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Abstract

Ab initio molecular dymamics (AIMD) simulation studies are a direct
way to visualize chemical reactions and help elucidate non-statistical dy-
namics that does not follow the intrinsic reaction coordinate. However,
due to the enormous amount of the ab initio energy gradient calculations
needed for AIMD, it has been largely restrained to limited sampling and
low level of theory (i.e., density functional theory with small basis sets).
To overcome this issue, a number of machine learning (ML) methods have
been employed to predict the energy gradient of the system of interest.
In this manuscript, we outline the theoretical foundations of a novel ML
method which trains from a varying set of atomic positions and their
energy gradients, called interpolating moving ridge regression (IMRR),
and directly predicts the energy gradient of a new set of atomic positions.
Several key theoretical findings are presented regarding the inputs used to
train IMRR and the predicted energy gradient. A hyperparameter used to
guide IMRR is rigorously examined as well. The method is then applied to
three bimolecular reactions studied with AIMD, including HBr+ + CO2,
H2S + CH, and C4H2 + CH, to demonstrate IMRR’s performance on dif-
ferent chemical systems of different sizes. This manuscript also compares
the computational cost of the energy gradient calculation with IMRR vs.
ab initio, and the results highlight IMRR as a viable option to greatly
increase the efficiency of AIMD.

1 Introduction

Ab initio molecular dynamics (AIMD) simulations of chemical reactions have
shown great success in revealing their complicated dynamics at an atomistic
level, elucidating discoveries from experiments that are nonintuitive, and pre-
dicting behaviors of chemical reactions whose conditions are difficult to realize.[1,
2, 3, 4, 5, 6, 7, 8] In AIMD, the interaction between atoms (i.e. energy gradient,
corresponding to forces acting on atoms) is directly calculated on-the-fly with
ab initio methods and their positions (referred to as “configurations”) are prop-
agated iteratively by solving the classical equations of motion over a small time
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interval.[2, 9, 10] In this way, the time-evolution of the coordinates of the system
(referred to as “trajectories”) is collected. To ensure the conservation of the to-
tal energy of the system, the time interval between updating the coordinates of
the atoms of a trajectory is usually of the order of one-tenth of a femtosecond.
A chemical reaction in the gas phase takes place on the scale of picoseconds, as
a result, there are usually a few thousand to tens of thousands ab initio energy
gradient calculations involved in simulating each reactive trajectory.

Further, to accurately model reactions in real life, AIMD simulations of
chemical reactions need to sample a statistical ensemble corresponding to the
conditions of the experiments.[11, 12] For example, AIMD simulations of crossed-
beam experiments (i.e. bimolecular collisions) should sample all possible impact
parameters (b) and orientations of the collision (θ). Practically, this is done by
first detecting bmax, the largest b in which a reactive trajectory can be ob-
served, and then sampling trajectories with random orientations within bmax.
To account for the collision probability, the number of trajectories sampled at
each b value should be proportional to 2πb. For a gas phase bimolecular colli-
sion of small molecules, the bmax is usually a few (4.0 6.0) Å when the collision
energy is less than 1.0 eV.[4, 6, 7, 8] Assuming b is sampled with 0.5 Å intervals
and 100 trajectories are simulated at b = 1.0 Å, the smallest sampled impact
parameter. Such a simulation study will contain a total of 3,600-7,800 trajecto-
ries. Multiplying the number of trajectories with the number of ab initio energy
gradient calculations per trajectory leads to enormous computation cost for a
simulation study of one chemical reaction under just one condition (a certain
collision energy, temperature, vibrational excitation, etc.).

The millions of ab initio energy gradient calculations take up the over-
whelming majority the computation involved in AIMD and present an obvious
dilemma: there is an inevitable tradeoff between the accuracy of the ab initio
method and the ergodicity of the sampling. For example, coupled cluster theo-
ries with large basis sets (e.g. CCSD(T)[13]/aug-cc-pVTZ[14]) can be expected
to accurately model the ground state potential energy of a gas phase system.
However, this level of theory is of no practical use in AIMD: even for systems
with less than 10 atoms, a single ab initio energy gradient calculation of such
method may take hours on one computer node with twenty processors. Millions
of such calculations demanded by one simulation study would drain the capacity
of a medium-size supercomputer for years. On the other hand, insufficient sam-
pling inevitably compromises the reliability of AIMD, as the chance of observing
some minor reaction pathways could be as low as 1%.[4, 6, 7, 8] The balance
between accuracy and ergodicity usually limits AIMD to single reference ab
initio methods, such as density functional theory (DFT[15]) or Moller-Plesset
perturbation theory to the second order (MP2[16]) with basis sets of limited
sizes (e.g. cc-pVDZ or 6-31G*[17]). Selecting a feasible yet accurate single ref-
erence ab initio method is laborious: the potential energy of a chemical reaction
calculated from various candidate methods are compared against experimental
benchmarks and/or results from a high-level ab inito method (e.g CCSD(T)
extrapolated to the complete basis set limit[18]).

The daring burden of computation has greatly limited the application of

2



AIMD, therefore, an on-the-fly and efficient algorithm that is able to predict
the energy gradient of configurations that replaces the expensive ab initio cal-
culation is highly desirable. Over the last decade, various methods have been
developed for this purpose and one popular approach is to estimate the energy
gradient from a large database of ab initio calculations with machine learning
(ML). For a more in-depth overview, see reviews by Hansen et al.[19, 20] and
Faber et al.[21], as well as a more general review by Noe et al.[22] One broad class
of ML methods treats the atoms in the system individually and predicts the en-
ergy gradient of each atom according to its surroundings. Several research have
successfully demonstrated this, employing neural networks[23, 24, 25, 26, 27],
kernel ridge regression[28, 29, 30], or Gaussian process regression.[31, 32] An-
other broad class of ML methods instead looks at the configuration of the entire
system and predicts the energy gradients of all the atoms in the system at once.
These types of ML often use linear interpolation[33, 34, 35, 36, 37], reproducing
kernel interpolation[38, 39, 40, 41, 42, 43], or kernel ridge regression.[44, 45]
The molecular systems that serve as proof of concepts in those ML develop-
ments are mostly close-to-optimal structures, for example, oscillations of atoms
in metal or vibrations of molecules at a relatively high temperature (up to 500
K). In spite of the success of the aforementioned ML methods, they have not
been well-adapted for AIMD simulations of chemical reactions, as a majority of
which involve separated molecules, e.g. bimolecular collisions and unimolecular
dissociations.

