provides overall correlation 

plots for energies and charges as predicted by AIMNet-NSE model for Ions-16 dataset. Please see 

supplementary information for plots for all other models. Note, since regression plots are colored 

by the density of points on the log scale, the vast majority of points are on the diagonal line. The 

AIMNet-NSE models consistently provide the same level of performance across the energy range 

of 400 kcal/mol (~17 eV) without noticeable outliers. The model is able to learn atomic charges 

up to 0.01e (electron, elementary charge) for neutral molecules and 0.02e for ions as shown in 

Figure 3 (See also Table S2. Table 1 also compares the performance of individual models to the 

performance of their ensemble prediction (marked as "ens5"). In principle, model ensembling is 

always desirable and, on average, provide the performance boost by 0.5 kcal/mol for all energy-

based quantities. 

The AIMNet-NSE model has a superb utility for high throughput applications. In this 

sense, it is interesting to compare this model with excellent semi-empirical IPEA-xTB method51. 

The IPEA-xTB is a re-parametrization of GFN-XTB Hamiltonian to predict EA and IP values of 



 17 

organic and inorganic molecules. The re-parametrization aimed to reproduce PW6B95/def2-

TZVPD results. The IPEA-xTB method was successfully used to make accurate predictions of 

electron ionization mass spectra51 and for high-throughput screening of polymers.52,53 For the 

medium-sized organic molecules, AIMNet-NSE model raises accuracy/computational 

performance ratio to the a new level. For the ChEMBL-20 dataset, the RMSE of IPEA-xTB EA 

and IP vs PBE0/ma-def2-SVP are 4.6 and 10.6 kcal/mol, compared to AIMNet-NSE errors of 2.7 

and 2.4 kcal/mol, respectively. Therefore, being at least two orders of magnitude faster, the 

AIMNet-NSE model could be two to four times more accurate. 

To elucidate the importance of iterative "SCF-like" updates, the AIMNet model was 

evaluated with a different number of passes t. AIMNet with t = 1 is very similar to the ANI model. 

The receptive field of the model is roughly equal to the size of the AEV descriptor in ANI; and no 

updates were made to the AFV vector and atomic embeddings. Figure 4a shows that the aggregated 

performance of prediction for energies improves with an increasing number of passes t. This trend 

is especially profound for cations. As expected, the accuracy of AIMNet with t = 1 is very similar 

or better compared to the ANI network. The second iteration (t = 2) provides the largest 

improvement in performance for all three states. After t = 3, the results are virtually converged. 

Therefore, we used t = 3 to train all models in this work. These observations for charged molecules 

are remarkably consistent with results for neutral species.8 
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Figure 4. Spin charge re-distribution due to Neural Spin Equilibration for electron attached and 
detached states of 4-amino-4'-nitrobiphenyl molecule. For anion colors correspond to spin electron 
charge or density (α - β), while for cation to spin hole density (β - α), with red color corresponding 
to negative spin-charge. For comparison, DFT (PBE0/ma-def2-SVP) spin-density and charges is 
depicted on the bottom of the panel. 
 

For consider 4-amino-4'-nitrobiphenyl molecule as an illustrative example (Figure 4b). 

This is a prototypical optoelectronic system, where a π-conjugated system separates the electron-

donating (NH2) and accepting (NO2) groups. These polar moieties underpin an increase in the 

transition dipole moment upon electronic excitation leading to two-photon absorption. The effect 

of donor-acceptor substitution is apparent from the ground state calculations of the charge species 

where electron and hole in cation and anion, respectively, are shifted towards the substituent 
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groups with strong delocalization across π orbitals of the aromatic rings. Figure 4 illustrated the 

charge equilibration procedure in AIMNet-NSE models and compares it to DFT results. During 

first pass, before charge normalization, the predicted densities are the same for anion and cation 

(note inverse color codes for anion and cation on the Fig. 4), but after weighted normalization spin 

charge density is already slightly shifted towards nitro group in anion and amino group in cation. 

At the same time spin charges on the hydrogen atoms does not change. After three iterations the 

AIMNet-NSE model correctly reproduces spin-density wave-like behavior with opposite phases 

for cation and anion as predicted by DFT. There is no sign alternation for spin charge for 4, 4’ 

positions, however the absolute value of spin charge difference for these atoms is high. Overall, 

the AIMNet-NSE model predicts spin charges for non-hydrogen atoms of this molecule with MAE 

0.03e for anion and 0.02e for anion. Notably, 4-amino-4'-nitrobiphenyl molecule was neither part 

of the training nor validation data, exemplifying convergence and reproduction of quantum-

mechanical properties through iterative updates. 

