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Abstract

Retrosynthetic prediction is one of the main challenges in chemical synthesis that requires identi-

fying reaction pathways and precursor molecules for synthesizing a target molecule. This requires

a search over the space of plausible chemical reactions that often results in complex, multi-step,

branched synthesis trees for even moderately complex organic reactions. Here, we propose an

approach that performs single-step retrosynthesis prediction using SMILES grammar-based rep-

resentations in a neural machine translation framework. Information-theoretic analyses of such

grammar-representations reveal that they are both superior and well-suited for machine learn-

ing tasks due to their underlying redundancy and high information capacity compared to purely

character-based representations. We report the top-1 prediction accuracy of 43.8% (top-5 measure

of 61.4%) and syntactic validity of 95.6% (top-5 measure of 91.6%) on a standard reaction dataset.

Comparing our model’s performance with previous work that used purely character-based SMILES

representations demonstrate improved accuracy and reduced grammatically invalid predictions.

Keywords: Retrosynthesis prediction; Computer-aided synthesis planning; Sequence-to-sequence

models; Information theory; Transformer

1. Introduction

One of the important challenges in computational chemistry is the retrosynthetic analysis of

desired molecules that satisfy property constraints, subject to the commercial availability of the

precursors involved and the feasibility of the chemical reactions required for their synthesis. The

immense interest in this problem over the recent years could be attributed to its practical applica-

tions across areas such as drug discovery, synthesis of novel organic compounds, and improvements in
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the reactions pathways from a commercial, social, or economic viability standpoint. The industrial

applications of retrosynthetic analysis include automobiles, petrochemicals, specialty chemicals, and

polymer science, with a great potential to revolutionize the entire industry if the right compound

could be synthesized.

Retrosynthetic analysis often involves evaluating a large number of potential candidate reaction

pathways and molecules at multiple stages of the reaction resulting in complex retrosynthesis trees

that need to be searched and parsed efficiently. Computational approaches could significantly aid

the chemist in solving different aspects of the retrosynthesis problem, such as the graph-theoretic

search methodologies for efficient tree traversal for the identification of feasible reaction pathways,

dictionary-based methods combined with heuristics for quicker evaluation of a combinatorially large

search-space of precursors, and faster elimination of practically infeasible routes through chemistry-

driven quantitative and qualitative heuristics. One of the first attempts that leveraged computa-

tional tools and formalized the retrosynthesis problem was LHASA, [1] which incorporated chemistry

rules through logic and heuristics and developed a chemical programming language. Several subse-

quent approaches were proposed that utilized rule-based expert-systems [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

However, such approaches were hard to scale beyond interesting prototypes as they required great

human effort and expertise to develop.

However, in recent years, the huge surge in computational capabilities combined with great

advances in machine learning have resulted in a renewed attack on this problem. This includes

approaches that combine neural network models with known chemistry knowledge encoded in the

form of reaction templates – e.g., Segler and Waller [12] leveraged neural networks for selecting the

reactivity centers and most suitable transformations; Wei et al. [13] predicted reaction types and

used Smiles Molecular Arbitrary Target Specification (SMARTS) templates for predicting the likely

products given a set of reactants and reagents, and Coley et al. [14] proposed selecting the suitable

edit-based transformations in a reaction using reaction templates. Such methods, however, again

address only certain limitations of the rules-based systems and the inherent limitation of the lack

of their ability to suggest novel chemical reactions and a bias towards the common reaction types

still exists.

This is overcome in purely data-driven approaches that use sophisticated machine learning archi-

tectures to learn the complex non-linear dynamics of a chemical reaction – both in the forward and
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the backward directions – primarily through modeling the chemical representations. This includes

the neural sequence-to-sequence (or seq2seq) models introduced for the forward reaction predic-

tion in [15] and the retrosynthetic prediction in [16] that formulate the reaction prediction task as

a sequence modeling problem. Other recent efforts for the retrosynthesis task include a seq2seq

approach combined with a Monte Carlo tree search [17] and various transformer model-based ap-

proaches [18, 19, 20, 21, 22].

Even though the prediction accuracy has significantly improved owing to the increase in com-

plexity of model architectures, the incorporation of prior chemistry knowledge in such frameworks

is still lacking. The incorporation of this knowledge should, in principle, improve the model perfor-

mance on out-of-sample examples. All the works in this area work with SMILES representations

of molecules, treating them as merely character-based strings, except for the recent work by Ucak

et al. [23] that uses substructure-based representations but suffers from lower prediction accuracy.

In our earlier work on forward prediction [24, 25], we demonstrated that incorporating chemical

and structural information about molecules ensures that the model learns the underlying chemical

transformation using a model with significantly less number of training parameters. As an exten-

sion of that work, we propose here a framework for solving the retrosynthesis problem using the

rich SMILES grammar-based representation of molecules and highlight the inherent benefits of such

representations – both from an information-theoretic and model performance standpoint.

The rest of the paper is organized as follows: In Section 2, we formally define the retrosynthesis

prediction problem as a sequence modeling task in the machine translation framework and present

an overview of the methods underlying our work, such as the SMILES grammar, the transformer

architecture and the beam search decoding procedure in Section 3. In Section 4, we present an

information-theoretic analysis of the proposed grammar-representations and contrast them with the

other representations (SMILES and molecular formula) to highlight the differences and quantify the

advantages of using the underlying chemical structural information. The standard reaction dataset

and the model training aspects of our work are presented in Section 5. The evaluation metrics used

for assessing our model’s performance, the results on the USPTO 50K reactions dataset, comparison

with other works, and the limitations and future work in this direction are presented in Section 6.