Take the former as an example, the simulations start with two reactant
molecules separated at a relatively large distance (e.g. 10+ Å to minimize the
interaction between them) which then collide to form a complex and dissociate
to form product(s). Some trajectories could even be trapped by one or more
potential energy minima (i.e. intermediates) and experience multiple barrier
(re-)crossings. And as opposed to the regular thermal excitation used to train
most ML methods, the excitation immediately after collision is much more lo-
calized and, as a result, certain vibrational modes of the newly-formed complex
could be highly excited before the intramolecular vibrational redistribution is
able to disperse the excess energy in those modes to the entire molecule. In
conclusion, not only many more unique molecules, including reactants, inter-
mediates, transition states, and products, needs to be sampled for AIMD of
chemical reaction, but also their vibrations need to be sampled at a higher ex-
citation. Figure 1 demonstrates this effect with an example reaction of HBr+ +
CO2 −→ HOCO+ + Br·, which is roughly captured by the collective variables
(CVs) of two distances: the distance between H and C and the distance between
Br and O. The area of the phase space sampled from 10 reactive trajectories of
collision energy of 8 kcal/mol, one of the lowest collision energies explored in
the experiments, is much larger than 10 trajectories of oscillations starting from
an intermediate at 500 K, a temperature commonly used for proof of concept in
other ML methods. The extended phase space demanded by AIMD simulations
of chemical reactions presents a challenge to the aforementioned ML methods.
Once a trajectory either visits different intermediates than it has trained with
or dissociates to separated molecules, these ML methods would have to employ
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Figure 1: Top panel: the potential energy (in kcal/mol) of the HBr+ + CO2

−→ HOCO+ + Br reaction. Bottom panel: the blue area is sampled from 10
AIMD trajectories of a thermal excitation at 500 K (initiated at the triangle,
an intermediate, see top panel). This temperature is commonly examined by
other ML works of small molecules. The coral area is sampled from 10 AIMD
bimolecular collision trajectories initiated from reactants (top right area of the
figure) of a collision energy of 8.1 kcal/mol. This collision energy is among the
lowest employed by the crossed-beam experiment.[46, 47] The triangle, star, and
circle in the bottom panel correspond to the structures in the top panel. This
figure shows that although the chemical space of interest in other ML works
is able to sample the isomerization of two intermediates separated by a low
transition state (star), it is not nearly enough for chemical reactions involving
separated molecules. The potential energy and the AIMD are both generated
at the MP2/cc-pVDZ/lanl08d level of theory.[48, 49]

new regiments of ab initio calculations to train these specific areas in the phase
space[35, 36] and/or the global ML potential energy surface (PES) would have
to be iteratively retrained.[41, 42, 43, 37] To our best knowledge, there has not
been a ML method that has been developed to tackle the complexity of the
phase space involved in a chemical reaction.

In this manuscript, a novel ML algorithm, “Interpolating Moving Ridge Re-
gression” (IMRR), that is specifically designed for estimating energy gradients
for AIMD simulations, is introduced. The training set for IMRR, which is
referred to as the “input of IMRR”, is the energy gradients (g(qi)) of config-
urations (qi) that are geometrically close to the configuration of interest (q0).
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The outcome of IMRR is Z(q0), the estimated energy gradient of q0, which is
necessary to propagate the trajectory. IMRR is able to assess the risk of Z(q0),
the likelihood of its deviation from the ab initio energy gradient, (g(q0)), being
larger than a user-defined threshold, which could be used to refine and/or reject
Z(q0). It is important to note that the risk-assessment of IMRR is done without
computing the ab initio gradient of the configuration of interest. As a summary,
IMRR highlights a few characteristics that are attractive to AIMD simulations
of chemical reactions: a) In theory, the training set of IMRR could be cost-free,
as they are made from traditional AIMD simulations, e.g., the first 100 trajec-
tories. In other words, all of the ab initio calculations involved in AIMD simu-
lations directly contribute to the propagation of the trajectories – unlike other
ML methods, there is not a number of ab initio calculations set aside purely
for the purpose of ML training. b) IMRR’s risk-assessing capability features
the flexibility of referring back to the ab initio energy gradient when necessary.
Combining with its nature of local regression, whenever an IMRR gradient is
deemed risky (e.g., trajectory traverses through a poorly-learned regions in the
phase space), the AIMD trajectory is not forced to adapt a potentially high
error (i.e. high risk) energy gradient that would have negatively impacted its
validity. This feature is not obvious in many ML methods, where their energy
gradients are estimated from a global function. And c), IMRR is highly efficient
– as shown later in this manuscript, its computational cost (both wall-time and
CPU-time) is only a fraction of the ab initio energy gradient calculation. As a
result, trajectories propagated with a mix of IMRR (when deemed low risk) / ab
initio (when deemed high risk) could be expected to be much more efficient as
compared to traditional AIMD trajectories. In this manuscript, the theory and
performance of IMRR will be laid out in great detail, while its implementation
with trajectory propagation will be introduced in a separate manuscript.

The rest of the manuscript is organized as the following. The theory of
IMRR and the numerical protocol of minimizing the deviation between energy
gradient from IMRR and ab initio are provided in the Methodology section.
The dependance of this deviation on the input of IMRR and the hyperpa-
rameter is provided in the Result section. The computational cost of IMRR
is also reported. The manuscript concludes with discussions on the IMRR’s
risk-assessing capability and how the chemistry and size of the system impact
IMRR’s performance.

