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Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) pose a significant hazard because of their 

widespread industrial uses, environmental persistence, and bioaccumulativity. A growing, 

increasingly diverse inventory of PFAS, including 8,163 chemicals, has recently been updated 

by the U.S. Environmental Protection Agency. But, with the exception of a handful of well-

studied examples, little is known about their human toxicity potential because of the substantial 

resources required for in vivo toxicity experiments. We tackle the problem of expensive in vivo 

experiments by evaluating multiple machine learning (ML) methods including random forests, 
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deep neural networks (DNN), graph convolutional networks, and Gaussian processes, for 

predicting acute toxicity (e.g., median lethal dose, or LD50) of PFAS compounds. To address the 

scarcity of toxicity information for PFAS, publicly available datasets of oral rat LD50 for all 

organic compounds are aggregated and used to develop state-of-the-art ML source models for 

transfer learning. 518 fluorinated compounds containing 2 or more C-F bonds with known 

toxicity are used for knowledge transfer to ensembles of the best-performing source model, 

DNN, to generate the target models for the PFAS domain with access to uncertainty. This study 

predicts toxicity for PFAS with a defined chemical structure. To further inform prediction 

confidence, the transfer-learned model is embedded within a SelectiveNet architecture, where 

the model is allowed to identify regions of prediction with greater confidence and abstain from 

those with high uncertainty using a calibrated cutoff rate.

1 Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) encompass thousands of synthetic 

fluorinated aliphatic compounds1,2. PFAS pose a significant challenge of increasing concern because 

of their widespread presence, long-term persistence, extended biological half-lives (approaching 

nine years for some), and largely unknown toxicities. PFAS use has been identified at more than 

400 U.S. military bases, and contamination has been found in the drinking-water systems of more 

than two dozen military sites. U.S. cleanup costs are estimated to be tens of billions of dollars, 

including $2 billion for the Department of Defense alone3. The U.S. Environmental Protection 

Agency (EPA)’s Distributed Structure-Searchable Toxicity (DSSTox) database of PFAS structures4, 

as recently updated, contains over 8,163 PFAS chemicals. PFAS compounds can be broadly 

classified into polymeric and non-polymeric families2. This study addresses non-polymeric PFAS, 
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which have a higher propensity to be absorbed via the digestive system, creating an urgent need to 

understand their toxicities. Their toxicities will be important determinants of target cleanup levels 

and associated costs as well as identification of non-toxic substitutes for future consumer products. 

Traditional approaches for generating toxicity information (e.g., human epidemiological and 

experimental animal studies) are resource-intensive, and only limited studies have been conducted 

across this large set of compounds5,6. The exponential growth of chemical synthesis in recent 

decades necessitates scalable approaches for determination of PFAS toxicities. To reduce the 

expense and uncertainties inherent in animal experiments, it is crucial to perform high-throughput 

computational toxicity predictions. Here we explore a cheminformatics approach to predicting and 

understanding toxicity from chemical structure. 

The acceleration of computational toxicology in recent years can be attributed to 1) the development 

of large databases of chemical toxicities, 2) increased computing power with the advent of hardware 

such as Graphic Processing Units and other accelerators, and 3) advancement in machine learning 

(ML) that can take advantage of increased data and computational power7-11. In particular, deep 

learning for prediction of chemical properties is becoming increasingly relevant12,13. Several studies 

have demonstrated that deep-learning models for chemical properties and toxicity prediction can 

outperform traditional Quantitative Structure-Activity Relationship (QSAR) approaches such as 

naive Bayes, support vector machines, and random forests (RFs) 14-18. However, a compound’s 

toxicity is affected by multiple chemical and biological factors, adding complexity to the prediction 

of this crucial property19.

Acute toxicity refers to a chemical’s propensity to cause adverse health effects within a short period 

Page 3 of 37

ACS Paragon Plus Environment

ACS Central Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



following exposure of a living organism. This broad definition means that there are many 

considerations when characterizing acute toxicity. A common nonspecific method for gauging the 

relative toxicity of a set of compounds without any considerations of biological pathways involved 

is to compare median lethal doses (LD50), the minimum dose of a substance shown to cause fatality 

in 50% of laboratory subjects within 24 hours after initial oral or dermal exposure. Oral rat LD50 

metrics are measured in test-substance quantity per unit mass of laboratory-rat body weight and are 

ranked by the EPA into four categories: I (high toxicity), II (moderate toxicity), III (low toxicity), 

and IV (very low toxicity). Acute oral toxicities and their respective EPA categories (defined in 

Table 1) provide a systematic method for classifying toxicity. However, there are only tens of PFAS 

compounds with reported values of oral rat LD50 point estimates. 