Finally, the concluding remarks summarizing our work’s major contributions appear in Section 7.
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2. Problem formulation and objectives

We formulate the retrosynthesis prediction problem as a sequence modeling task and use a

machine translation framework for predicting the precursors for a given target molecule. The

objective is to translate a set of input tokens corresponding to the product molecule to an output

sequence of tokens corresponding to the precursor molecules. The input sequence is prepended with

an identifier that indicates the reaction class that should be used to synthesize the given target

molecule. In order to allow the model to differentiate between the different precursors (reactants),

a separate identifier token is used to indicate the end of the representation of a given precursor and

the start of another. This framework is depicted in Figure 1.

Figure 1: The single-step retrosynthesis prediction problem formulation using machine translation

In this framework, the participating product and reactants in a given reaction are represented

using their corresponding grammar-based representation described in detail in Section 3.1. The

representation starts with the token ‘1’ and ends with the token ‘80’ for all the molecules, the

token ‘81’ separates multiple reactants, and the token ‘82’ signifies the end of all the precursor

representations. The other identifiers (or tokens) correspond to the sequence of production rules

required to obtain the given SMILES string, using the grammar productions described in Table 13

in the Appendix. The sequence modeling task is performed using a transformer model, a state-of-

the-art architecture for sequence modeling, proposed in [26].
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3. Methods

In this section, we describe the methods involving our approach, namely the SMILES grammar-

based representations used for encoding molecules, the transformer architecture used for the se-

quence modeling task, and the beam search decoding procedure used for generating a set of most

likely target sequences for a given input sequence.

3.1. SMILES grammar

One of the first works that attempted to formalize natural language through context-free gram-

mars (CFGs) was proposed by Noam Chomsky [27] that was based on the idea that a group of words

could be thought of as belonging to a constituent unit and that different constituent units could

be grouped, hierarchically, to convey a given meaning. Formally, a context-free grammar could

be thought of as a set of production rules that define the transformation of a set of non-terminal

symbols to terminal symbols that correspond to strings with meaning in the natural language. In

addition, there is a designated start symbol that indicates the start of a sentence. Therefore, a CFG

consists of the following elements: S, a designated start symbol; Σ, the set of terminal symbols; N,

the set of non-terminal symbols; and R, the set of production rules of the form A −→ β where A ∈

N is non-terminal and β ∈ Σ is a terminal symbol.

A similar grammar for the SMILES representation of molecules also exists [28] where the indi-

vidual tokens in the SMILES string represent the terminal symbols that could be obtained through

the sequential application of a set of production rules on the non-terminal symbols. Consider, for

example, a subset of the official SMILES grammar presented in Table 1. The equivalent symbols

similar to CFG for this grammar are:

• S: SMILES

• Σ: { (, ), =, c, C, O, 1, 2 }

• N: { SMILES, CHAIN, BRANCHED ATOM, BOND, ATOM, RINGBOND, BB, RB, BRANCH, AROMATIC ORGANIC,

ALIPHATIC ORGANIC, DIGIT }

• R: productions (rules) 1 through 20 in Table 1
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Table 1: Reduced SMILES grammar

S.No Production rules

1 SMILES −→ CHAIN

2 CHAIN −→ CHAIN BRANCHED ATOM

3 CHAIN −→ CHAIN BOND BRANCHED ATOM

4 CHAIN −→ BRANCHED ATOM

5 BRANCHED ATOM −→ ATOM RINGBOND

6 BRANCHED ATOM −→ ATOM

7 BRANCHED ATOM −→ ATOM BB

8 BRANCHED ATOM −→ ATOM RB

9 BB −→ BRANCH

10 RB −→ RINGBOND

11 BRANCH −→ ( CHAIN )

12 RINGBOND −→ DIGIT

13 BOND −→ =

14 ATOM −→ AROMATIC ORGANIC

15 ATOM −→ ALIPHATIC ORGANIC

16 AROMATIC ORGANIC −→ c

17 ALIPHATIC ORGANIC −→ C

18 ALIPHATIC ORGANIC −→ O

19 DIGIT −→ 1

20 DIGIT −→ 2

We leverage such underlying grammar to assign structure to a given SMILES string and derive

from such structures the grammar-based representations. Consider benzene, with the SMILES string

representation given by C1=CC=CC=C1. This representation could be obtained by applying the

set of production rules in Table 1 sequentially to obtain the corresponding parses-tree shown in

Figure ??. The grammar-representation that we work with, originally proposed in our earlier work

[24], is obtained by extracting production rules from the parse-tree by parsing it in a bottom-up-

left-corner strategy, i.e., starting at the top and going down the left-most branch, then coming back

up to parse the immediate right branch, and so on until the entire tree is parsed. The grammar-
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representation thus obtained corresponding to this parse-tree for benzene is indicated in the figure’s

caption.

Figure 2: The parse-tree obtained for benzene with SMILES string representation as C1=CC=CC=C1. The
production rules from Table 1 applied at each stage are indicated next to the non-terminal symbols.
Parsing this tree in a bottom-up-left-corner strategy gives rise to the grammar-representation given by:
1, 3, 2, 3, 3, 3, 4, 5, 15, 17, 12, 19, 13, 6, 15, 17, 6, 15, 17, 13, 6, 15, 17, 6, 15, 17, 13, 6, 15, 17, 12, 19

Clearly, as compared to a purely character-based SMILES string representation consisting merely

of the tokens ‘C’, ‘1’, ‘=’, ‘C’, ‘C’, ‘=’, ‘C’, ‘C’, ‘=’, ‘C’, ‘1’, without any additional information

conveying the relationships between the tokens, the grammar-based representations are significantly

richer, incorporate chemical and structural information, and contain hierarchical information about

the underlying chemistry that could be leveraged by the model architecture for modeling the un-

derlying grammar. Such representations are shown to be more efficient in modeling the underlying

chemistry and eliminate overparameterization in complex machine learning architectures [24]. We

present an information-theoretic analysis of the grammar-representations and the text-based rep-

resentations in Section 4 to establish the fundamental superiority of the grammar-representations

compared to other text-based representations such as SMILES.
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3.2. Sequence-to-sequence models

We model the reaction prediction problem as a sequence modeling task that involves mapping

the input sequence to a sequence of tokens that corresponds to the output sequence. This framework

has been used in recent years and has shown a significant promise in reaction modeling. We use the

state-of-the-art model in this area, known as the transformer framework, proposed in [26].