2 Methods

2.1 The Upper Bound of the Error

Consider a chemical system of N atoms with configuration q and energy gradient
g(q). While the system may be fully described by a number of different schemes
(distance matrix, smooth overlap of atomic positions (SOAP), etc.), consider
the scheme defined by 3N coordinates (x, y, z for each atom), i.e. q ∈ R3N and
g(q) ∈ R3N . Assume for the configuration of interest at a certain step q0, to
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propagate the system to the next time step, AIMD demands g(q0) ∈ R3N , the
forces acting on the atoms, which is calculated from an ab initio method. The
goal of IMRR is to estimate the energy gradient of q0, named Z(q0) ∈ R3N with
a training set made of ab initio energy gradients g(qi), calculated from previous
simulations. In IMRR, Z(q0) is computed as the weighted average of the energy
gradients of K configurations with wi as the weight:

Z(q0) =

k∑
i=1

wig(qi) 1 ≤ i ≤ K (1)

A successful IMRR execution would replace an expensive ab initio energy
gradient calculation. IMRR optimizes wi in order to minimize the difference
(referred to as the “error of IMRR”) between Z(q0) and g(q0), which is expressed
as:

∣∣g(q0)− Z(q0)
∣∣ =

√√√√ 1

N

3N∑
j=1

(
gj(q0)− Zj(q0)

)2
1 ≤ j ≤ 3N (2)

Intuitively, those qi that are geometrically close to q0 should be prioritized in
making up the training set. This closeness depends on the coordinates scheme;
for the set of 3N x,y,z coordinates, the geometrical closeness between qi and q0
can be assessed by the root mean square displacement (RMSD, ti) after qi has
been properly translated and rotated to maximize its overlap with q0.[50] It is
important to note that permutation should be allowed for chemically identical
atoms if it increases the overlap. The RMSD is computed as:

ti = RMSD(q0, qi) =

√√√√ 1

N

3N∑
j=1

(
q0,j − qi,j

)2
≤ tcut 1 ≤ j ≤ 3N (3)

in which tcut is a user-defined parameter that controls the geometrical close-
ness of the configurations in the training set with respect to the target. Using
the notation of ti, qi is related to q0 by:

qi = q0 +
√
Ntiĥi (4)

in which ĥi is the unit vector of hi, the displacement between qi and q0, i.e.
hi = qi − q0 ∈ R3N . Using this notation, the ab initio energy gradient of qi can
be rewritten as a single-variable function of ti, g(qi) = fi(ti) ∈ R3N . Assume
the chemical system stays in the same electronic state (adiabatic process), its
energy gradient can be assumed to be continuous and infinitely differentiable in
each of its 3N components. Therefore, the jth component of function fi can be
expanded with Taylor’s theorem:

fi,j(t) = fi,j(0)+tf ′i,j(0)+
1

2
t2f ′′i,j(0)+

1

3!
t3f ′′′i,j(0)+ . . . 1 ≤ i ≤ K, 1 ≤ j ≤ 3N

(5)
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The first subscript of fi,j(t) denotes that it is the function for qi and the
second subscript of fi,j(t) deontes the it is the jth component. As defined, the
first term fi,j(0) is the jth component of g(q0), i.e. fi,j(0) = gj(q0). The second
term can be shown as the derivative of gj with respect to the ith direction:

f ′i,j(ti) =
d

dti
gj
(
q0 +

√
Ntiĥi

)
= g′j

(
q0 +

√
Ntiĥi

)
·
√
Nĥi

f ′i,j(0) = g′j(q0) ·
√
Nĥi g′j(q0) ∈ R3N 1 ≤ i ≤ K, 1 ≤ j ≤ 3N (6)

We first establish that the error of IMRR (Eq. 2) is bounded above the con-
sidereing the lth component (among 3N components) of Z(q0) where it deviates
the most from g(q0), e.g.

∣∣g(q0)− Z(q0)
∣∣ ≤ √3 ·

∣∣gl(q0)− Zl(q0)
∣∣ l = argmax

1≤j≤3N

∣∣gj(q0)− Zj(q0)
∣∣

The inequality can be further derived as

∣∣g(q0)− Z(q0)
∣∣ ≤ √3 ·

∣∣∣gl(q0)−
K∑
i=1

wigl(qi)
∣∣∣

=
√

3 ·
∣∣∣gl(q0)−

K∑
i=1

wifi,l
(
ti
)∣∣∣

=
√

3 ·
∣∣∣gl(q0)−

K∑
i=1

wi

(
fi,l(0) + tif

′
i,l(0) +

1

2
t2i f
′′
i,l(0)+

1

3!
t3i f
′′′
i,l(0) + ...

)∣∣∣
Distribute the summation and apply the triangle inequality:

∣∣g(q0)− Z(q0)
∣∣ ≤ √3 ·

∣∣∣(gl(q0)−
K∑
i=1

wifi,l(0)
)
−

K∑
i=1

witif
′
i,l(0)−

K∑
i=1

(
wi

1

2
t2i f
′′
i,l(0) + wi

1

3!
t3i f
′′′
i,l(0) + . . .

)∣∣∣
≤
√

3 ·
∣∣∣gl(q0)−

K∑
i=1

wifi,l(0)
∣∣∣+
√

3 ·
∣∣∣ K∑
i=1

witif
′
i,l(0)

∣∣∣+
√

3 ·
∣∣∣ K∑
i=1

(
wi

1

2
t2i f
′′
i,l(0) + wi

1

3!
t3i f
′′′
i,l(0) + . . .

)∣∣∣ (7)
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The first term can be rewritten as:

√
3 ·
∣∣∣gl(q0)−

K∑
i=1

wifi,l(0)
∣∣∣ =
√

3 ·
∣∣gl(q0)

∣∣ · ∣∣∣1− K∑
i=1

wi

∣∣∣
=
√

3 ·
∣∣gl(q0)

∣∣︸ ︷︷ ︸
C0

·

∣∣∣∣∣
K∑
i=1

wi − 1

∣∣∣∣∣︸ ︷︷ ︸
R0

(8)

in which C0 depends only on the nature of the potential energy surface
(specifically, its derivative), i.e. C0 =

√
3 ·
∣∣ql(q0)

∣∣, and R0 depends only on the

weights of qi, i.e. R0 =
∑K

i=1 wi− 1. Similarly, with results from Eq. 4 and Eq.
6, the second term in Eq. 7 could be derived as an inequality with a single C1

term that depends only on the derivatives of g(q0) and a single R1 term that
depends only on qi and their weights wi:

√
3 ·
∣∣∣ K∑
i=1

witif
′
i,l(0)

∣∣∣ =
√

3 ·
∣∣∣ K∑
i=1

g′l(q0) · wi

√
Nĥi

∣∣∣
≤
√

3 ·
∣∣∣g′l(q0)

∣∣∣ · ∣∣∣ K∑
i=1

wi

√
Ntiĥi

∣∣∣
=
√

3 ·
∣∣g′l(q0)

∣∣︸ ︷︷ ︸
C1

·

∣∣∣∣∣
K∑
i=1

wihi − 0

∣∣∣∣∣︸ ︷︷ ︸
R1

(9)

in which
∣∣g′l(q0)

∣∣ =
∣∣∣∣∣∣g′(q0)

∣∣∣∣∣∣ is defined as the magnitude of the largest value

among the 3N × 3N elements of the matrix g′(q0), the Hessian of q0. In regard
to the third term in Eq. 7:

√
3 ·
∣∣∣ K∑
i=1

(
wi

1

2
t2i f
′′
i,l(0) + wi

1

3!
t3i f
′′′
i,l(0) + . . .

