
 1 

Perturbation free-energy toolkit: automated 

alchemical topology builder and optimized 

simulation update scheme  

Drazen Petrov1* 

*corresponding author 

 

 

1Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and 

Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 

Vienna, Austria  

 

 

 

KEYWORDS: 

Molecular dynamics simulations, free energy calculations, alchemical perturbation, python 

package  

  



 2 

ABSTRACT 

Free-energy calculations play an important role in the application of computational chemistry to 

a range of fields, including protein biochemistry, rational drug design or material science. 

Importantly, the free energy difference is directly related to experimentally measurable quantities 

such as partition and adsorption coefficients, water activity and binding affinities. Among several 

techniques aimed at predicting the free-energy differences, perturbation approaches, involving 

alchemical transformation of one molecule into another through intermediate states, stand out as 

rigorous methods based on statistical mechanics. However, despite the importance of efficient 

and accurate free energy predictions, applicability of the perturbation approaches is still largely 

impeded by a number of challenges. This study aims at addressing two of them: 1) the definition 

of the perturbation path, i.e., alchemical changes leading to the transformation of one molecule to 

the other, and 2) determining the amount of sampling along the path to reach desired 

convergence. In particular, an automatic perturbation builder based on a graph matching 

algorithm is developed, that is able to identify the maximum common substructure of two 

molecules and provide the perturbation topologies suitable for free-energy calculations using 

GROMOS and GROMACS simulation packages. Moreover, it was used to calculate the changes 

in free energy of a set of post-translational modifications and analyze their convergence 

behavior. Different methods were tested, which showed that MBAR and extended 

thermodynamic integration (TI) in combination with MBAR show better performance as 

compared to BAR, extended TI with linear interpolation and plain TI. Also, a number of error 

estimators were explored and how they relate to the true error, estimated as the difference in free 

energy from an extensive set of simulation data. This analysis shows that most of the estimators 

provide only a qualitative agreement to the true error, with little quantitative predictive power. 
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This notwithstanding, the preformed analyses provided insight into the convergence of free-

energy calculations, which allowed for development of an iterative update scheme for 

perturbation simulations that aims at minimizing the simulation time to reach the convergence, 

i.e., optimizing the efficiency. Importantly, this toolkit is made available online as an open-

source python package (https://github.com/drazen-petrov/SMArt). 
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INTRODUCTION 

Calculation of free-energy differences is one of the main objectives in computational chemistry 

as such differences characterize chemical processes, directly determining properties such as 

ligand binding affinities or partition coefficients. Perturbation free-energy calculations, involving 

alchemical transformation of one chemical into another via a pathway of unphysical intermediate 

states, present a rigorous approach derived from statistical mechanics.1–12 Several such methods 

have been developed over the years, including for instance thermodynamic integration,13 its 

extended version14 or Bennett’s acceptance ratio.15 More recently, non-equilibrium techniques 

like the Crooks Gaussian intersection method16 and the Jarzynski equality,17 have also been 

applied. While more tractable than the direct simulations of the actual physical process (e.g. 

ligand binding), perturbation simulations are still computationally demanding, presenting one of 

the major impediments of their wider application.  

The efficiency of different perturbation methods in various contexts have been studied.16,18–21 

In addition, the effects of the choice of intermediate states and exact coupling of the 

transformation to the Hamiltonian of the system through a coupling parameter λ have been 

explored.22–26 Related to this, the transformation pathway depends on the definition of alchemical 

changes, which in turn might strongly affect the performance of the calculations. In particular, 

the dual topology approach replaces all atoms of one compound with the atoms of the other. 

Alternatively, only a subset of non-matching atoms can be perturbed, which is especially 

beneficial when compounds in question share the same scaffold. Performing free energy 

calculations using such an approach usually involves a cumbersome and often manual procedure 

of defining the perturbations, choosing intermediate states and the amount of sampling for 

simulations, followed by analysis of the collected data. On the other hand, several available tools 
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allow for automatization of some of the steps involved in the process, including the generation of 

perturbation topologies and simulation setup.27–36 

In this study, two challenges related to the efficiency of perturbation free-energy calculations 

were addressed. In particular, an automated perturbation topology builder based on a graph-

matching algorithm was developed allowing the user to find the maximum common substructure 

of two or a set of multiple compounds and define the perturbation accordingly. Secondly, this 

tool was used to generate perturbation topologies and to calculate free energies of four model 

post-translational modifications in the context of the histone H3 tail peptide and one of its 

readers Sp100C PHD finger domain.37–40 In the process, the convergence behavior of these 

calculations was analyzed. Based on this analysis, an iterative update scheme of simulations 

along the perturbation path was proposed, attempting to automatically obtain converged free-

energy differences for a minimum amount of simulation time. Finally, the toolkit is made 

available as an open source python package via a github repository (https://github.com/drazen-

petrov/SMArt). 