Figure 3: The encoder-decoder model architecture of a transformer

The transformer framework, shown in Figure 3, consists of an encoder-decoder architecture

where the encoder maps the input sequence to a latent space, and the decoder decodes from the

latent space in an autoregressive manner, one element at a time, to give rise to the output sequence.

The positional encodings in a transformer encode the position of a given word (or token) in the

sequence to a high dimensional vector space, getting rid of recurrent or convolution operations

that significantly improved the computational complexity of training the model architecture. These

mappings are characterized by sines and cosines of different frequencies, given by

~ppos,i =


sin(pos/100002k/d), if i = 2k

cos(pos/100002k/d), if i = 2k + 1

(1)
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An attention-mechanism lets the transformer model relationships between groups of words in an

input sequence at different stages of the network. The attention-mechanism used in [26] is the

‘Scaled-Dot Product Attention’, characterized by a set of queries, keys, and values vectors. The

query and key vectors are of dimensions dk, and the value vector is of dimension dv. The attention-

score then is computed as softmax function applied over the dot-products of the queries and key

vectors, scaled down by a factor of
√
dk, given by

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where Q, K, and V are the matrices of query, key, and values vectors, respectively. The atten-

tion score computed above determines the importance of different parts of an input sequence in

the current context. In order to allow the model to jointly factor in information from different

representation subspaces at different positions, multi-headed attention is computed, which involves

computing multiple attention scores in parallel, which are then concatenated and projected using a

linear transformation to compute the multi-head attention scores as,

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)WO (3)

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), and WQ

i ∈ Rdpos×dk , WK
i ∈ Rdpos×dk , and W V

i ∈

Rdpos×dv are the projection matrices for Q, K, and V, respectively.

3.3. Beam search

In order to get the output sequences in a transformer framework, a decoding procedure is used

that decodes from the latent space in an autoregressive manner, with the current prediction as

input while decoding the next token. Therefore, the decoding procedure could either employ a

greedy strategy that involves selecting the token with the maximum likelihood at each stage for

decoding the next token, generating a single most-likely sequence in the end, or on the other hand,

it could employ a beam search procedure that decodes a set of top-B tokens at each stage based on

their likelihood and give rise to top-B sequences as the output of the model. We follow the latter

approach for decoding. This allows us to evaluate our model’s performance more extensively and

compare it with the top-K accuracy reported in other similar works in this area. A schematic of
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the beam-search decoding procedure used in our work is shown in Figure 4.

Figure 4: A partially completed beam search output for a beam width of 3 for a reference input. At each stage, the
most likely grammar-rules are predicted in the above schematic that would be used to reconstruct the corresponding
SMILES string. The log-likelihood values are indicated above each node in the schematic.

4. Information-Theoretic Analysis of Chemical Representations

Before we discuss the model training aspects, we demonstrate the richness of the proposed

grammar-based representations using an information-theoretic framework. We compare the in-

formation capacity, information gain, and redundancy characterizing the various symbols-based

chemical representations, namely, molecular formula, SMILES, and grammar representations. We

first provide a brief overview of the relevant information-theoretic concepts and their intuition in the

next section, followed by their application to chemical representations and quantify the superiority

of grammar-based representations from an information-theoretic standpoint.

4.1. Shannon Entropy and Information Content

The development and formalization of information theory, mainly by Claude Shannon in [29],

offered a mathematical definition of the amount of information communicated between any two

components or channels of a given system. The primary motivation was the fundamental problem

of decoding a source message passing through a noisy channel, either exactly or approximately, at

any other point in the communication system. However, the applications and adaptations of it are

not limited to communication systems alone but have had far-reaching consequences across most

fields of science and engineering.
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The Shannon entropy for a given probability distribution p(x) of a random variable x is defined

as,

H = −
M∑
i=1

p(xi) log2 p(xi) (4)

where p(x) is the probability mass function of x with M possible values. This is equivalent to the

expected value of the Shannon information or self-information of a variable and is measured in units

of bits per symbol. There is a direct correspondence between the amount of information in a message

and the degree of uncertainty that is associated with it. That is, if a system can exist in one of a

very large number of possible states, then there is a great amount of uncertainty associated with its

state as opposed to another system that can exist only in a handful states. Therefore, the amount

of information required is more for the former than the latter.

Consider the two extremes of zero-information content and maximum information content. The

Shannon entropy in Equation 4 attains a value of zero when the probability p(xi) of a xi attaining

a given value is 1 meaning that the outcome or the value that xi could take is known with complete

certainty, and hence, there is no information content (or gain) associated with knowing its value

explicitly. On the other hand, when xi could take any of the possible values with equal probability,

i.e., p(xi) = 1/M where M is the total number of possible values that the symbols in the source

message could take, the information content is maximized and is equal to log2M . This implies that

in such a scenario, specifying the value of a given bit in the sequence would result in the maximum

information gain when compared to any other scenario.