)∣∣∣
=
√

3 ·
∣∣∣ K∑
i=1

wit
2
i

(1

2
f ′′i,l(0) +

1

3!
tif
′′′
i,l(0) + . . .

)∣∣∣
≤
√

3 ·
K∑
i=1

∣∣∣wit
2
i

(1

2
f ′′i,l(0) +

1

3!
tif
′′′
i,l(0) + . . .

)∣∣∣
Recall that ti is bounded by tcut, which is chosen to be a small value in

practice, thus according to Taylor’s theorem, the summation of higher terms in
the Taylor expansion of an analytical function is bounded:
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∣∣∣t2i(1

2
f ′′i,l(0) +

1

3!
tif
′′′
i,l(0) + . . .

)∣∣∣ ≤ t2iCi,l

in which Ci,l is a constant characterized by the nature of the potential energy
for the system (i,e, higher order potential energy derivatives). Similarly, the
third term in Eq. 7 can be epxressed as the product of two terms: the C2 term
that depends only on the nature of the potential energy surface and the R2

term that depends only on qi and their weights wi. The inequality from above
becomes:

√
3 ·

K∑
i=1

∣∣∣wit
2
i

(1

2
f ′′i,l(0) +

1

3!
tif
′′′
i,l(0) + . . .

)∣∣∣ ≤ √3 ·
K∑
i=1

∣∣∣wit
2
iCi,l

∣∣∣
≤
√

3 ·
K∑
i=1

(∣∣∣wit
2
i

∣∣∣ · ∣∣∣Ci,l

∣∣∣)

≤
√

3 · Ci,l ·
K∑
i=1

∣∣∣wit
2
i

∣∣∣
=
√

3 · Ci,l︸ ︷︷ ︸
C2

·

∣∣∣∣∣
K∑
i=1

|wi|t2i − 0

∣∣∣∣∣︸ ︷︷ ︸
R2

(10)

Substituting Eq. 8, 9, and 10 into Eq. 7 establishes that the error in energy
gradients between the interpolated configuration and the target configuration is
bounded above as: ∣∣g(q0)− Z(q0)

∣∣ ≤ C0R0 + C1R1 + C2R2 (11)

To summarize, the C terms depend only on the nature of the potential energy
surface of the system (C2 also depends on the threshold tcut of selecting qi) and
the R terms depend only on the structural closeness between qi and q0. The
geometric representations of these R terms for K = 2 are summarized in Figure
2.

2.2 Minimize the Upper Bound of the Error

IMRR pursues to minimize the error between the estimated energy gradient
and the ab initio energy gradient of the configuration of interest (Eq. 2) by
minimizing its upper bound. As shown in Eq. 11, the source of the error has
been categorized into two components: The C terms that depend on the nature
of the potential energy surface and the R terms that do not. Clearly, the nature
of the potential energy surface varies from system to system, therefore, IMRR
focuses on minimizing Eq. 11 through the R terms. We first rewrite this upper
bound into the form of a linear equation:
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Figure 2: The R0 distance measures the difference between the sum of the
weights and unity whereas the R1 distance measures the actual distance in space
between the interpolated configuration (red cross) and the target configuration
(red circle), as illustrated in the left panel. The R2 distance measures the
weighted sum of the magnitudes of the input configurations (blue circles). Cyan,
dark blue, and purple lines indicate interpolation configurations which have the
same value of R0, R1,and R2, respectively.

|g(q0)− Z(q0)| ≤ C0R0 + C1R1 + C2R2

= C0

∣∣∣∣∣
K∑
i=1

wi − 1

∣∣∣∣∣+ C1

∣∣∣∣∣
K∑
i=1

wihi − 0

∣∣∣∣∣+ C2

∣∣∣∣∣
K∑
i=1

wit
2
i − 0

∣∣∣∣∣
= C0

∣∣∣UTw − 1
∣∣∣+ C1

∣∣∣Aw − 0
∣∣∣+ C2

∣∣∣Bw − 0
∣∣∣

=
∣∣∣C0U

Tw − C01
∣∣∣+
∣∣∣C1Aw − C10

∣∣∣+
∣∣∣C2Bw − C20

∣∣∣
≤
√

3 ·
√∣∣∣C0UTw − C01

∣∣∣2 +
∣∣∣C1Aw − C10

∣∣∣2 +
∣∣∣C2Bw − C20

∣∣∣2
=
√

3

∣∣∣∣∣
 C2B
C1A
C0U

T

w −
C20
C10
C01

 ∣∣∣∣∣ (12)

A ∈ RK×3N is defined as the matrix of the input configurations’ deviations
hi ∈ R3N , 1 ≤ i ≤ K:

A =

 | | |
h1 h2 . . . hK
| | |

 =


h1,1 h2,1 hK,1

h1,2 h2,2 hK,2

...
... . . .

...
h1,3N h2,3N hK,3N


B ∈ RK×K is the diagonal matrix of the magnitude of the displacement of

the input configurations from the target configuration:
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B =



t21 0 0 . . . 0
0 t22 0 . . . 0

0 0 t23
...

...
...

. . .

0 0 . . . t2K


U ∈ RK is a vector with elements of 1 and its transpose is:

UT =
[
1 1 . . . 1

]
w ∈ RK is the weights of the K input configurations:

w =
[
w1 w2 . . . wK

]T
Finally, 0 =

[
0 0 . . . 0

]T ∈ RK and 1 is just the scalar 1. For simplicity,
this can be further simplified as:

|g(q0)− Z(q0)| ≤ |Hw − h∗| =
√

(Hw − h∗)T · (Hw − h∗) = r(w) (13)

in which H ∈ R(3N+K+1)×K , H =
[
C2B C1A C0U

T
]T

and h∗ ∈
R3N+K+1 , h∗ =

[
C20 C10 C01

]T
. IMRR solves for the optimal w ∈ RK

that minimizes r(w) by setting the derivative of r(w)2 to be zero. The optimal
w that minimizes the upper bound of the error is:

w =
(
HTh∗

)−1
HTh∗ (14)

This equation can be proven to have a non-trivial answer, as shown in the
Supplementary Information.