Category Toxicity Dosage (mg/kg body 

weight)

I High ≤ 50 

II Moderate > 50 to 500

III Low > 500 to 5,000

IV Very low > 5,000 

Table 1: EPA toxicity classes

In the face of this data scarcity, we propose an uncertainty-informed transfer-learning approach for 

predicting and understanding PFAS toxicities. In the context of transfer learning, we refer to oral rat 

LD50 as a property label. The transfer learning has two components: 1) Source task training, for 

which there is an abundance of labeled data, and 2) a target task, where there is a very small pool of 

labeled data, a large pool of unlabeled data (i.e., PFAS compounds are known), and high expenses 
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limiting access to new labels. Transfer learning enables knowledge gained from source task training 

to be leveraged in a related target task where sufficient labeled samples are not available for 

independent training20. We aggregate reported values of oral rat LD50 point estimates from various 

public data sources to create a new database that we refer to as “LDToxDB.” As a source task, we 

use LDToxDB to establish baselines for ML toxicology prediction. We provide a discussion of 

relevant literature baselines on oral rat LD50 predictions and show that our source ML baselines are 

competitive. Then we identify 518 fluorinated compounds containing 2 or more C-F bonds within 

LDToxDB (which we will refer to as PFAS-like) with known LD50 labels. 518 PFAS-like 

compounds are used with knowledge transferred from the best-performing source task, to generate 

the target models with access to uncertainty. The rationale is that 518 PFAS-like compounds are the 

closest chemical family in our database to the broader 8,163 PFAS compounds, and hence it will be 

important to understand how a transfer-learned target model performs on PFAS-like compounds 

where oral rat LD50 labels are available, before attempting predictions for PFAS compounds with 

unknown oral rat LD50. For this purpose, we review the uncertainty analysis derived from transfer-

learned target models to gain insights into the quality of predictions for the PFAS-like compounds.

Finally, we temper toxicity predictions by implementing selective prediction through an abstention 

mechanism that forces our transfer learned target model to say “I cannot answer” when confidence 

in a prediction is low21-23. When making predictions for compounds with unknown toxicity, it is 

extremely important to enforce an abstention mechanism as a precautionary measure against 

incorrectly classifying a highly toxic substance. We then apply the transfer-learned selective model 

to predict toxicity (or abstain) for 8,163 EPA PFAS compounds with no known oral rat LD50; the 

details of these predictions are discussed in the results section. The added capability of a transfer-

learning model to abstain from prediction for some compounds opens up the possibility of creating 
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a direct feedback loop to in vivo experiments, the details of which are further discussed in the 

conclusion section. We refer to the entire suite of computational toxicology tools developed as part 

of this study as “AI4PFAS” (Figure 1); details are discussed in the methods and results sections.

Figure 1. AI4PFAS workflow for PFAS toxicity prediction

2 Methods

Datasets

The availability of in vivo acute oral toxicity measurements for PFAS is limited to a handful of well-

studied compounds in this family. To abate the lack of PFAS toxicity data, we constructed an 

expanded dataset, LDToxDB, of 13,329 unique compounds of any type with oral rat LD50 

measurements aggregated from the EPA Toxicity Estimation Software Tool (TEST), NIH 

Collaborative Acute Toxicity Modeling Suite (CATMoS), and National Toxicology Program 

datasets24-26. LD50 point estimates provided in mg/kg were converted to units of 
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–log(mol/kg) to reflect per-molecule toxicity irrespective of molecular mass; the resulting histogram is 

shown in Figure 2. Most of these compounds were labeled as EPA toxicity class III, followed by a 

near-equal presence in II and IV, and lastly class I. SMILES were canonicalized using RDKit27 and 

duplicate molecules were removed by querying each compound’s hashed InChlKey.

To broadly identify PFAS-like compounds within LDToxDB, molecules with two or more  C ― F

bonds were identified by using an RDKit SMARTS query and tagged as a PFAS-like representative 

subset of the labeled LDToxDB compounds. Such compounds with 2 or more C-F bonds would be 

polyfluorinated, likely alkyl, but may not be designated as PFAS in various databases. The resulting 

518 compounds, referred to as “LDToxDB-PFAS-like" and which include 58 compounds formally 

labeled as PFAS, served as an important validation group to confirm that models trained on 

LDToxDB were able to predict toxicity of PFAS and PFAS-like compounds via chemical-structure 

similarity. Finally, 8,163 PFAS compounds were extracted from the EPA DSSTox database4, most 

of which have no LD50￼; referred to as “LDToxDB-PFAS”; and ￼reserved for prediction. We note 

that 58 of these are also represented, with labels, in LDToxDB-PFAS-like. The dataset (composed 

of LDToxDB, LDToxDB-PFAS-like, and LDToxDB-PFAS) and the Python processing codes used 

to parse the data and construct the models are available at https://github.com/AI4PFAS/AI4PFAS.
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Figure 2: Visualization of datasets. a) Visual exploration of LDToxDB with dimensionality reduction 
performed with Uniform Manifold Approximation and Projection (UMAP) on a Tanimoto similarity 
matrix28. Clusters are colored according to the chemical superclasses annotated by the ClassyFire server29. 
58 compounds identified and colored as PFAS are found by cross-referencing compounds in LDToxDB 
with the EPA DSSTox. b) Chemical structures for five of the 58 PFAS compounds picked from distinct 
clusters of the chemicals space map are shown. c) Histograms showing the LD50 distribution for LDToxDB 
(labeled as “All”). The PFAS-like subset distribution is shown for reference. d) Normalized histograms 
showing the LD50 distribution for LDToxDb. The PFAS-like subset distribution is shown for comparison. 
e) Bar plot showing percentage fraction per EPA toxicity class for LDToxDB and PFAS-like.