The generalization of Equation 4 when several random variables X1, X2, . . . , Xn are present is

given by the joint Shannon entropy as,

H(X1, X2, . . . , Xn) = −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log2 p(x1, x2, . . . , xn) (5)

The joint entropy in Equation 5 could be interpreted as an information measure corresponding

to multiple random variables presented simultaneously. Similarly, the conditional entropy that

quantifies the information content of a given random variable X1 conditioned on a set of other
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random variable X2, X3, . . . , Xn, is given as

H(X1 | X2, X3, . . . , Xn) = −
∑

x1,x2,...,xn

p(x1, x2, x3, . . . , xn) log2 p(x1 | x2, x3, . . . , xn) (6)

The conditional entropy could be used to measure the information gain when partial information

or context of other random variables is known.

Equipped with information theory concepts, we now apply these information measures to chem-

ical systems and molecules.

4.2. Information theory and Chemical Representations

Studies in chemical information theory [30] have demonstrated the promise of entropic per-

spective in chemistry [31, 32, 33, 34]. We analyze various chemical representations, namely, the

SMILES representations, molecular formulas, and our proposed SMILES grammar-based represen-

tations from the perspective of Shannon entropy. We quantify the superiority of certain represen-

tations when compared to the others and highlight their inherent benefits when used in machine

learning algorithms.

In our framework, we consider the individual tokens in various representations as random vari-

ables that contain bits of information required to reconstruct a given molecule. The representations

are therefore a sequence of random variables, X1, X2, . . . , Xn, where n is the length of the represen-

tation for a given molecule and Xi could take any of the M possible tokens defined in the vocabulary

of the representation. For instance, consider the earlier example of benzene from Section 3.1. The

corresponding random variables for each of the three representations is given by,

• Molecular formula (C6H6): X
Mo
i ∈ {‘C’, ‘6’, ‘H’}, where M = 3, n = 4

• SMILES (C1 = CC = CC = C1): XS
i ∈ {‘C’, ‘1’, ‘ = ’}, where M = 3, n = 4

• Grammar1(1, 3, 2, 3, . . . , 12, 19): XG
i ∈ {1, 2, 3, 4, 5, 6, 12, 13, 15, 17, 19}, where M = 11, n = 32

Defining the random variables and computing their probability distributions over all the molecules

in the dataset, we could compute the corresponding information measures using Shannon entropy

1using the representative grammar in 1
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in Equation 4. Since our objective is to quantify the information capacity for an entire representa-

tion instead of certain specific molecules, this distribution is computed over all the possible lengths

of representations, n, in the dataset. Similarly, the conditional information measure in Equation

6 could be computed using the conditional distribution of random variables, computed using the

co-occurrence matrices (up to a given order) of the random variables in the database. The or-

der indicates the number of random variables under consideration, with η − 1 conditioned random

variables for an order of η. An order η = 1 corresponds to Shannon entropy (Equation 4), order

η = 0 corresponds to Shannon entropy when the random variables follow a uniform distribution,

and orders η > 1 correspond to conditional entropy with conditioning on η − 1 random variables.

The probability distributions for the random variables are computed using the three representa-

tions for all the molecules in the test-set of the USPTO 50K reaction dataset to limit computational

requirements, especially for calculating the conditional distributions. We evaluate the maximum

conditional distribution up to an order of η = 5. The molecular formulas are extracted from the

SMILES representation of a given molecule using the ‘rcdk’ library in R. The conditional information

measure at different values of the order is presented in Figure 5 and Table 2.

Figure 5: Information content vs order of conditioning (η) for the three representations
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Table 2: Information content (iη) for various orders of conditioning (η) for the three representations

Molecular Formula Grammar SMILES

i0 5.426 6.022 4.906
i1 3.583 4.322 3.891
i2 2.453 1.254 2.823
i3 1.879 1.070 1.855
i4 1.599 0.822 1.367
i5 1.404 0.756 1.146

It follows from our discussion in the earlier section that the maximum information (corresponding

to i0) is achieved when the random variables follow a uniform distribution and all the bits have

the same probability (1/M) of taking a given value. Thus, i0 is independent of the dataset under

consideration and is purely a property of the representation that is indicative of its information

storing capacity. Based on Figure 5, the grammar-representations have much higher information

capacity, followed by the SMILES representation and then the molecular formulas, highlighting the

theoretically high information capacity of grammar representations.

When the order of analysis is increased to 1, the information capacity decreases for all the

representations, indicating that the underlying probability distributions are far from uniform, with

certain values more likely than others. This is expected since in any chemical representation,

the identifiers for atoms such as C and H are significantly more likely to occur when compared

to others such as F or B. It could be inferred through the probability versus identifier index

plot depicted in Figure 6 that the SMILES and molecular formula representations are much more

skewed, with a majority of the identifiers occurring much more frequently than the others. On

the other hand, the grammar-based representations’ identifiers exhibit a much smoother and slower

decay, indicating more evenly distributed probabilities for the identifiers. This validates the richness

of grammar-representations due to the incorporation of structural-hierarchy, an argument that we

made qualitatively in our earlier work [24].
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Figure 6: Probability of occurrence of a given token versus the sorted index

As the order of conditioning while computing the information measure is increased to η = 2, a

drastic decrease in the information content is observed for grammar-representations, and the condi-

tional information content remains significantly lesser than the other representations even for higher

values of η. This could be attributed to the in-built redundancy in the grammar-representations

incorporated by means of a hierarchical sequence of production rules encoded in a molecule’s repre-

sentation. This transforms into lower values of conditional probabilities when an identifier’s context

in terms of the preceding tokens is known. Qualitatively, this means that when the context of a

token is provided, the uncertainty associated with the possible values it could take is much lesser

than its equivalent in the SMILES representation and molecular formula-based representations, as

seen in Figure 5.