2.3 Solving for the optimal w with restrictions

The derivation above details that the error of IMRR (Eq. 2) is bounded and
how IMRR minimizes this bound. Nonetheless, it is important to note that the
C terms used in constructing H and h∗ (e.g. C0, C1, C2 in Eq. 13) depend on
the nature of the potential energy surface and they are not known a priori. To
minimize the number of unknowns in H and h∗, one of the R terms could be
eliminated by setting it to zero as a constraint. The R0 term is only a single
row in the matrix H and would not dramatically shrink the number of solutions
as compared to the R1 term. Consequently, this can be eliminated by imposing
the constraint:

UTw − 1 = 0

Following the same procedure as shown in the previous section, the upper
bound could be rewritten with the linear equation:
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|g(q0)− Z(q0)| ≤

∣∣∣∣∣
[
C2B
C1A

]
w −

[
C20
C10

] ∣∣∣∣∣
= C1

∣∣∣∣∣
[
αB
A

]
w −

[
α0
0

] ∣∣∣∣∣
= Hr − hr

∗

Figure 3: By constraining R0 = 0, in an example where there are two input con-
figurations (K = 2), all solutions lie on a one-dimensional line. Three possible
solutions are presented. In each, the interpolated configuration is denoted by a
red cross and the corresponding values of R1 and R2 vary. The hyperparame-
ter α∗ would lead the algorithm to pick the middle interpolation in this case,
minimizing the error function defined by R1 + α∗R2. In general (for all K), α
describes the slope of the hyperplane tangent to the R1-R2 surface.

The terms in this equation are defined as before and a hyperparameter α is
introduced to denote the ratio between C2 and C1, i.e. α = C2/C1. The true
value of α depends on the potential energy surface of the system (as well as q0)
and is not known either. As is customary in a machine learning method, this is
left as a user-controlled hyperparameter. Details of estimating α that controls
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the error are provided in the Results section. As seen in Figure 3, generally,
the IMRR has two limiting behaviours for very small and large α. In the small
α case, minimizing R1 is preferred so the weights are chosen to minimize the
distance between the interpolated frame and the target, or having an “accurate”
interpolation. In the large α case, minimizing R2 is preferred so the weights are
chosen to minimize the distance between the interpolated frame and the closest
possible input, or having a “precise” interpolation.

Define Hr =
[
αB A

]T
and hr

∗ =
[
α0 0

]T
. This constrained optimiza-

tion of w that minimizes the bound of the error could be solved by constructing
a Lagrangian, L(λ,w):

L(λ,w) = (Hw − h∗)T · (Hw − h∗) + λ(UTw − 1)

Setting the gradient of L(λ,w) with respect to λ and w to zero, the equation
above could be rearranged as a set of linear equations:

[
w
λ

]
=

[
2Hr

THr U
UT 0

]−1 [
2Hr

Th∗r
UT

]

It has been proved elsewhere that the matrix is invertible if
[
Hr

T U
]T

has
linearly dependent columns.[51]

3 Results

The first representative system employed to demonstrate the performance of
IMRR is the bimolecular collision of HBr+ + CO2, which after collision, forms
the proton-transfer product HOCO+ + Br, or goes back to the reactant molecules
(i.e., non-reactive trajectories). This system has been studied extensively with
the guided-beam experiments, quantum calculations, and AIMD. The IMRR
employs ab initio energy gradients computed with MP2/cc-pVDZ by NWChem
that made up the previous AIMD trajectories as its targets (q0, g(qi)) and inputs
(qi, g(qi)) when applicable. As noted in Methods, the error of IMRR depends on
various factors, such as the geometrical closeness of inputs (tcut in Eq. 3), the
number of inputs (K in Eq. 1), the hyperparameter (α in Eq. 15), etc. Thus,
in this section, we treat these factors as independent variables – studying the
dependence of the error of IMRR with respect to one factor while keeping the
rest at fixed, reasonable values, with justifications provided in each respective
section below. This setting is to have 15 input frames (qi and its corresponding
g(qi)), each of which has an RMSD less than 0.15 A (tcut = 0.15 A) to the target
q0, and the hyperparameter α is held at 1.0 x 10−1. Unless noted otherwise,
these values are adapted as default for the rest of the manuscript.
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3.1 Accuracy of IMRR vs. the Geometrical Closeness and
the Number of Inputs

As defined in Eq. 3, ti represents the geometrical closeness between the input
configuration, qi, 1 ≤ i ≤ K (the number of inputs for the IMRR) and the
target, q0, after their overlap has been maximized through center of mass trans-
lation and rotation. tcut is the upper bound of ti and the previous section has
shown the error (i.e., Eq. 2) of IMRR decreases as ti gets smaller (see R1 term
in Eq. 9 and R2 term in Eq. 10). Therefore, controlling tcut, is the first proof
of concept in this section. Since IMRR aims to predict the energy gradient
that could be applied to simulate chemical reactions, it is important to ensure
the targets employed in the test represent all relevant phase space of the reac-
tion. An illustration of the phase space of this reaction, characterized by two
collective variables (CVs), the distance between H-O and the shorter distance
between two Br-O, is provided in Fig. S1 of the Supplementary Information.
The configurations of 4,000 AIMD trajectories are binned into the CV-space,
and 68 1A x 1A cells are populated. These cells are determined to be relevant
to the reaction and one configuration from each cell is selected as the target to
assess the performance of IMRR.

Figure 4: Left panel: the error of IMRR with vs. the number of inputs at various
tcut values. Right panel: the error of IMRR vs. tcut with K = 40 inputs. The
targets of these figures uniformly sample the phase space of the HBr+ + CO2

reaction.