Chemical Featurization

Chemical featurization is the process of translating chemical attributes associated with a compound 

into machine-readable numeric features. We computed features for all compounds in LDToxDB for 
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use in supervised ML of acute oral LD50 point estimates. Further, unsupervised ML can be applied 

to the chemical features in order to deduce chemical insights. Figure 1 shows the full set of 

featurizations and tools developed as a part of the AI4PFAS workflow; details are discussed below. 

Chemical featurization relies primarily on encoding structural features and atom identities within a 

molecule. Three types of chemical featurization were considered in this study:

1) Mordred descriptors30: We used the Mordred software package30 to generate 1,800 unique 

molecular descriptors for each compound directly from RDKit molecules. Mordred provides quick 

featurization of a molecular dataset by generating a vast array of two- and three-dimensional 

descriptor characteristics from SMILES input. The full reference list of Mordred descriptors is 

available elsewhere30. We trimmed down the 1,800 descriptors to 300 by using Pearson correlation 

coefficient (PCC) analysis to remove redundant features. 

2) Extended-connectivity fingerprinting (ECFP)31 provides a mechanism for representing 

topological chemical space within a fixed-length bit string by iteratively measuring substructure 

connectivity at a provided radius around each atom. Numeric representations are created for each 

substructure identified in these iterations and then combined into a fixed-length bit string. 

Conventionally, an ECFP is described by its bit length and the maximum radius used for 

substructural querying: thus, for example, a 2048-bit ECFP4 has a length of 2048 bits and a 

maximum radius of four. Multiple bit lengths and radii were used for different purposes in this study. 

ECFPs are generated by using the open-source RDKit package for Python27. 

3) Molecular graph encoding32,33 improves on ECFP by representing molecules as graphs of 

arbitrary size with nodes representing atoms, and edges representing bonds. Each entity is given 

characteristic traits, which for nodes may include (but are not limited to) atomic identity, number of 

valence electrons, formal charge, and hybridization, and for edges, bond order and conjugation 
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status. We have adopted the graph representation and the corresponding graph convolutional neural 

network from the MOLAN workflow17. 

4) Non-negative matrix factorization (NMF)34,35 is a dimensionality reduction technique that 

derives basis vectors under a non-negative constraint. We performed dimensionality reduction on 

ECFP to derive rich low-dimensional features. A 12-dimensional representation is found to be 

optimal. 

Supervised machine learning

We used the following supervised ML methods to establish a baseline for the acute oral LD50 

prediction:  

1) Random forest regressor36: This ensemble prediction method generates a specified number of 

decision trees, each based on randomly initialized conditional thresholds for filtering input values. 

RF models provide a consensus prediction from these decision trees. This is a shallow-learning 

strategy, since there is no propagation algorithm or loss function with which to adjust weights37. The 

RF regression was performed using Scikit-learn and independently featurized by ECFP, NMF-

reduced ECFP and Mordred descriptors37. 

2) Gaussian process (GP) regression38: This method statistically models a prediction space by 

constructing a joint distribution from the multivariate normal distributions of input combination 

pairs. We used GP approximation as the basis for a predictive model where inputs were 

independently featurized by 2048-bit ECFP4 and Mordred descriptors. To reduce training cost, 200 

important ECFP bits and 10 important Mordred descriptors were chosen from the RF Gini feature 

importance. The training was performed using the GPflow package.39

3) Deep neural network12,13: Artificial neurons form the basis of a deep neural network (DNN). 

Composed of a linear unit and a non-linear activation function, neurons are stacked into sequential 
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layers where each receives as input the output from all neurons in the preceding layer. Together, 

these layers form a multilayer perceptron (MLP). A fully connected DNN is used to transform input 

chemical features into acute oral LD50 predictions. The DNN is independently featurized by ECFP 

and Mordred descriptors. For the ECPF descriptor architecture, a single hidden layer with 2048 

neurons, batch size of 512, and Adam optimizer40 with learning rate 0.001 are found to be sufficient. 

Similarly, for the Mordred descriptors, four hidden layers, each with 256 neurons, batch size of 256, 

and Adam optimizer with learning rate of 0.01 are found to be sufficient. Property labels are 

normalized, and batch normalization is applied between each layer connection.

4) Graph convolutional neural network32,33: Recent advances in deep learning have put Graph 

Convolutional Networks (GCN) at the forefront of predictive modeling with molecular graph-

encoding input data. GCNs construct a 2D adjacency matrix of a graph with binary values indicating 

node (atom) adjacency. Inspired by the 2D convolutions on image inputs employed in convolutional 

neural networks, GCNs use an irregular adjacency matrix based on direct node connectivity. The 

aggregation function makes use of an identity matrix to normalize the parameter inputs with respect 

to node adjacency, rendering the weight matrices rotationally invariant with respect to the order of 

node embeddings in the adjacency matrix. GCNs are convenient for molecular predictive modeling 

because of their ability to mimic the natural structure of any substance through its atom-bond 

connectivity. We employed a GCN with five convolutional layers, a convolutional base size of 64, 

two MLP layers with dropout of 0.153, a learning rate of 0.008, and a batch size of 64. Each graph 

element is assigned key chemical attributes provided in Table S2 (in SI).