In summary, the underlying redundancy in grammar-representations, indicated by iη with η ≥ 2,

could be leveraged by machine learning algorithms that model the long and short-range dependencies

between tokens in a given sequence, such as the class of sequence-to-sequence models used in our

work. In addition, the higher information-storage capacity of these representations, as indicated

by i0 and i1, implies that they are much richer when compared to the other representations and

therefore contain additional bits of information that is lacking in the other representations and

could be crucial for the adequate differentiation between molecules in the latent space.
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5. Data and Model training

We demonstrate our model’s performance using a standard retrosynthesis prediction dataset

which is a filtered dataset derived from the text extraction work done on US Patents and Trademark

Office’s (USPTO) database [35] and further classified into ten different reaction classes [36]. The

filtered dataset contains only the reactants and products, with the reagent information removed and

the SMILES strings canonicalized. Further, similar to [16], the multiple product reactions are split

into multiple reactions so that each reaction contains only a single major product. This dataset is

referred to as the USPTO 50K dataset in the literature.

In order to use our approach, we encode the SMILES strings corresponding to all the molecules

in the database to their equivalent grammar representations as described in Section 3.1. This implies

that since we are working with a subset of the official OpenSMILES grammar, certain molecules

that are not in grammar are skipped and therefore are not included in the model training stage.

Table 3 summarizes the reaction database with the number of reactions that are in grammar along

with the train, validation, and test-set splits. Table 4 summarizes the distribution of the various

reactions across the 10 reaction classes.

Table 3: An overview of the retrosynthesis dataset used in our work

Dataset train valid test total

USPTO 50K

with (sanitized) molecules 40,029 5,004 5,004 50,037

in grammar 38,995 4,861 4,861 48,717

Table 4: Distribution of reactions across different reaction classes that are in-grammar

Reaction class Reaction name train valid test total

1 Heteroatom alkylation and arylation 11,886 1,476 1,478 14,840

2 Acylation and related processes 9,358 1,165 1,169 11,698

3 C – C bond formation 4,324 544 539 5,407

4 Heterocycle formation 710 89 90 889
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Table 4: Distribution of reactions across different reaction classes that are in-grammar

Reaction class Reaction name train valid test total

5 Protections 513 64 62 639

6 Deprotections 6,357 796 789 7,942

7 Reductions 3,607 448 452 4,507

8 Oxidations 629 80 79 788

9 Functional group interconversion (FGI) 1,434 176 180 1,790

10 Functional group addition (FGA) 177 23 23 223

Since the retrosynthesis prediction task involves predicting a set of precursors that could be used

for obtaining a given product molecule, we define identifiers that distinguish the various reactant

molecules (grammar-representation) from each other and also indicate the end of the set. These two

additional tokens convey to the model the separation between various precursors’ representations

and also the end of the entire set of precursors. The reaction class identifiers are appended at the

start of the source (product) molecule’s representation. A schematic for this is shown in Figure 7.

Figure 7: The retrosynthesis reaction encoding strategy used in the machine translation framework. The identifier ‘80’
indicates the end of a given molecule’s grammar-representation, ‘81’ indicates the separation between two precursor
molecules, and ‘82’ indicates the end of the entire set of precursor molecules.

We train the transformer model for this task using a cross-entropy-based loss function that

minimizes the sequence-to-sequence translation error. The model was trained using the Adam

optimizer [37] with beta β1 = 0.9, β2 = 0.98, and ε = 10−9, and a cyclic learning rate schedule that

is characterized by a fixed number of warmup steps given by

lr = d−0.5
model.min(step num−0.5, step num ∗ warmup steps−0.5) (7)
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where d model is the embedding dimension (positional). At the training stage, to avoid overfitting,

a dropout layer is used for both the feed-forward networks and the attention-mechanism, for the

encoder and the decoder. A masking approach similar to [38] is used for generating the output

SMILES strings from the decoded grammar-representation. A loss function based on sparse cate-

gorical cross-entropy between the predicted and actual target sequences is minimized. The possible

and the best hyperparameters identified for the model are given in Table 5. The lengths of the

input and output representations to the model are fixed at 301 and 900, respectively.

The model was trained using TensorFlow 2.1 and python 3.7 for 12 cycles (∼700 epochs). For

generating the parse-trees and extracting grammar-based features, we use the Natural Language

ToolKit (NLTK) 3.4.5 library. The molecular datasets were processed using the 2019 release of the

RDKit library.

Table 5: Possible and best hyperparameter values for the transformer model architecture described in Figure 3

Hyperparameter Possible values Final model

Embedding dimensions 64, 128, 256 256

Attention heads 4, 8, 16 8

Feedforward network units 512, 1024, 2048 512

Number of layers 4, 6 4

Dropout 0.1, 0.2 0.1

Warmup steps 4k, 8k, 12k 8k

6. Results and Discussion

In this section, we define the performance metrics, evaluate the model’s performance on the

test-set of the USPTO 50K dataset, and benchmark the performance of our approach against other

similar works in this area, highlight the advantages and limitations of this framework.

6.1. Evaluation metrics

We evaluate our model’s performance using the following metrics – accuracy, which captures

the accuracy of perfectly predicting all the precursor molecules; fractional accuracy, which indicates
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the fraction of accurately predicted precursors from the ground truth; and syntactic validity, mean-

ing the percentage of grammatically valid predictions. In addition, we also compute the accuracy

of prediction of the Maximal Fragment or MaxFrag [22] indicating the prediction accuracy of the

longest reactant involved and report the average BLEU (bilingual evaluation understudy) [39] and

similarity scores for the maximal fragment molecule. The BLEU score is a standard metric used

for evaluation of the quality of machine-translated texts against a reference translation, and the

similarity scores2 are computed using the similarities between the string substructures of the pre-

dicted and the true MaxFrag molecules. These metrics are reported for three example predictions

in Figure 8.