The energy gradient of these targets is estimated by IMRR at various tcut
and compared with its ab initio counterpart, whose difference is defined as the
error of IMRR (Eq. 2) and plotted in the right panel of Fig. 4. For each
target (q0), up to 40 inputs (qi) are randomly generated by displacing atoms
from q0, while enforcing its ti (geometrical closeness to q0) to be between 90-
100% of each tcut. The energy gradient of the inputs, g(qi), are computed at
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MP2/cc-pVDZ level of. As Fig. 4 demonstrates, the error of IMRR decreases
monotonically as the input configurations, qi, get more geometrically similar to
the target, q0. In other words, the energy gradient predicted by IMRR, Z(q0),
approaches g(q0), the energy gradient of the target from MP2/cc-pVDZ, as qi
approaches q0 (i.e., smaller tcut). Fig. 4 also illustrates that the error of IMRR
demonstrates a strong logarithmic relation with respect to tcut. Note the x-axis
is linear and the y-axis is logarithmic – when the y-axis is linearized, the black
curve becomes a power relation with the general form of axb, where a and b
are constants. The fitted line (black solid curve) closely resembles a quadratic
(ax2), indicating that with the optimized weights in Eq. 2, the error is largely
bounded by C2R2, since R2 is proportional to the sum of the squared ti of the
input. Overall, the right panel of Fig. 4 suggests that the accuracy of IMRR
is improvable as more inputs closer to the target become available – a scenario
that is at least achievable in theory with more sampling of AIMD trajectories.

Fig. 4 (left panel) also illustrates the correlation between the error of IMRR
and the number of inputs (K). For each target, their inputs are sorted before
being fed into the IMRR. For example, K = 2 means the IMRR is carried
out with the two inputs closest to the target, and K = 3 includes the three
inputs closest to the target. Although the newly included inputs (as a result of
increasing K) are geometrically further away from the target, the IMRR, across
all values of tcut, is able to estimate an energy gradient much closer to ab initio
value (i.e., smaller error) with a larger number of inputs. The gain in IMRR
accuracy by including more inputs is significant when K is less than 15 and
becomes marginal after K > 15. The convergence of the error of IMRR after 15
inputs has led to the usage K = 15 as a default number of inputs in the rest of
the manuscript. It is interesting to note, the error of IMRR demonstrates a local
maximum around K = 10 for almost all tcut, which is particularly obvious for
larger tcut. The origin of this counterintuitive maximum is debatable, while one
explanation could be that IMRR is more ‘fragile’ when inputs are geometrically
further away from the target, and is not well-behaved until there is at least 10
inputs to work with.

It is important to confirm that the behavior of IMRR with respect to the
geometrical closeness and number of inputs is not a result of the artificial method
of generating inputs, i.e., by displacing atoms of the target. Herein, a more
large-scale assessment of IMRR is carried out, in which 1000 inputs uniformly
sampling the feasible CV-space are selected from 150 AIMD trajectories, thus
roughly 15 inputs are selected from each 1A x 1A cell shown in Fig. S1. The
energy gradients of these inputs are estimated by IMRR with inputs (15 each)
selected from another 4000 AIMD trajectories (a total of 28.1 million energy
gradient calculations). We note that these inputs are not restricted by a lower
bound (i.e. ti in this test does not have to be larger than 90% of the tcut) as
imposed in the previous test. This setting closely mimics how IMRR would be
applied to an AIMD simulation – estimating the energy gradient with inputs
from ab initio calculations of already-computed trajectories. The results are
summarized in the Supplementary Information (Fig. S2) and shows very good
agreement with Fig. 4, demonstrating the potential of IMRR in producing
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low-error energy gradient given enough inputs that are close to the target.

3.2 Accuracy of IMRR vs. the Hyperparameter α

As shown in the previous section, IMRR demands a hyperparameter α in solving
for the optimal weights (wi) that minimize the upper bound of the error. Defined
Section II.c, α is expressed as the ratio between C2, a term depending on the
derivatives of the energy gradient of the target, and C1, a term depending on the
energy gradient of the target, thus at least in theory computable with an ab initio
method. However, it would be highly unwise to evaluate α for each IMRR, since
it would be more expensive than just computing the ab initio energy gradient
itself. Therefore, like many other ML methods, the hyperparameter α is tested
and chosen over a range of values determined empirically to reliably produce
minimal IMRR error.

Figure 5: Three representative behaviors of the error of IMRR vs. the value
of the hyperparameter. The small α, large α, and intermediate α regions are
colored with coral, blue, and white, respectively.

Intuitively, when a variety of inputs are available to IMRR (while control-
ling the inputs’ geometrical closeness to the target by enforcing ti < tcut), the
hyperparameter α balances the relative importance between the inputs that are
relatively far from the target (i.e., larger ti) and that are relatively close (i.e.,
smaller ti). As Eq. 15 suggests, a large α (blue region in Fig. 5) will minimize
the C2R2 term of the upper bound of the error; while in contrast, a small α
(coral region in Fig. 5) will minimize the C1R1 term of the upper bound of the
error. Herein, the 1000 targets (q0) that uniformly sample the CV-space of the
reaction are employed as the targets again to investigate the behavior of the
error of IMRR with respect to different α, whose value ranges between 10−5

and 10+5. Although the exact curve of the error of IMRR vs. α curve varies
from target to target (see in Fig. 5), it can be divided into three regions: large
α (blue), small α (coral), and intermediate α (white). The first two regions are
detected when the error of IMRR becomes independent of α, although each re-
gion is associated with a different error. The error of IMRR in the intermediate
region heavily depends on α and smoothly connects the other two regions.
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Figure 6: Top panel: the error of IMRR when the hyperparameter α is in
different regions in Figure 5. Bottom panel: the histogram of the position of
the edges of the small α and large α regions.

To identify the optimal α that empirically minimizes the error of IMRR,
a histogram of the errors of IMRR from the aforementioned three regions is
depicted in the top panel of Fig. 6. The data show that when an α value is
small, the error of IMRR is overwhelmingly smaller than those in the large α
region (93%, area under the blue curve). It is true that the possible minimal
error of IMRR could correspond to an α value within the intermediate region,
as the bottom panel of Fig. 5 shows, nevertheless, the intermediate region still
statistically (61%, area under the black curve in the top panel of Fig. 6) has
a larger error than those in the coral region. As a result, the optimal α is
empirically set to be in the coral region in Fig. 5, whose position is detected by
consolidating its upper bound (i.e., the right edge). A histogram of the position
of these upper bounds is depicted in the bottom panel of Fig. 6, and a value of
1.0 x 10−1 is chosen as the default for the IMRR.

As a brief summary of the error of IMRR reported so far, it is worth noting
that the theory in the Methods section only deals with the upper bound of
the error. To demonstrate the behavior of the upper bound, not only is an
enormous amount of sampling (i.e., targets) required, it is also of little use to
the actual dynamics simulation. Nonetheless, the empirical data provided so far
demonstrate that by optimizing the weight of the inputs, which are controlled
over K, tcut, and α, the error of IMRR is well-behaved and the IMRR energy
gradient approaches its ab initio counterpart. This can further be seen in Fig.
S3 of the Supporting Information, where the average error of IMRR of various
tcut is plotted against R1 +αR2 – as R1 +αR2 gets smaller, the error of IMRR
monotonically decreases.