The performance of all the supervised ML methods was evaluated by Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and coefficient of determination (R2). We use two methods for 

partitioning our data into 80% training and 20% testing sets: (1) random sampling and (2) stratified 

Page 11 of 37

ACS Paragon Plus Environment

ACS Central Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



sampling on binned LD50 measurements. A five-fold cross-validation is employed with a random 

seed to ensure consistent data splits and minimize overfit bias in performance evaluations. Bayesian 

optimization is a powerful technique for finding optimal hyperparameters for black-box functions41. 

The hyperparameters of all supervised ML methods (DNN-Mordred, DNN-ECFP, GCN, and RF) 

are tuned using Bayesian optimization as implemented in the GPyOpt library42; parameter bounds 

are in Table S1.

Transfer learning

In ML, repurposing knowledge from source domains for use within a target space is a powerful 

application of the transfer-learning concept. Low-dimensional knowledge is shared across domains 

and high-dimensional knowledge is trained from the basis of common understanding. This is done 

in practice by initially optimizing the MLP within the source domain. Prior to training on target data, 

the learning rates of upstream neurons are reduced relative to later ones in order to fix early neurons 

used for low-dimensional feature discrimination. In certain cases, no learning is allowed (i.e., the 

learning rate is set to zero), a process referred to as freezing. Downstream neurons may be 

reinitialized to random weights, and layers may be added. Training is then repeated within the target 

space, and success is indicated by positive transfer20.

Uncertainty quantification

Two approaches to uncertainty were examined. The first approach, deep ensemble, employs an 

ensemble of deep-learning models, each using a fixed neural network architecture with different 

randomly initialized layer weights (prior to training) to get multiple point estimates of prediction43. 

The variance derived from the point estimates serves as an approximation of uncertainty. The second 

method, a latent-space approach, relies on the distance of a prediction point to neighboring training 
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points in the embedded space of the final hidden layer of the neural network44. Recent research in 

chemical modeling suggests that latent distance between training and inference points can 

effectively act as an inexpensive approximation for uncertainty. During inference, a prediction’s 

latent-space feature representations are projected onto the training manifold approximation. The 

advantage of the latent-space approach is that it does not require multiple model runs as in deep 

ensemble, saving the exhaustive cost of training. 

Learning with abstention 

Selective Prediction model21-23: ML practitioners can use uncertainty associated with individual 

predictions to judge their quality. In particular, predictions with high uncertainty (i.e., low 

confidence) could be discounted by the human practitioner. On the other hand, a standard supervised 

ML approach always produces an answer, even for scenarios far outside of the training region, where 

such models are expected to perform poorly. Hence there is a need for an Artificial Intelligence (AI) 

that can replicate the human-like decision to say “I can’t answer” for low-confidence/high-risk 

scenarios. Selective prediction is a ML paradigm where the goal is to learn a prediction model that 

knows when it does not know. A selective prediction model performs “learning with abstention” on 

its own. The selective prediction model is learned jointly as a pair (f, g), where f is a prediction 

function and g is a selection function which learns whether f should be allowed to predict or abstain, 

as described below:

                             (1)(𝑓,𝑔)(𝑥) = {𝑓(𝑥),                   𝑖𝑓 𝑔(𝑥) ≥  𝜏
𝐷𝑜𝑛′𝑡 𝑘𝑛𝑜𝑤,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where , the input chemical feature space, and the tolerance .𝑥 ∈ 𝑋 𝜏 ∈ (0,1)

In particular, we use the SelectiveNet-based selective prediction model in this study23. This model 
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architecture offers easy conversion of the main body block from a reference neural network into a 

corresponding network with a reject option, as illustrated in Figure 3. In a SelectiveNet, the 

representation (last) layer will be processed by three heads (as shown in Figure 3c): 1) A prediction 

head (f(x)) for LD50, 2) a selection head (g(x)), a classifier that decides whether the model should 

abstain or not, and 3) an auxiliary head (h(x)) that enriches the representation layer. The joint loss 

for (1), given k labeled samples (  is written as𝑆𝑘 ),

ℒ(𝑓,𝑔) =  𝑟(𝑓,𝑔│𝑆𝑘 ) +  𝜆 max (0, (𝑐 ―  𝜙(𝑔│𝑆𝑘 )  )  )2        (2)

where  is the hyperparameter that controls the coupling to the squared penalty function and c is the 𝜆

target coverage. The empirical coverage, , is computed as the mean of the selection function output  𝜙

for the k input samples. The empirical selective risk, r, is defined as

                                           (3)𝑟(𝑓,𝑔│𝑆𝑘 ) =  
1
𝑘∑𝑘

𝑖 = 1𝑙( 𝑓(𝑥𝑖),𝑦𝑖)𝑔(𝑥𝑖))

𝜙(𝑔|𝑆𝑘)

where l(f(xi), yi) is the regressor loss for the prediction head. 