6.2. Results on USPTO 50K dataset

The performance evaluation measures computed on the test set of the USPTO 50K dataset are

presented in Tables 6 and 7. We observe from Table 6 that though the top-10 accuracy is 66.6%, the

fractional accuracy at 73.7% is much higher and indicates that a major fraction of the ground truth

reactants is accurately predicted across reactions. The syntactic validity is as high as 95.6% for the

top-1 predictions and 90.4% for the top-10 predictions. The decreasing trend in syntactic validity

is expected since as the number of predictions increases, the invalid predictions go up because of

the model’s susceptibility to decode grammatically invalid strings.

Performance measure top-1 top-3 top-5 top-10

Accuracy 43.8 57.2 61.4 66.6

Fractional accuracy 53.8 65.4 69.2 73.7

Syntactic validity 95.6 92.8 91.6 90.4

Table 6: Accuracy, fractional accuracy, and syntactic validity of the model results on the test set

The similarity scores in Table 7 indicate that the MaxFrag precursor is predicted with a top-

10 accuracy of over 70% and a similarity score of over 90%, highlighting the model’s ability to

2computed using the SequenceMatcher routine in python that matches the longest contiguous matching sub-
sequence that does not contain any unwanted (or junk) elements
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correctly identify the characteristics of the most critical molecule (in classical retrosynthesis) with

a fairly high degree of accuracy. The corresponding BLEU scores also indicate the good quality of

translation that is achieved for the MaxFrag molecule.

Performance measure top-1 top-3 top-5 top-10

MaxFrag accuracy 50.4 62.1 65.7 70.2

BLEU score 74.8 83.4 85.2 87.4

Similarity score 80.0 87.2 88.6 90.2

Table 7: MaxFrag accuracy and the corresponding BLEU and similarity scores on the test set

Some of the example top-3 predictions along with the prediction inaccuracies and performance

metrics are presented in Figure 8.
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(a) Example from reaction class 1; accuracy: 0.0, fractional accuracy: 0.5; syntactic
validity: 0.67, MaxFrag accuracy: 0.0, MaxFrag similarity: 0.56 , MaxFrag BLEU: 0.36

(b) Example from reaction class 5; accuracy: 1.0, fractional accuracy: 1.0; syntactic
validity: 1.0, MaxFrag accuracy: 1.0, MaxFrag similarity: 1.0 , MaxFrag BLEU: 1.0

(c) Example from reaction class 6; accuracy: 0.0, fractional accuracy: 0.0; syntactic
validity: 0.33, MaxFrag accuracy: 0.0, MaxFrag similarity: 0.89 , MaxFrag BLEU: 0.79

Figure 8: Example top-3 predictions made by our model and their corresponding evaluation metrics indicated in the
figure captions
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6.3. Performance across reaction classes

In order to further understand the performance of our model across reaction classes, we increase

the granularity of the analysis and compute the five metrics– accuracy, fractional accuracy, MaxFrag

accuracy, similarity score, and syntactic validity across the 10 reaction classes. The detailed mea-

sures of these metrics are summarized in Tables 8, 9, 10, and 11. The fraction of invalid predictions

across the various reaction types for top-10 analysis are presented in Figure 9.

Figure 9: Invalid SMILES strings percentages on top-10 predictions

The above trend indicates that except for reaction class 6 (deprotections), all the reaction types

give rise to the same percentage of invalid predictions. A likely possibility for this observation could

be the model learning the underlying grammar, irrespective of the number of samples in each class

or the chemical transformations occurring across the different reaction types. This behavior is not

trivial since the corresponding top-10 prediction accuracy in Table 11 does not follow the same trend

across reaction classes. The high percentage error in deprotection reactions could be attributed to

several factors that could be specific to the reaction class and could be analyzed through chemistry-

driven heuristics that we envision as a hybrid explanation-generation system as a future extension

of this work.
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Top-1 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 40.9 52.2 37.7 26.7 66.1 35.4 50.4 69.6 38.3 56.5

Fractional accuracy 54.9 67.0 49.9 39.4 81.5 35.4 50.4 75.3 45.0 71.7

Syntactic validity 96.7 95.8 96.4 94.1 97.6 90.9 95.2 97.1 98.8 97.8

MaxFrag accuracy 50.3 61.3 44.9 37.8 83.9 35.4 50.4 77.2 44.4 60.9

MaxFrag similarity 82.0 86.2 78.6 71.2 91.8 68.0 79.5 89.0 78.4 82.9

Table 8: The top-1 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-3 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 54.3 66.6 51.4 31.1 80.6 49.9 61.3 77.2 51.7 73.9

Fractional accuracy 66.3 77.4 62.5 49.4 89.5 49.9 61.3 82.9 57.8 80.4

Syntactic validity 94.5 92.6 93.9 91.8 94.4 86.3 89.6 94.4 95.6 91.9

MaxFrag accuracy 61.0 72.1 58.3 46.7 90.3 49.9 61.3 84.8 58.9 73.9

MaxFrag similarity 87.0 91.5 84.3 80.3 98.4 81.0 89.2 96.0 88.0 89.4

Table 9: The top-3 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-5 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 59.3 70.9 54.5 36.7 83.9 53.9 64.4 79.7 56.7 73.9

Fractional accuracy 70.7 80.9 66.0 53.9 91.1 53.9 64.4 84.8 61.7 80.4

Syntactic validity 93.4 91.6 92.6 90.9 92.6 84.0 88.9 93.2 94.3 91.6
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Top-5 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

MaxFrag accuracy 65.2 75.7 61.0 50.0 93.5 53.9 64.4 87.3 62.2 73.9

MaxFrag similarity 88.5 92.2 85.6 81.2 98.5 83.3 90.3 99.2 88.2 89.2

Table 10: The top-5 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-10 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 65.1 75.4 60.3 41.1 85.5 58.6 70.6 82.3 63.3 78.3