3.3 The Computational Cost of IMRR

The computational cost for one time step (i.e., update the configuration of the
system once) in molecular dynamics simulations can be decomposed into two
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parts: the generation of the energy gradient (e.g., ab initio calculation, force
field evaluation, etc.) and all other overhead cost (e.g., propagate the system,
evaluation trajectories, etc.). As discussed in the Introduction, the former makes
up the overwhelming majority of the computational cost in AIMD. With a ML
method like IMRR that aims to replace a majority of the ab initio energy gradi-
ent calculations, the overhead cost could possibly become the rate-limiting step
in the simulation. This would be the case if searching through previous trajec-
tories’ energy gradients for satisfactory IMRR inputs takes an excessive amount
of time. It is obvious that the speed of identifying inputs of IMRR (configu-
rations that are geometrically close to the target) among an enormous number
of configurations depends heavily on the data structure of those configurations,
the searching algorithm, the hardware of the computer, etc. A thorough discus-
sion on that front is beyond the scope of this manuscript, nonetheless, here we
provide a preliminary computational cost of IMRR, including its overhead cost,
with a bare bone protocol that is subject to further improvement.

Consider the set of all ab initio energy gradients that are computed in the
early phase of the AIMD study as the “library” of available inputs for IMRR.
Clearly, the overhead cost would be unmanageable should the entire library
be searched through for the aforenoted inputs for each IMRR. To address this
concern, the same pair of CVs described earlier are employed to construct the
library. Before an ab initio energy gradient (i.e., g(q)) is put into the library, its
corresponding CVs are calculated, and g(q) would be written/appended into a
file that is indexed by the CVs. With this setting, the library contains numerous
files and each file stores only those g(q) that share similar CVs. When searching
for inputs of IMRR, only those files sharing CVs similar to the target of IMRR
are loaded in the memory. The premise is that the g(q) stored in these files
are likely to be similar to the energy gradient of the target, and thus likely
to be selected as IMRR inputs. As a result, only a small subset of the entire
library is relevant to the IMRR input search and the overhead cost is kept at
a manageable level. Further, to minimize the I/O of the computer system, a
buffer is designed and implemented to store the g(q) from the aforementioned
files in the memory. This buffer is updated only when the target has moved
significantly away from the previous one. The computational cost of the IMRR
is tested with a library of 4,000 AIMD trajectories (about 25 million ab initio
energy gradients, 1836285 files, 17.5 GB size) of the HBr+ + CO2 −→ HOCO+

+ Br reaction.
Eight trajectories that are not part of the library are simulated, and their

energy gradients (about 50,000) are computed with an ab initio calculation
(these trajectories are still propagated with ab initio energy gradient) followed
by an IMRR. Their timings are compared in Fig. 7. As shown, the wall time of
IMRR (0.51 seconds per step on average) is less than a quarter of the wall time
of the AIMD (2.16 seconds per step on average) to propagate the system by
one step. The most populated bar of IMRR corresponds to those IMRRs that
do not require an update of the buffer, and the larger the portion of the buffer
needs to be updated, the longer IMRR takes. Further, as the pie chart shows,
IMRR spends a majority (almost 90%) of the time on the overhead cost, while
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Figure 7: A histogram of the wall time it takes for one MD step if the energy
gradient is generated from IMRR (coral) and ab initio (green). The heights of
the bars are scaled so that they integrate to 1. The average wall times are further
broken down in the inserted pie-charts to gradient generation and overhead.

almost all of the wall time of AIMD is spent on generating the energy gradients.
It is also important to note that, the timing is measured with IMRR occupying
only 1 CPU and ab initio occupying 20 CPUs. The preliminary timing results of
IMRR, even though carried out with a bare minimal data structure, bespeaks its
great potential efficiency as compared to ab initio energy gradient calculations.

4 Discussion

4.1 The Efficacy of IMRR

The previous section presented numerical results on the error of IMRR, which
describes how close the estimated energy gradient (Z(q0), Eq. 1) is to the ab
initio energy gradient (g(q0), Eq. 2). The error of IMRR was demonstrated to
be affected by (and can be tuned by) the number of inputs (K, left panel of
Fig. 4), the geometrical closeness of inputs (tcut, right panel of Fig. 4), and the
hyperparameter (α, see Fig. 5). Since the difference in energy gradient between
any given pair of configurations should generally decrease as the configurations
get geometrically close, without IMRR, one would expect the energy gradient of
qm, the input that is geometrically the closest to the target, to be the closest to
the energy gradient of the target. Therefore the efficacy of IMRR (r) is defined
as how much the IMRR energy gradient has improved upon g(qm) in faithfully
representing the ab initio energy gradient of the target, i.e.,

r =
|g(q0)− g(qm)|
|g(q0)− Z(q0)|

, m = argmin
1≤i≤K

|q0 − qi| (15)
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Figure 8: The average efficacy of IMRR (r) is plotted
across the range of tcut used in the dataset for Figure 4.
For each tcut the distribution of efficacies observed are
plotted above the corresponding average.

As defined, r is
non-negative and the
larger its value, the
more effective the IMRR
is in reproducing the
ab initio energy gra-
dient of the target
as compared to sim-
ply the input clos-
est to the target.
The same sets of tar-
gets as Fig. 4 (83
targets randomly se-
lected from AIMD
trajectories that dis-
tributed evenly in the
CV space) are em-
ployed to probe into
the efficacy of IMRR
with inputs of various
tcut values. Fig. 8
demonstrates the results of r with 15 inputs (K = 15), which indicates that
comparing to the energy gradient of the input (qm) that is geometrically clos-
est to the target, the IMRR energy gradients are 50 times closer to the target
energy gradient. The inserted panels of Fig. 8 show that the efficacy of IMRR
gradually increases when tcut gets smaller, indicating that even when the in-
put(s) are very close to the target, IMRR takes advantages of these inputs and
estimates a much more accurate energy gradient for the target.