Finally, the overall loss for SelectiveNet is written as the combination of (2) and the auxiliary head 

loss ( , with α = 0.5 used in this work:ℒℎ)

ℒ =  ∝ ℒ(𝑓,𝑔) + (1 ― ∝ )ℒℎ                                                            (4)

An optimal selective prediction model is arrived at by optimizing the selective risk with respect to 

the coverage. This is done by converging the risk-coverage curve and selecting a coverage that 

results in minimal selective risk45. The choice of the hyperparameter and the neural network 

architecture as shown in Figure 3c are further discussed in the results. 
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Figure 3. The three-pronged approach for machine-learning-based computational toxicology for PFAS. a) 
Source task for transfer learning. DNN-Mordred accepts molecules featurized by Mordred descriptors and is 
trained on LDToxDB. b) In the transfer-learned workflow, hidden-layer weights from a) are now locked 
except for the final prediction layer (blue), allowing target-domain learning when training on the 518-element 
LDToxDB-PFAS-like dataset. c) In the third stage there is nearly no toxicity information for ~8,163 PFAS. 
Hence we now transform the DNN-Mordred from a) as the main body into a SelectiveNet architecture. The 
SelectiveNet architecture adds two more output heads, corresponding to an auxiliary and a decision head, for 
selective prediction. In this workflow, the SelectiveNet is transfer-learned using the same method used in b), 
except that here, uncertainty per prediction for the PFAS with unknown toxicity can be automatically 
converted into a decision (i.e., predict or abstain) by learning with abstention. 

3 Results and Discussion
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Results are organized into four subsections, each building towards the final objective of predicting 

the toxicity for 8,163 PFAS compounds with abstention. We first provide a review of current 

literature on oral rat LD50 prediction, followed by results from our baseline ML benchmark models 

for LDToxDB. We then discuss transfer learning for the best-performing ML model on LDToxDB 

as the source task and LDToxDB-PFAS-like as the target task. We go on to show the benefits of 

uncertainty analysis for the target prediction task. Finally, we discuss the results of the SelectiveNet 

in predicting (or abstaining from) toxicity for 8,163 compounds from the EPA’s PFAS structure list, 

most with no known LD50 labels.

Model Baselines

Literature baselines for ML-based LD50 predictions are presented in Table 2, with experiment 

sample size, methodology, and performance metrics for the top-performing model from each study. 

While variability in training datasets and testing protocols prevents a direct comparison, the best-

performing models use state-of-the-art ML based on DNN. In particular, Xu et al.46 employed a 

consensus based on GCN network predictions to arrive at a highly competitive model metric. 

Authors Year Dataset Sample size Method R2 MAE RMSE

Gadaleta et 

al.26

2019 CATMoS 8,448 Ab initio 

QSAR

0.651 0.39 0.541

Liu et al.47 2018 Leadscope 

Toxicity Db

10,363 RF regressor 0.58 0.60

Wu et al.48 2018 EPA 

ECOTOX

7,413 Consensus 

(RF, GBDT, 

ST-DNN, 

0.653 0.421 0.568
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Authors Year Dataset Sample size Method R2 MAE RMSE

MT-DNN)

Xu et al.46 2017 admetSAR, 

EPA TEST, 

MDL

12,173 Consensus 

(GCN)

0.348 0.465

Bhhatarai49 2011 ChemIDplus 50

(PFAS only)

Linear 

regression. 

Genetic 

algorithm for 

feature 

selection

0.883 0.47

Zhu et al.50 2009 ChemIDplus >8000 Consensus 

(kNN, RF, 

hierarchical 

clustering, 

NN)

0.71 0.39

Table 2. Literature baselines for oral rat LD50 predictions. GBDT = Gradient Boosting Decision Tree; ST-
DNN = single-task DNN; MT-DNN = multitask-DNN; kNN = k-nearest neighbors; NN = neural network; 
as described in the original literature. Empty cells correspond to values not reported in the same context as 
other metrics in their respective study.

The benchmark results from this study for the prediction of LDToxDB are presented in Table 3. 

Random sampling was found to give better performance compared to stratified sampling (shown in 

Figure S1) and is used for each model. Reported metrics (R2, MAE, RMSE, and accuracy) represent 

average metrics computed across each testing fold for every model (i.e., five-fold cross-validation). 

Accuracies are provided as a supplemental metric, calculated by taking each compound’s predicted 

LD50, converting it to mg/kg, and labeling with EPA toxicity categories. Since models used in this 

study are regressors, accuracies are expected to underperform in comparison to classification models 

present in the literature, and are hence not intended for a direct comparison with literature baselines. 
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From Table 3, it is observed that the ML models evaluated in this study perform in the following 

order, evaluating each model by the reported MAE: DNN-Mordred < RF-Mordred < GP < GCN < 

DNN-ECFP < RF-ECFP < RF-NMF. These results suggest that DNN with Mordred descriptors 

input outperforms other models with an R2 of 0.65. While variations in datasets prevent direct one-

to-one comparison to Table 2, our DNN-Mordred model yields similar performance to that reported 

by Zhu et al.50 and Gadaleta et al.26, justifying the evaluation of these models when further developed 

for the PFAS domain.