In AIMNet-NSE, the physical meaning of the weights f (see eq, 4) is related to atomic 

Fukui functions, 𝜕𝜕𝑞𝑞𝑖𝑖/𝜕𝜕𝑄𝑄, e.g. how much would atomic charge 𝑞𝑞𝑖𝑖 change with the change of total 

charge Q. In practice, the model would assign higher values of f to the atoms which trend to have 

different charges in different charge states of the molecule, for example, to aromatic and hereto 

atoms. The value of f also reflects the uncertainty in charge distribution predicted by neural 

network. Somewhat related approach for weighted charge re-normalization was used previously.54 

It was based on charge prediction uncertainty estimated with ensemble of random forests, however 

without noticeable improvement in charge prediction accuracy. Our neural spin-charge 

equilibration method provides simple and affordable alternative to other ML charge equilibration 

approaches55–57 based on QEq method which finds charge distribution by minimization molecular 
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Coulomb energy. While the QEq solution impose physics-based constraints for the obtained charge 

distribution, it is limited by the approximate form of Coulomb integral and could be 

computationally demanding due to matrix inversion operation. 

The described neural charge equilibration could be an attractive alternative to popular 

charge equilibration schemes like EEM,58 QEq,59 and QTPIE60 that use simple physical 

relationships. They often suffer from transferability issues and might produce unphysical results. 

To our knowledge, this is a primary example where the ML model provides a consistent and 

qualitatively correct physical behavior between molecular geometry, energy, integral molecular 

charge, and partial atomic charges. Upon submitting this manuscript we learned about work by 

Xie,61 where ML model built to predict energy as function of electron populations in prototypical 

LiH clusters. Other schemes like BP,12 TensorMol,15 HIP-NN,62,63 and  PhysNet18 typically employ 

auxiliary neural network that predicts atomic charges from a local geometrical descriptor. 

Electrostatic interactions are computed with Coulomb's law based on those charges. In principle, 

many effects can be captured by a geometrical descriptor, but it does not depend on the total charge 

and spin multiplicity of the molecule. Following the basic principles of quantum mechanics to 

incorporate such information successfully, the model should adapt according to changes in the 

electronic structure, preferably in a self-consistent way. This is exemplified here through the case 

of the AIMNet-NSE model.  

 

Case study for chemical reactivity and reaction prediction. 
 

As a practical application of AIMNet-NSE model, we demonstrate a case study on 

chemical reactivity and prediction of reaction outcomes. The robust prediction of the products of 

chemical reactions is of central importance to the chemical sciences. In principle, chemical 
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reactions can be described by the stepwise rearrangement of electrons in molecules, which is also 

known as a reaction mechanism.64 Understanding this reaction mechanism is crucial because it 

provides an atomistic insight into how and why the specific products are formed. 

DFT has shown to be a powerful interpretative and computational tool for mechanism 

elucidation.65–68 In particular, conceptual DFT (c-DFT) popularized many intuitive chemical 

concepts like electronegativity (𝜒𝜒) and chemical hardness.69 In c-DFT, reactive indexes measure 

the energy (E) change of a system when it is a subject to a perturbation in its number of electrons 

(N). The foundations of c-DFT were laid by Parr et al.70 with the identification of the electronic 

chemical potential µ and hardness η as the Lagrangian multipliers in the Euler equation. In the 

finite-difference formulation, the these quantities could be derived from EA and IP values as 

𝜇𝜇 =  −𝜒𝜒 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑁𝑁
� ≈ −1

2
(𝐼𝐼𝑃𝑃 + 𝐸𝐸𝐸𝐸)     (7) 

𝜂𝜂 = �𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑁𝑁2
� ≈ − 1

2
(𝐼𝐼𝑃𝑃 − 𝐸𝐸𝐸𝐸)     (8) 

 The Fukui function f(r) is defined as a derivative of the electron density on the total number 

of electrons in the system. These global and condensed-to-atom local indexes were successfully 

applied to a variety of problems in chemical reactivity.32,71 Using finite difference approximation 

and condensed to atoms representation, Fukui functions for electrophilic (𝑓𝑓𝑎𝑎−), nucleophilic (𝑓𝑓𝑎𝑎+), 

and radical (𝑓𝑓𝑎𝑎0) reactions are defined as: 