Fractional accuracy 75.5 84.2 70.5 58.3 91.9 58.6 70.6 86.7 67.8 82.6

Syntactic validity 92.3 90.4 91.8 90.0 92.3 82.3 87.7 91.4 92.2 92.7

MaxFrag accuracy 69.8 79.4 65.7 53.3 93.5 58.6 70.6 88.6 67.8 78.3

MaxFrag similarity 90.1 93.5 87.8 82.9 98.6 85.0 92.0 98.9 90.5 91.8

Table 11: The top-10 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the
reaction classes (in %)

6.4. Comparison with other work

Here, we compare the performance of our model against other similar work in this area. One of

the first benchmarks in retrosynthesis prediction using seq2seq models on SMILES string represen-

tations is by Liu et al. [16]. Their framework is similar to ours in that there are no post-processing

of predictions, data augmentation strategies, and model performance-boosting methods used for

further improving the model performance – techniques that usually result in improved accuracy

custom-fit to a given setting. Our objective is to propose an alternative formulation that is funda-

mentally different from the other approaches in that it ensures incorporation of chemistry knowledge,

forcing the model parameters to learn the underlying grammar-representations to minimize invalid

predictions.
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Table 12 compares the prediction accuracies against those reported in Liu et al. We observe

that our model improves the prediction accuracy by a margin of ∼ 5% across all the top-N measures

and reduces the percentage of invalid predictions by 53% – 64%. We attribute the higher accuracy

and the decrease in invalid predictions to the grammar-representations that incorporate structural

information about the molecules and are characterized by much higher redundancies when compared

to SMILES strings as demonstrated using the information-theoretic framework in Section 4.

Table 12: Comparison with other similar works involving purely seq2seq models and USPTO 50K dataset

Model
Top-N measure

accuracy (%) | invalid (%)

1 3 5 10

Liu Seq2Seq [16] 37.4 | 12.2 52.4 | 15.3 57.0 | 18.4 61.7 | 22.0

Our work 43.8 | 4.4 57.2 | 7.2 61.4 | 8.4 66.6 | 9.6

Figure 10 demonstrates our model’s ability to outperform the top-10 accuracy reported in Liu

et al. across reaction classes, often by a significant margin.

Figure 10: Comparison of top-10 accuracies across reaction classes
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As mentioned earlier, it is possible to achieve higher prediction accuracy through additional

performance boosting techniques as demonstrated in the following studies. Zheng et al. [40] used

an additional transformer model that takes as input the output of another transformer model

to correct the invalid predictions. Tetko et al [22] proposed data augmentation strategies that

significantly increase the size of the dataset used for building a transformer model for retrosynthesis.

Karpov et al. [19] used model ensembling, snapshot learning methods, and increasing beam search

temperature to improve the model performance. Lin et al. [17] used averaging of model weights

and combination with Monte Carlo search tree strategies for proposing retrosynthesis routes. We

believe that combining our approach with the techniques mentioned above for improving the model

performance would boost our model’s accuracy as well, but at the cost of significantly higher

computational requirements.

7. Conclusions

Retrosynthesis analysis is a challenging problem since it involves predicting the precursors for

the synthesis of a given molecule with limited information, a much higher number of possible

synthesis pathways as compared to the forward reaction prediction problem, and approximation of

an often complex multi-step analysis as a single-step prediction problem. Naturally, incorporating

additional information about the reaction or the molecules involved would be of immense use given

the complexity of the task and the limited information often present for making the predictions.

Towards that goal, we have proposed grammar-based representations of molecules that incorporate

chemical and structural information extracted from their SMILES string representations.

Such representations are shown to be successful in overcoming over-parameterization in models

for the forward reaction prediction in our earlier work [24]. Here, we have quantified the superiority

of such representations from an information-theoretic standpoint. We have shown that these repre-

sentations have theoretically higher information capacity, which is validated through the Shannon

entropy computed on reactions in the USPTO 50K dataset. Moreover, the conditional entropy

measures calculated at higher orders highlight the significantly higher redundancy in-built in these

representations that make them suitable for machine learning architectures, especially the seq2seq

class of models that are used for such tasks.

The performance of our model reinforced the above observations. We report the top-1 prediction

26



accuracy of 43.8% and syntactic validity of 95.6% as opposed to 37.4% and 87.8%, respectively,

reported in Liu et al. We have shown that not only does our model outperform the aggregate

statistics reported in Liu et al., the performance of our model across the various reaction classes is

much better. An interesting observation is that owing to the grammar-representations, our model

results in nearly the same percentage of invalid predictions across reaction classes – independent of

reaction type and the number of reactions in training set in each category. Moreover, the analysis

of the MaxFrag accuracy and the corresponding similarity and BLEU scores indicate the accurate

prediction of the major precursor involved in the synthesis of a given molecule.