The efficacy of IMRR at small tcut indicates that it can be closely coupled
with AIMD as a time interval (δt, time between updating configurations of the
system) multiplier in addition to the active learning discussed in the Introduc-
tion. In AIMD, should be chosen as large as possible while conserving the total
energy of the system and an ab initio energy gradient is calculated every δt to
propagate the trajectory. δt is sub-femtosecond and the configurations of con-
secutive steps are geometrically very close. Therefore, if IMRR could estimate
an energy gradient better representing the target than the energy gradient from
the previous step does, one can propose a small integer n (e.g., n = 2, 3, 4, ...)
such that for n steps, the trajectory is propagated with the ab initio energy
gradient only once and the rest of the (n− 1) steps are propagated with IMRR
energy gradients. In such applications, the inputs of IMRR could fall into two
categories: the “history”, those (h) inputs that are the previous h steps of the
same trajectory, and the “library”, those (K − h) inputs that are geometrically
close to the target from previous trajectories. The motivation is to have IMRR
build upon the “history” with information from the “library” to effectively re-
duce the number of ab initio calculations (i.e., n = 2 will make the simulation
almost twice as fast).
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Figure 9: The average error of IMRR is
plotted against several values of h.

The error of IMRR with h = 1 and
2 are provided in Fig. 9. The targets
of these IMRR are from an AIMD tra-
jectory of the HBr+ + CO2 reaction
(∼4000 targets), and (15 − h) inputs
of various tcut are selected from the
library of 4000 trajectories. The re-
sults show that including just one or
two “history” inputs can dramatically
decrease the error of IMRR – for ex-
ample, the error of IMRR with 2 in-
puts from the previous steps + 13 in-
puts of a tcut of 0.15 A is on the same level as the error of IMRR with 15 inputs
of tcut of 0.01 A. It is also important to note that the error of IMRR does not
further decrease with more than 2 “history” points which could be allotted to
several factors. First, as more “history” inputs are included, inputs that are
geometrically further and further away from the target (i.e., larger tcut) are in-
cluded. Previous results (Fig. 4) have shown that when the number of inputs is
fixed, the error of IMRR increases with respect to tcut. Second, “history” inputs
may be nearly linearly dependent over short periods of time where the momen-
tum changes little. As the IMRR linearly combines coordinates to determine
the weights, having more than two of these nearly linearly dependent inputs
contributes little. Nonetheless, it is important to point out that the inclusion
of “history” inputs aligns well with the nature of local interpolation of IMRR
and the level of the error as a result is on par or superior to other state of the
art ML methods.

4.2 The Risk of IMRR

As suggested in the Method section, IMRR utilizes local information, thus in
principle avoids the risk of over- and under-fitting certain regions of the phase
space that is inherited with those MLs utilizing a globally-fitted function. It
has also been emphasized that, unlike other MLs, IMRR has the potential of
providing a means to assess its risk associated its energy gradient. This risk is
defined as the likelihood of the error of IMRR being more than the level desired
by the user or required to maintain a stable trajectory – whichever is smaller.
Recall that the upper limit of the error of IMRR is governed by the nature
of the PES of the target (C1 and C2 terms in Eq. 13) and the terms related
to the relative position of the inputs with respect to the target (R1 and R2

terms in Eq. 13) – IMRR does not provide any information on C1 or C2, but
once the weights of the inputs are determined, the values of R1 and R2 become
available. The theory of IMRR suggests that the upper bound of its error
decreases monotonically if the values of R1 and R2 decrease. Therefore, when
everything else (the geometrical closeness of the inputs, number of inputs, and
hyperparameter) is equal, the error of those IMRR associated with relatively
small R1 and R2 is expected to be small. To verify, a series of IMRR with 23,000
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targets randomly selected from 160 AIMD trajectories and their corresponding
R1 and R2 values are summarized in Fig. 10. The inputs of the IMRR are
obtained from a library containing 4,000 AIMD trajectories and no “history”
inputs are included. The left panel of Fig. 10 depicts the distribution of R1

and R2 values from these IMRR calculations and the region of small R1 and
R2 values (bottom left) is highly populated. As the theorem suggests, the
right panel of Fig. 10, the average error of IMRR with respect to R1 and R2,
demonstrates that this region corresponds to low average error of IMRR.
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Figure 10: Left panel: the R1 and R2 values of 23,000 IMRR calculations are
binned and plotted; the occurence of each R1 and R2 value is colored by the
blue-white-red palette. The 0.1% of targets with the highest errors of IMRR
have their R1 and R2 plotted on top of this with their errors colored by the
red-black palette. Right panel: after binning the targets by R1 and R2, the
average error of IMRR can also be computed and is colored by the blue-white-
red palette.

The right panel of Figure 10 verifies another ideal behavior of IMRR – the
error of IMRR generally increases as R1 and R2 from IMRR move from the
bottom left to the top right of the figure. Therefore, they could be used as
indicators to assess the risk of IMRR, e.g., almost certainly, an IMRR of both
large R1 and R2 implies a large error, thus high risk, while an IMRR of both
small R1 and R2 implies a small error, thus low risk. It is important to em-
phasize that all the IMRR in Figure 10 is prepared as suggested (number and
geometrically closeness of the inputs, hyperparameter) in the Results section –
filtering those IMRR with respect to R1 and R2 value is to add a safety net to
get rid of those of high error. Several R-related thresholds have been proposed
and their efficacy in eliminating those IMRR of high error in energy gradient
can be seen in the additional panel of Figure 10.

Being able to assess the risk of the predicted energy gradient of a ML method
locally is a valuable means to precisely control its usage – only low-risk results
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from the ML method are adapted for the simulation. This feature is critical for
the application of IMRR in active learning AIMD: With access to the risk of
IMRR on-the-fly, the trajectory is not obligated to propagate with Z(q0) if it is
deemed to be of high risk, but instead, calls an ab initio calculation to evaluate
its energy gradient, which will be used to propagate the trajectory. Although the
number of energy gradient from IMRR eliminated by the R-related thresholds
could be small compared to total number of IMRR, we note that the system is
physically defined as a chaotic system and the dynamics could be thrown off by
just one single configuration with an energy gradient of high error. This feature
also goes hand in hand with IMRR’s nature of local interpolation – since the
risk is local (i.e., related to the amount of the information stored in the library
that can be used for the target), the decision of trusting IMRR or referring back
to ab initio should only take into account the local information. Therefore, at
least in theory, the performance of IMRR is irrelevant to the number of unique
molecules the system experiences, whether it is just the thermal vibration of a
single molecules or a bimolecular collision that visits several intermediates.
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