 𝑓𝑓𝑎𝑎− = 𝑞𝑞𝐶𝐶 − 𝑞𝑞𝑁𝑁;  𝑓𝑓𝑎𝑎+ = 𝑞𝑞𝑁𝑁 − 𝑞𝑞𝐴𝐴 ;  𝑓𝑓𝑎𝑎± = 1
2

(𝑞𝑞𝐶𝐶 + 𝑞𝑞𝐴𝐴) (9) 

Another useful c-DFT reactivity descriptor is electrophilicity index given by 

𝜔𝜔 =  𝜇𝜇
2

2𝜂𝜂�  (10) 

as well as it's condensed to atoms variants for electrophilic (𝜔𝜔𝑎𝑎−), nucleophilic (𝜔𝜔𝑎𝑎+) and radical 

(𝜔𝜔𝑎𝑎±) attacks:72  
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𝜔𝜔𝑎𝑎− = 𝜔𝜔𝑓𝑓𝑎𝑎−;      𝜔𝜔𝑎𝑎+ = 𝜔𝜔𝑓𝑓𝑎𝑎+ ;      𝜔𝜔𝑎𝑎± = 𝜔𝜔𝑓𝑓𝑎𝑎±   (11) 

 

Figure 5. Correlation between DFT PBE0/ma-def2-SVP and AIMNet-NSE predictions for 
electronegativity (𝜒𝜒), chemical hardness (𝜂𝜂) and electrophilicity index (𝜔𝜔), Fukui coefficients for 
nucleophilic (𝑓𝑓𝑎𝑎+), for electrophilic (𝑓𝑓𝑎𝑎−) and radical (𝑓𝑓𝑎𝑎0) attacks and three corresponding 
condensed philicity indexes (𝜔𝜔𝑎𝑎 ) for Ions-16 dataset.  
 

On the basis of the predicted with AIMNet-NSE vertical IPs, EAs, and charges, we could 

directly compute all listed c-DFT indexes. Figure 5 displays the correlation plots for all nine 

quantities. The AIMNet-NSE model achieves an excellent quality of prediction of three global 
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indexes with R2 ranging from 0.93 to 0.97. Condensed indexes are more challenging to predict, 

with philicity index (𝜔𝜔𝑎𝑎+) being the hardest (R2 is 0.82). This is related to the overall larger errors 

in the cation energy predictions. Here we would like to emphasize again that none of these 

properties were part of the cost function or training data. The values were derived from the pre-

trained neural network and therefore this opens a possibility to a direct modeling fully bypassing 

c-DFT calculations and wavefunction analysis. The accuracy of condensed indexes appears to be 

suitable to make a reliable prediction of reaction outcomes.  

Let us exemplify prediction of site selectivity for aromatic C–H bonds using electrophilic 

aromatic substitution (EAS) reaction. The EAS reaction is a standard organic transformation. Its 

mechanism involves the addition of an electrophile to the aromatic ring to form a σ-complex 

(Wheland intermediate) followed by deprotonation to yield the observed substitution product 

(Figure 6). The reactivity and regioselectivity of EAS would generally depend on the ability of the 

substituents to stabilize or destabilize a σ-complex. 

 

 

Figure 6. General mechanism of electrophilic aromatic substitution reaction. 

 

Recently EAS attracted significant attention from computational studies due to its 

importance in late-stage functionalization (LSF) for the drug development process.73 A direct and 

numerically very expensive approach to EAS selectivity predictions is to calculate all transition 

states on the complete path from reactants to products. A popular approach called RegioSQM 
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achieves high site prediction accuracy based on enumeration and calculation of σ-complex with 

semi-empirical quantum mechanical calculations.74 

Table 2 lists the accuracy of regioselectivity prediction with recently published methods 

using data from ref 73. A random forest (RF) model with DFT TPSSh/Def2-SVP derived 

descriptors like charges (q), bond orders (BO), Fukui indexes, and solvent accessible surface 

(SAS) achieves 90% accuracy on the validation data (note different DFT methodology used for 

this study and for training our DNNs). This model relies on QM calculations of reagents but does 

not require searching σ-complexes. When QM descriptors are combined with RegioSQM, the RF 

classifier exhibits an excellent performance of 93%. While the RegioSQM model is accurate, it is 

slow for high throughput screening. A modest dataset of a few hundred molecules takes about two 

days to complete on a multicore compute node. Very recently, Weisfeiler-Lehman Neural Network 

(WLNN) was suggested to predict site selectivity in aromatic C-H functionalization reactions.75 

This model was trained on 58,000 reactions from the Reaxys database and used RDKit molecular 

descriptors. WLNN achieves an accuracy approaching 90% for the prediction of EAS 

regioselectivity.  

