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ABSTRACT

Finding molecules with a desirable balance of multiple properties is a main chal-
lenge in drug discovery. Here, we focus on the task of molecular optimization,
where a starting molecule with promising properties needs to be further optimized
towards the desirable properties. Typically, chemists would apply chemical trans-
formations to the starting molecule based on their intuition. A widely used strat-
egy is the concept of matched molecular pairs where two molecules differ by a
single transformation. In particular, a chemist would be interested in keeping one
part of the starting molecule (core) constant, while substituting the other part (R-
group), to optimize the starting molecule towards desirable properties. Motivated
by this, we train a Transformer model, Transformer-R, to generate R-groups given
the starting molecule (with its core and R-group specified) and the specified de-
sirable properties. The generated R-groups will be attached to the core to form
the final molecules, which are guaranteed to keep the core of interest and are ex-
pected to satisfy the desirable properties in the input. Our model could accelerate
the process of optimizing antiviral drug candidates in terms of various properties
of interest, e.g. pharmacokinetics.

1 INTRODUCTION

A main challenge in drug discovery is finding molecules with desirable properties. A drug requires
a balance of multiple properties, e.g. physicochemical properties, ADMET (absorption, distribution,
metabolism, elimination and toxicity) properties, safety and potency against its target. To find such a
drug in the extremely large chemical space (i.e. 1023-10°) (Polishchuk et al., 2013) is challenging.
It is often that a promising molecule needs to be improved to achieve a balance of multiple properties.
This problem is known as molecular optimization. It plays an important role in the development of
antiviral drugs to combat pandemics, where existing drugs can be identified as lead (Huang et al.,
2020; |Senanayake} [2020; Box & J Thompsonl [2020), and chemically modified to improve specific
properties, e.g. affinity, pharmacology, toxicity and drug resistance profiles (Adamson et al.,[2021])).
For example, ivermectin has been reported to show in vitro antiviral activity against SARS-CoV-
2 (Caly et al.,|2020). However, its application is mainly limited by pharmacokinetic problems such
as high cytotoxicity and low solubility (Sharun et al., [ 2020; Momekov & Momekoval, 2020).

Traditionally, chemists would use their knowledge, experience and intuition (Topliss}, [1972) to ap-
ply some chemical transformations to the promising molecule. In particular, the matched molecular
pair (MMP) analysis (Kenny & Sadowski, 2005} [Tyrchan & Evertsson, |2017)—which compares the
properties of two molecules that differ only by a single chemical transformation—has been widely
used as a strategy by medicinal chemists to support molecular optimization (Weber et al.| 2013}
Griffen et al., 2011} |Leach et al., [2006). However, similarity, transferability, and linear analogu-
ing (Hansch et al.| [1962; Hansch & Fujita, |1964; |[Free & Wilson, [1964) are typically assumed,
which are not generally true and become more problematic when optimizing multiple properties
simultaneously.
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Recently, deep learning models have been used to learn the transformations involved in molecular
optimization directly from MMPs. The problem of molecular optimization have been framed as
a machine translation problem (Bahdanau et al., 2015), where an input starting molecule is trans-
lated into a target molecule with optimized properties. While graph representation was used in Jin
et al. (2018 2019; [2020), He et al. (2020) trained a Transformer model based on the simplified
molecular-input line-entry system (SMILES) representation. The starting molecule’s SMILES is
concatenated with the property constraint tokens as input, and the model outputs the molecule with
optimized properties. However, the generated molecule is not guaranteed to keep the core of interest
in the given starting molecule being optimized. Here, we train a Transformer model, Transformer-R,
where the starting molecule is represented by its core (being kept) and its R-group (being replaced),
and the output is the R-group (used to replace the R-group specified in the input) instead of the
whole molecule. By doing so, the model is enforced to keep the core of interest. The goal is to
generate molecules which (i) have the desirable properties specified in the input (ii) have small and
single transformation applied to the starting molecule, and (iii) keep the core specified in the in-
put. In summary, the model is trained to mimic the concept of MMPs—a common strategy used by
medicinal chemists for molecular optimization.