In summary, we have proposed a novel formulation of the retrosynthesis reaction prediction

problem that incorporates rich, hierarchical, molecular structure information and is superior from

an information-theoretic standpoint. This formulation significantly outperforms the other model

in this class of seq2seq models that uses SMILES representations of molecules – both in terms of

higher prediction accuracy and lesser grammatically invalid predictions. The future extension of

our work would involve solving the multi-step retrosynthesis problem and incorporating additional

contextual information about the reactions into the same framework.
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Appendix

The SMILES grammar used in this work is the same as that used in our previous work on the

forward prediction problem [24]. This grammar comprises 80 production rules with 24 non-terminals

symbols specifying the different structural components of a SMILES string. All the production rules

for the grammar used in our work are summarized in Table 13. The first and the last production

rules, SMILES −→ CHAIN and NOTHING −→ NONE, are additional rules included signifying the start

and end of a SMILES string, which is analogous to the <START> and <END> tokens in natural

language processing marking the beginning and the end of sentences, respectively.
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Table 13: SMILES grammar used in GO-PRO [24]

S.No Production rules

1 SMILES −→ CHAIN

2 ATOM −→ BRACKET ATOM | ALIPHATIC ORGANIC | AROMATIC ORGANIC

3 ALIPHATIC ORGANIC −→ B | C | N | O | S | P | F | I | Cl | Br

4 AROMATIC ORGANIC −→ c | n | o | s | p

5 BRACKET ATOM −→ [ BAI ]

6 BAI −→ ISOTOPE SYMBOL BAC | SYMBOL BAC | ISOTOPE SYMBOL | SYMBOL

7 BAC −→ CHIRAL BAH | BAH | CHIRAL

8 BAH −→ HCOUNT BACH | BACH | HCOUNT

9 BACH −→ CHARGECLASS | CHARGE | CLASS

10 SYMBOL −→ ALIPHATIC ORGANIC | AROMATIC ORGANIC | ELEMENT SYMBOLS

11 ISOTOPE −→ DIGIT | DIGIT DIGIT | DIGIT DIGIT DIGIT

12 DIGIT −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

13 CHIRAL −→ @ | @@

14 HCOUNT −→ H | H DIGIT

15 CHARGE −→ - | - DIGIT | - DIGIT DIGIT | + | + DIGIT | + DIGIT DIGIT

16 BOND −→ - | = | # | / | \\

17 RINGBOND −→ DIGIT | BOND DIGIT

18 BRANCHED ATOM −→ ATOM | ATOM RB | ATOM RB BB

19 RB −→ RB RINGBOND | RINGBOND

20 BB −→ BB BRANCH | BRANCH

21 BRANCH −→ ( CHAIN ) | ( BOND CHAIN )

22 CHAIN −→ BRANCHED ATOM | CHAIN BRANCHED ATOM | CHAIN BOND BRANCHED ATOM

23 CLASS −→ DIGIT

24 ELEMENT SYMBOLS −→ H

25 NOTHING −→ NONE

References

[1] David A Pensak and Elias James Corey. Lhasa—logic and heuristics applied to synthetic analysis. ACS

Publications.

28



[2] Timothy D Salatin and William L Jorgensen. Computer-assisted mechanistic evaluation of organic

reactions. 1. overview. The Journal of Organic Chemistry, 45(11):2043–2051, 1980.

[3] EJ Corey, Alan K Long, Theodora W Greene, and John W Miller. Computer-assisted synthetic anal-

ysis. selection of protective groups for multistep organic syntheses. The Journal of Organic Chemistry,

50(11):1920–1927, 1985.

[4] William L Jorgensen, Ellen R Laird, Alan J Gushurst, Jan M Fleischer, Scott A Gothe, Harold E Helson,

Genevieve D Paderes, and Shenna Sinclair. Cameo: a program for the logical prediction of the products

of organic reactions. Pure and Applied Chemistry, 62(10):1921–1932, 1990.

[5] Hiroko Satoh and Kimito Funatsu. Sophia, a knowledge base-guided reaction prediction system-

utilization of a knowledge base derived from a reaction database. Journal of chemical information

and computer sciences, 35(1):34–44, 1995.

[6] Koji Satoh and Kimito Funatsu. A novel approach to retrosynthetic analysis using knowledge bases

derived from reaction databases. Journal of chemical information and computer sciences, 39(2):316–

325, 1999.

[7] Jonathan H Chen and Pierre Baldi. No electron left behind: a rule-based expert system to predict

chemical reactions and reaction mechanisms. Journal of chemical information and modeling, 49(9):2034–

2043, 2009.

[8] James Law, Zsolt Zsoldos, Aniko Simon, Darryl Reid, Yang Liu, Sing Yoong Khew, A Peter John-

son, Sarah Major, Robert A Wade, and Howard Y Ando. Route designer: a retrosynthetic analysis

tool utilizing automated retrosynthetic rule generation. Journal of chemical information and modeling,

49(3):593–602, 2009.

[9] Chris M Gothard, Siowling Soh, Nosheen A Gothard, Bartlomiej Kowalczyk, Yanhu Wei, Bilge Baytekin,

and Bartosz A Grzybowski. Rewiring chemistry: Algorithmic discovery and experimental validation

of one-pot reactions in the network of organic chemistry. Angewandte Chemie International Edition,

51(32):7922–7927, 2012.
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[30] D. Bonchev and N. Trinajstić. Chemical information theory: Structural aspects. International Journal

of Quantum Chemistry, 22(S16):463–480, 1982.

[31] Jerry Chandler. An Introduction to the Foundations of Chemical Information Theory. Tarski–Lesniewski

Logical Structures and the Organization of Natural Sorts and Kinds. Information, 8(1):15, jan 2017.

[32] Daniel J. Graham. Information and organic molecules: Structure considerations via integer statistics.

Journal of Chemical Information and Computer Sciences, 42(2):215–221, 2002. PMID: 11911689.

[33] Roman F Nalewajski and Robert G Parr. Information Theory Thermodynamics of Molecules and Their

Hirshfeld Fragments. 2001.

[34] Roman F. Nalewajski and Robert G. Parr. Information theory, atoms in molecules, and molecular

similarity. Proceedings of the National Academy of Sciences, 97(16):8879–8882, 2000.

[35] Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD thesis,

University of Cambridge, 2012.

[36] Nadine Schneider, Nikolaus Stiefl, and Gregory A Landrum. What’s what: The (nearly) definitive guide

to reaction role assignment. Journal of chemical information and modeling, 56(12):2336–2346, 2016.

31



[37] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
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