 

Table 2. Compilation of results for EAS regioselectivity prediction with different approaches. 

Descriptors ML Model Validation  
accuracy Test accuracy 

q, BO, SAS, f-  RF1 0.899 
 

q, BO, SAS, f-, RegioSQM  RF1 0.931 0.876 
Reaxis data, molecular descriptors Weisfeiler-Lehman 

Neural Net 2 
0.895 0.836 

𝜔𝜔,𝜔𝜔𝑎𝑎−, AIM vector  RF (present work) 0.906 0.850 
 

1 Results from ref. 73 
2 Results from ref. 75 
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We used AIMNet-NSE to calculate Fukui coefficients and atomic philicity indexes. We 

also added the AIM layer of the query atom in cation-radical form of the molecule as an additional 

set of descriptors. The size of AIM layer is smaller (144 elements) then the training dataset size 

(602 data points). The use of cross-validation scores and random forest method generally mitigates 

any overfitting issues. As we argued before8 a multimodal knowledge residing inside the AIM 

layer could be exploited as an information-rich feature representation. The RF classifier trained 

with AIMNet-NSE descriptors displays an excellent performance of 90% on the validation set and 

85% on the test set. While obtained predictions for the electrophilic aromatic substitution reaction 

are marginally better than previously reported values, our model achieve six orders of magnitude 

computational speedup since no quantum mechanical simulations are necessary. 

 

Conclusions 

We recently witnessed that machine learning models trained to quantum-mechanical data 

achieve formidable success in quantitative predictions of ground-state energies and interatomic 

potentials for common, typically charge-neutral organic molecules. Nevertheless, a quantitative 

description of complex chemical processes involving reactions, bond breaking, charged species, 

and radicals remains an outstanding problem for data science. The conceptual challenge is a proper 

description of spatially delocalized electronic density (which strongly depends on molecular 

conformation) and accounting for long-range Coulombic interactions stemming from the 

inhomogeneously distributed charges. These phenomena appear as a consequence of the quantum-

mechanical description of delocalized electronic wavefunctions. Consequently, representation of 

spatially non-local, frequently intensive molecular properties is problematic for common neural 

nets adapting local geometric descriptors. The recently developed AIMNet neural network 
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architecture addresses this challenge via an iterative message passing-based process, which 

ultimately captures complex latent relationships across atoms in the molecule. 

In the present work, we introduced the AIMNet-NSE architecture to learn a transferrable 

potential for organic molecules in arbitrary charge states. For neutral, cation-radical and anion-

radical species, the AIMNet-NSE achieves consistent 3-4 kcal/mol accuracy in predicting energies 

of larger molecules (13-20 non-H atoms), even though it was only trained small molecular up to 

12 non-H atoms. In addition to energy, the AIMNet-NSE model achieve a state of the art 

performance in prediction of intensive properties. It demonstrates accuracy about 0.10-0.15 eV for 

vertical electron affinities and ionization potentials across a broad chemical and conformational 

space.  

The key ingredients that allow the AIMNet-NSE model to achieve such high level of 

accuracy are i) multimodal learning, ii) joint information-rich representation of atom in a molecule 

that is shared across multiple modalities, and iii) Neural Spin-charge Equilibration (NSE) block 

inside the neural network. In contrast to the standard geometric descriptors, we have highlighted 

an importance of incorporating adaptable electronic information into ML models. Essentially the 

AIMNet-NSE model serves as a charge equilibration scheme. AIMNet-NSE brings ML and 

physics-based models one step closer by offering a discrete, physically correct dependence of 

system energy with respect to a total molecular charge and spin states. 

As a side benefit, it can be used for a high-quality estimate of reactive indexes based on 

conceptual DFT and reliable prediction of reaction outcomes. Overall, demonstrated flexible 

incorporation of quantum mechanical information into AIMNet structure and data fusion  

exemplify a step toward developing a universal single neural net architecture capable of 

quantitative prediction of multiple properties of interest. As we show in our case studies the the 
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AIMNet-NSE model appears as a fast and reliable method to compute multiple properties like 

ionization potential, electron affinity, spin polarized charges and a wide variety of Conceptual DFT 

indexes. It potentially emerges as a drop-in replacement calculator in a myriad of potential 

applications where high computational accuracy and throughput are required. 

Data availability 
All test data used in this study are publicly available from the project GitHub. 
 
Code availability 
The code to reproduce this study is available on GitHub at https://github.com/isayevlab/aimnet-
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