LDToxDBMethod Input
R2 MAE RMSE Accuracy

DNN Mordred 
descriptors

0.654 0.343 0.525 0.672

DNN 2048-bit 
ECFP, r=1

0.611 0.385 0.549 0.644

GCN Graph 
(node=atom, 
edge=bond)

0.623 0.380 0.541 0.641

GP 10 Mordred 
descriptors, 
200 ECFP 
bits

0.627 0.376 0.538 0.649

RF 
regression

Mordred 
descriptors

0.647 0.372 0.523 0.65

RF 
regression

4096-bit 
ECFP, r=2

0.622 0.414 0.572 0.622

RF 
regression

NMF-reduced 
4096-bit 
ECFP, r=2

0.412 0.504 0.676 0.560

Table 3. Result of 5-fold cross-validation and mean test fold metrics. Only models trained on data with 
random sampling are reported. 

Transfer Learning on LDToxDB-PFAS-like

We next demonstrate how a DNN-Mordred model trained as the source task can be used to perform 

knowledge transfer within the PFAS domain. Since only 58 PFAS compounds are available with 

Page 18 of 37

ACS Paragon Plus Environment

ACS Central Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



reported values for oral rat LD50, we use the broader 518 LDToxDB-PFAS-like subset as a measure 

of whether transfer learning has a beneficial outcome. The outcome of transfer learning is directly 

measured by the extent to which positive transfer occurred (i.e., no performance degradation after 

transferring knowledge from source to target task)20. For our comparison, we collect MAE and R2 

metrics from models within the target domain both before and after transfer learning. The transfer 

step involves freezing early layers trained within the source domain and reinitializing later layers to 

re-train within the target domain (illustrated in Figure 3b). We refer to this model setup as “Transfer-

DNN-Mordred.” Freezing all hidden layers of DNN-Mordred and retraining the output linear layer 

was found to be optimal (see Figure S2).

The top panel of Figure 4 shows the performance effect of transfer learning on DNN-Mordred 

outcomes within LDToxDB-PFAS-like. Transfer-DNN-Mordred showed positive transfer, as seen 

by the marginal decrease in error and increase in R2 when looking at regression predictions, 

affording greater stability in the target domain. The results are also further converted to EPA 

categories (this convention will be followed through the rest of the article for a direct comparison 

with EPA toxicity classes). While category IV accuracy is notably hampered, decreasing from 

19.1% to 14.7%, the accuracy of category III compounds (the largest represented group in the 

LDToxDB) improves from 75.9% to 76.8% and overall predictive capacity improves, as seen from 

a stronger R2 score.
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Figure 4: Comparing performances on LDToxDB-PFAS-like of original DNN-Mordred model (a) and 
transfer-learned DNN-Mordred model (b). Each plot presents aggregated results across five test folds. Top 
panels show raw regression outcomes; bottom panels convert results into corresponding EPA class. In the 
regression plots, horizontal axes report true labels and vertical axes are predicted.

Uncertainty Quantification and Limitations

With established evidence of positive transfer in “Transfer-DNN-Mordred” (Figure 3b), we turn our 

attention to calculating uncertainty per prediction. In practical settings where toxicity modeling 

provides consequential utility, uncertainty enables knowledgeable practitioners to discount spurious 

predictions. Uncertainty is evaluated here as the ability of the chosen metric to capture the model 
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error; in other words, a suitable measure for evaluating the efficacy of an uncertainty metric is the 

correlation of uncertainty with model error. We evaluate two approximations for model uncertainty, 

1) deep ensemble and 2) latent space distance, and analyze the best-performing mechanism within 

the context of our validation set. 

Literature on deep ensembles has shown that an ensemble model size as small as five is sufficient51. 

We evaluated the convergence of ensemble model size (Figure S3) and found that 10 DNN-Mordred 

models were sufficient for our purpose. To use latent space distances as a measure of uncertainty, 

we used a UMAP model on training-data latent space outcomes28. The Euclidean distance between 

the latent space of inference and the nearest training point was used. PCCs grouped by superclass 

are provided in Table 4 and demonstrate that the deep ensemble outperforms latent space in the 

context of Transfer-DNN-Mordred trained on LDToxDB/LDToxDB-PFAS-like. Notably weak 

correlations in the largest superclasses (organoheterocylics and benzenoids) may be explained by 

the high number of chemical subgroups with single members.