2 METHODS

The SMILES representation of molecules (Weininger, [1988), as a string-based representation, is
used in our study to facilitate the use of the Transformer model from natural language processing
(NLP). The Transformer is trained on a set of MMPs together with the property changes between
source and target molecules. Figure[I|shows an example of a MMP, and the properties of source and
target molecules.

Following |[He et al. (2020), three ADMET properties, logD, solubility and clearance are optimized
simultaneously, and the property constraint tokens are included in the input sequence for guidance.
Figure [2] shows an example of source and target sequences which are fed into the Transformer
model during training. Different from the Transformer model in |He et al.[(2020) where the source
molecule is represented by its SMILES, here it is represented by its core’s SMILES and its R-group’s
SMILES, separated by the separator token. Instead of generating the whole molecule, the R-group
is generated, which will be attached to the core in the input to form the final molecule.
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Figure 1: An example of a matched molecular pair and the property changes between the molecules.

Given a set of MMPs {(X,Y,Z)} where X represents source molecule, Y represents target
molecule, and Z represents the property change between source molecule X and target molecule Y,
the Transformer will learn a mapping (Xcore, X g-group, Z) € Xeore X Xp-group X Z = Yr-group €
YR-group during training where X.ore X XR_group X Z represents the input space and Vg.group T€P-
resents the target space. During testing, given a new (Xcore, Xr-group: Z) € Xeore X XR-group X Z,
the model will generate a set of target R-groups (Yr.group), Which will be attached to the core in
the input (X,.) to form the final molecules. These molecules are expected to have the desirable
properties specified in the input (Z2).
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Figure 2: Input and output of the Transformer model. The input consists of property change tokens,
the SMILES of the core, the SMILES of the source R-group and the dot (“.”) -symbol separating the
core and R-group representations. The output is a R-group, which, when attached to the core from
the source molecule, forms the target molecule which is expected to satisfy the property constraint
in the input.

3 RESULTS

The information of dataset used in this paper can be found in appendix [A.T] We compare our model
Transformer-R with the following baselines,

Transformer Baseline: The Transformer developed by He et al.| (2020) to generate the whole target
molecules at once, in contrast to only the R-groups.

Enumeration Baseline: This constitutes of an exhaustive algorithm that for a test starting molecule,
consists of (i) attaching each R-group seen in the training data to the molecule’s core and (ii) select-
ing all found R-groups which yielded a molecule with desirable properties.

For each starting molecule in the test set, 10 unique valid molecules, which are not the same as
the starting molecule, were generated using multinomial sampling. Table [T]shows the performance
of our model Transformer-R and the baselines (Transformer and Enumeration) in terms of various
evaluation metrics. Aligning with our goal, we firstly examine the following three aspects,

Desirable: This metric gives the proportion of generated molecules that fulfill the desirable prop-
erties specified by model input. A slight improvement was observed from Transformer-R over the
Transformer baseline.

MMP33: This refers to the proportion of generated molecules for which (i) a single transforma-
tion (i.e. MMP) has been applied compared to the starting molecule and (ii) the ratio between the
number of heavy atoms (non-hydrogen atoms) in the R-group and the number of heavy atoms in the
entire molecule is not greater than 0.33. This evaluates how well the model captures the chemist’s
intuition that small and single transformations are applied to the starting molecules. From Table[T]
Transformer-R generates much more molecules with small and single transformations to the starting
molecules, which mimics the chemist’s strategy when optimizing a starting molecule.
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Table 1: Comparison of our model Transformer-R and the baselines (Transformer and Enumeration)
in terms of various evaluation metrics on three test sets.