Correlation Coeff.
Superclass Sample Size Deep 

Ensemble
Latent 
Space

Singleton 
Subclasses

Organoheterocyclics 214 0.21  0.02 17
Benzenoids 168 0.38  0.05 6
Organohalogens 42 0.44  0.26 0
Lipids/lipid-likes 27 0.54 -0.17 0
Organic oxygens 23 0.57  0.59 2
Organic acids/deriv. 23 0.52  0.28 5
Organic nitrogens 10 0.47  0.20 0

Table 4. PCCs between predicted uncertainty and model error across Transfer-DNN-Mordred models on 
LDToxDb-PFAS-like testing folds. Compounds are grouped by taxonomic superclasses labeled by 
ClassyFire29 to provide granularity in assessing the PCC performance. Only superclasses with greater than 
10 substituents are shown. The singleton subclasses column provides the number of single-member sub-
chemical classes that are present in the corresponding superclass. 

As the stronger proxy metric, the standard deviations of 10 ensemble models are used to construct 
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95% confidence intervals (CI) representing a probabilistic forecast of the true mean of Transfer-

DNN-Mordred predictions for each compound. Note that when experimental values fall outside the 

95% CI, it simply means that the variance across a sample of DNN models is not high enough to 

accurately capture confidence with respect to the true value. We observe from Figure 5 that 

approximately 59.9% of experimental LD50 toxicities fall within the 95% CI of Transfer-DNN-

Mordred’s true population mean. These results highlight two key points: (1) deep ensemble provides 

an appreciable mechanism for capturing model uncertainty on 59.9% of validation data; and (2) 

Transfer-DNN-Mordred, in its fullest capacity, conveys overconfidence (i.e., fails to accurately 

capture confidence) on 40.1% of validation samples.

Figure 5: Uncertainty quantifications via deep ensemble for LDToxDB-PFAS-like using Transfer-DNN-
Mordred models. a) Oral rat LD50 indexed by the 518 LDToxDB-PFAS-like compounds. The ensemble 
mean is shown as a blue continuous curve, and two standard deviations as a light blue shaded region to 
reflect the confidence interval. Experimental oral rat LD50 values that are within and outside of the 
confidence interval bounds are shown as green dots and red crosses, respectively. b) Experiment vs. 
predicted rat oral LD50 corresponding to the left panel, colored by the standard value for that prediction. 
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The 40.1% of validation compounds that fall outside the 95% CI of the population mean of DNN-

Mordred predictions invoke the larger deep-learning problem of overconfidence52. The deep-

ensemble uncertainty fails when multiple models share a similar incorrect explanation across input 

space. This is an active area of research with no universal solution51. Thus, for predicting unlabeled 

data with a probable shift from our training set (despite efforts to isolate and transfer-learn on 

“PFAS-like” chemicals), we turn to an alternative in the next section: selective prediction. Using the 

uncertainty quantification capacity that our model does have (demonstrated on 59.9% of validation 

compounds), we employ a model with the means of abstaining from prediction. In practice, this 

approach means more cautious predictions on unlabeled data and a prioritization framework for 

moving forward with in vivo experimental trials.

Predicting PFAS compounds

In this section, we discuss predicting toxicities for unlabeled PFAS chemicals. The ensemble 

approach discussed in the previous section works intuitively when a clear ensemble standard 

deviation threshold can be used to designate compounds with high uncertainty. The definition of 

such a domain-dependent threshold would require some human supervision. Further, the deep-

ensemble predictions can become overconfident. The prediction of a larger, unlabeled set of PFAS 

chemicals introduces new considerations: Can we design an AI that can understand uncertainty per 

prediction (when labels are not available for comparisons) and decide whether it should predict or 

say “I cannot predict?” Can we include an in-built safety feature in a neural network so as to 

minimize or avoid a catastrophic scenario? (Such a catastrophic scenario may entail a model 

predicting a compound as belonging to EPA class IV whereas in reality it is a highly toxic compound 

belonging to EPA class I.) With these considerations for prediction of PFAS compounds, the 

SelectiveNet architecture was implemented with DNN-Mordred operating as the main body of the 
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neural network (referred to as SelectiveNet Transfer DNN-Mordred, shortened to “SN-Mordred”; 

see Figure 3c). Transfer learning was performed as described earlier. 

The optimal SN-Mordred is arrived at by minimizing the risk by constraining the coverage23. 

Multiple models were trained, corresponding to coverage thresholds varying between C=0.5 and 

C=1.0. The selective heads of trained models were then calibrated within their respective validation 

sets, as recommended by Geifman et al.23, and the total empirical risk was calculated with respect 

to coverage (see Table S2 in SI). A coverage threshold of 0.6 was found optimal and used to calibrate 

the abstention mechanism for use on LDToxDB-PFAS. Featurization of LDToxDB-PFAS by 

Mordred descriptors was successful for 7,058 compounds.

Figure 6a shows the distribution of selective-prediction outcomes. Since the SelectiveNet was 

trained with a coverage of 60%, we examine where SN-Mordred abstains by breaking down the 

EPA PFAS structure list by chemical superclass annotated by the ClassyFire server29 (Figure 6a inset). 

After inference, 43 predictions are excluded as out-of-range (using water and the most toxic 

compound in LDToxDB as boundary limits). The dominant four superclasses within LDToxDB-

PFAS (Organohalogens, benzenoids, organic acids, and benzenoids) are all predicted at a rate of 

approximately 75% with no trend of favorably pruning certain chemical superclasses. The most 

represented EPA class in LDToxDB is EPA class III (Figure 2). Consequently, it can be observed 

that SN-Mordred is most confident in predicting EPA class III (Figure 6b). SN-Mordred only 

predicted seven compounds to be in EPA class I, demonstrating considerable caution with respect 

to the most toxic EPA class.
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Figure 6: SelectiveNet predictions. a) Histogram of SN-Mordred predictions on EPA PFAS structure list. 
(Inset) Percent prediction/abstention of compounds grouped by superclass. The gray color on each bar 
represents the abstained fraction. The superclass label provides the percent composition of the superclass 
within the entire EPA PFAS structure list. b) SN-Mordred predictions categorized by EPA toxicity class. The 
most predicted class, level III, has 4,739 PFAS chemicals predicted to be in it.

The selective-prediction outcome for individual compounds allows us to examine how the model 

performs in different scenarios, particularly for the 58 PFAS compounds with known values of oral 

rat LD50 where LDToxDB overlaps with the EPA PFAS structure list. Table 5 presents select 

examples of success and failure for SN-Mordred, along with scenarios where the selective 

mechanism refuses a prediction. Overall, the model abstained on 7 of the 58 compounds. On the 51 

compounds where prediction was favorable, 47 were predicted within their actual EPA classes. For 

the compounds Midaflur, a highly toxic EPA class I compound, and hexafluoroacetone, a toxic EPA 

class II compound, the model takes a cautious approach by not predicting. A quick verification of 

the Transfer-DNN-Mordred model (Figure 3b) result revealed Midaflur to be incorrectly predicted 

as EPA class II and hexafluoroacetone as class III, thereby validating the catastrophic scenario and 

demonstrating the benefit of the abstention mechanism.
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Chemical Structure Chemical Transfer
SN-Mordred 

Inference

Actual 
Class

Perfluorobutanoic acid
(PFBA or HFBA)

III III

Cyclopentene, 1,2-dichloro-
3,3,4,4,5,5-hexafluoro-

II II

3,3-Dichloro-1,1,1,2,2-
pentafluoropropane

IV IV

Enflurane IV IV

1,1,1,3,3-Pentafluoro-3-methoxy-2-
(trifluoromethyl)propane

II II
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Chemical Structure Chemical Transfer
SN-Mordred 

Inference

Actual 
Class

Perfluorotributylamine
(PFTBA)

IV IV

Midaflur Abstain I

2-Propenoic acid, 2-fluoro-, 2,2,3,3-
tetrafluoropropyl ester

Abstain II

Hexafluoroacetone
(HFA)

Abstain II
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Chemical Structure Chemical Transfer
SN-Mordred 

Inference

Actual 
Class

Perfluorooctanesulfonyl fluoride 
(POSF)

II III

(1,1,2,2-Tetrafluoroethoxy)benzene III IV

Table 5. Results for chemicals successfully predicted, successfully abstained, and poorly predicted by SN-
Mordred model. 2D structures were generated with RDKit27 and chemical names were obtained from the 
EPA CompTox Chemicals Dashboard53. Green shading corresponds to compounds where SN-Mordred 
predicted the compound in the correct EPA category. Boxes with blue shading corresponds to SN-Mordred 
abstention. Red corresponds to compounds that were predicted in the wrong EPA category by SN-Mordred.

To underpin the results and decisions returned using AI, future efforts could include the development 

of deep learning or QSAR models using molecular descriptors strongly correlated with acute 

toxicity49 or by building local QSAR models from closely similar structures54. Such efforts would 

provide a physical and mechanical basis grounded in molecular structure for interpreting toxicity 

estimates from AI. The derived relationships could further reduce the incidence of catastrophic 

decisions from AI predictions.

4 Conclusions

Targeted environmental cleanup of PFAS requires an understanding of PFAS toxicity. We present 
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a rigorous ML-based computational toxicology workflow that we use to predict toxicity for ~8,163 

PFAS compounds whose toxicities are poorly understood. We achieve this result by transfer learning 

on knowledge of all organic compounds with known values of oral rat LD50 to predict on the PFAS 

compound space with informed uncertainties. Learning by abstention provides an automatic 

mechanism for converting uncertainty per prediction into model decisions. Organ-on-a-chip 

systems, now possible through advancements in microfluidic technologies, have allowed for the 

emulation of in vivo physiological conditions55,56. The selective prediction model can be used for 

deriving decisions on compounds whose toxicity values cannot be predicted reliably. The model 

decisions can be used to drive on-demand active learning of toxicology experiments using the organ-

on-a-chip setup. 

In this age of big data, neural networks have been widely adopted for applications in the chemical 

sciences community. We anticipate that the AI4PFAS workflow can be used for predicting many 

other toxic endpoints. Some of the approaches presented in this study can be used to add a layer of 

safety to supervised ML predictions, especially in mission-critical applications such as 

computational toxicology. We hope that some of the good practices presented in this study are 

adopted and expanded on by the wider chemical sciences community. 
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