Metric

Unchanged Unseen Novel

Test set Method Desirable MMP33
Core Trans.  R-groups

Transformer-R  58.97 % 97.67 % 100.00% 53.92% 4.30%
Test-Original ~ Transformer 56.14% 90.45% 69.10% 51.31% 3.99%
Enumeration 16.93% 77.85% 100.00% 96.62% 0.00%

Transformer-R  56.76%  97.42% 100.00% 32.37% 2.14%
Test-Core Transformer 55.61% 86.82% 44.60% 34.76% 2.27%
Enumeration 18.64% 77.93% 100.00% 98.36% 0.00%

Transformer-R ~ 42.90%  97.57% 100.00%  57.84%  4.66%
Test-Property ~ Transformer 41.75%  90.69% 62.25% 57.98%  4.25%
Enumeration 1591%  81.19% 100.00%  96.65% 0.00%

Unchanged Core: This refers to the proportion of generated molecules that keep the core speci-
fied by model input. Clearly, the generated molecules from Transformer-R always keeps the core
(100%), while the number for the Transformer baseline dropped significantly to around 44%-70%.
The reason is that Transformer-R only generates the R-groups which are attached to the core to form
the final molecules, while the Transformer baseline generates the whole molecule directly which is
not guaranteed to keep the core of interest.

In addition to the above three metrics, we are interested in how well the models can generate trans-
formations and R-groups not seen in the training set. Note that many unseen transformations and
novel R-groups are not preferable if the model performs bad in the above three metrics.

Unseen Transformations: This refers to the proportion of generated molecules yielding a transfor-
mation (i.e. specific R-group change) which has not been seen in the training set. Transformer-R and
the Transformer baseline obtain similar performance: both have learned to use not only the existing
transformations in the training set, but also unseen transformations (32%-58%) to optimize unseen
combinations of starting molecule and property constraint. Note that unseen transformations alone
is not a sufficient quality metric, as seen the Enumeration baseline resulted in more unseen transfor-
mations (above 96%), but very low proportion (15%-19%) of molecules with desirable properties.

Novel R-groups: This metric gives the proportion of generated molecules that contain R-groups
which have not been seen among the R-groups in the training set. Both Transformer-R and the
Transformer baseline have generated novel R-groups (2%-5%). For the Enumeration baseline, no
novel R-groups are generated since it only enumerates the existing R-groups in the training set.
Figure [3]in appendix shows the top 20 most frequent novel R-groups generated by Transformer-R.

4 CONCLUSIONS

We have introduced Transformer-R to generate only R-groups instead of the whole molecule when
optimizing a starting molecule towards its desirable properties as specified in the input. The gen-
erated R-groups are attached to the core in the input starting molecule to form the final molecules.
Our results show that Transformer-R generates (i) slightly more molecules with desirable proper-
ties specified in the input; (ii) many more molecules which have small and single transformations
applied to the starting molecule, which mimics the chemist’s strategy; and (iii) molecules which al-
ways keep the core specified in the input constant. This is particularly useful to chemists who want
to keep certain part of the starting molecule unchanged. Additionally, in contrast to the Enumeration
baseline, our model can generate novel R-groups not present in the training set.

We have focused on optimizing three ADMET properties following He et al.| (2020). In princi-
ple, Transformer-R can be trained to optimize other properties as well, e.g. synthetic accessibil-
ity and bioactivity. This could help to optimize small molecule antiviral drug candidates against
e.g. COVID-19 in a more efficient way.
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A APPENDIX

A.1 DATASET

The same dataset in He et al.|(2020) is used in this paper. In particular, a set of MMPs are extracted
from ChEMBL (Gaulton et al., 2012) using the open-source matched molecular pair tool (Dalke
et al.,2018])). The three properties (logD, solubility and clearance) of the source and target molecules
are predicted from models built using the in-house experimental data. The property prediction mod-
els are used for constructing data during training and also for evaluating the generated molecules
during testing. For the test sets, in addition to Test-Original and Test-Property in [He et al.| (2020),
we create Test-Core, which is a subset of the molecular pairs in Test-Original where we have ex-
cluded molecular pairs for which the core is present in the training set.

A.2 ADDITIONAL FIGURES

Figure 3: Top 20 most frequent novel R-groups generated by Transformer-R on Test-Original.
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