 

METHODS 

Perturbation topology builder 

The perturbation topology builder creates a definition of the perturbation pathway for a set of 

input molecular topologies (at least two), needed for free-energy calculations based on the 

maximal common substructure. The maximal common substructure (MCS) search for the two 

molecules involved in the perturbation is based on the VF algorithm for graph isomorphism 

matching.41 It involves an iterative procedure in which in each step a pair of atoms, each 

belonging one of the compounds, is added to the current common substructure (current solution). 
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Upon adding a pair of atoms, the common part of molecular topologies is checked for non-

matching forcefield parameters, which contribute to a score, based on user-defined penalty. At 

this point, a list of available pairs of atoms to be added in the current solution is updated, based 

on the first neighbors of the atoms in the current solution. A crucial part of this update is an 

estimate of the minimal penalization score that this current solution can achieve, according to 

which the list of available pairs of atoms is sorted. This ensures that solutions with low penalty 

scores are found early in the enumeration. When a current solution’s minimal possible score is 

higher than a score of an already enumerated solution, this branch of enumeration is pruned. An 

initial point in the algorithm is a list of all available pairs of atoms, equaling n x m, where n and 

m stand for the number of atoms in each of the compounds. Importantly, this algorithm can also 

be simultaneously applied on a set of multiple topologies, where the resulting match represents 

the minimum structure of which each individual compound is a substructure, or simply put a 

common scaffold. This can be used to perform Enveloping Distribution Sampling (EDS)42–44 or 

generate closed thermodynamic cycles on a set of multiple compounds. 

The algorithm is implemented in python programming language and supports GROMOS and 

GROMACS file formats.  

Perturbation simulations 

Molecular dynamics simulations were performed using the GROMOS1145 and GROMACS46 

simulation packages. The united-atom GROMOS force field, parameter set 54A8,47–49 SPC 

explicit water50 and 2 fs integration step were used. The temperature and the pressure were kept 

constant at 300 K and 1 bar using weak coupling with a relaxation time of 0.1 ps and 0.5 ps, 

respectively.51 Pressure scaling was applied isotropically, with an isothermal compressibility of 

4.575 × 10−4 (kJ mol−1 nm−3)−1. A reaction-field contribution was added to the electrostatic 
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interactions and forces to account for a homogeneous medium with a dielectric permittivity of 61 

outside the cutoff sphere. In simulations using the GROMOS11 molecular simulation package, a 

molecular pair-list was generated using a triple-range cutoff,52 where nonbonded interactions up 

to a short range of 0.8 nm were calculated at every time step from a pair-list that was updated 

every 5 steps. Interactions up to a long-range cutoff of 1.4 nm were calculated at pair-list updates 

and kept constant in between.  The SHAKE algorithm was used to constrain the bond lengths to 

their optimal values with a relative geometric accuracy of 10−4.53 In simulations performed using 

GROMACS simulation package, Verlet pair-list algorithm54 was used, together with the LINCS 

algorithm55 for constraining the bond lengths to their optimal values. 

The above developed tool was used to define alchemical perturbations from native residues to 

their post-translationally modified forms (Table 1). A soft-core potential was used for 

perturbations of nonbonded interactions.56 Free energies of these transformations of a small 

pentapeptide (GGXGG, where X stands for the affected residue with charge-neutral terminal 

caps) in the free state, i.e., in water, were performed with the GROMOS. The lysine 

trimethylation of a histone H3 tail peptide bound to the Sp100C PHD finger domain,40 was 

simulated with the GROMACS simulation package. Pymol57 and the Vienna-PTM webserver58 

were used to prepare and manipulate PDB files. 

Two perturbation paths were used for lysine methylation and serine phosphorylation, where 

the hydrogen atoms were allowed or not allowed to perturb into heavy atoms. Additionally, 

serine was perturbed into phosphoserine of total net charge of -1 and -2. Each perturbation 

process in water was simulated in 21 steps with equidistant λ-points and 5 ns per point, while the 

bound state was simulated in 41 steps with equidistant λ-points and three independent 8 ns long 
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simulation per point. Three independent sets of simulations of the bound state were generated by 

randomly assigning the initial velocities using a different random seed. 

Analysis of generated free-energy data 

Several methods were used to compute the free energy change upon studied alchemical 

processes, including multistate Bennett acceptance ratio (MBAR),59 Bennett acceptance ratio 

(BAR),15 extended thermodynamic integration with MBAR and linear interpolation for 

predicting the ensemble average of the partial derivatives of the Hamiltonian with respect to λ at 

λ-points that were not simulated (101 and 81 equidistant λ-points for peptides in water and the 

bound state, respectively) (exTIMBAR and exTIlin)
14 and thermodynamic integration (TI).13  

A number of additional properties were calculated from obtained data, including error 

estimators from MBAR (Δ𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅), BAR (Δ𝐺𝑒𝑟𝑟

𝐵𝐴𝑅), error estimates from bootstrapping the data 

for a 100 times and calculating the standard deviation of the obtained distribution (Δ𝐺𝐵𝑆𝑒𝑟𝑟
𝑚𝑒𝑡ℎ𝑜𝑑, 

where method stands for any of the methods mentioned above: MBAR, BAR, exTIMBAR, exTIlin 

and TI), overlap integrals (OI) and differences in exTI predictions from neighboring λ-points 

(Δ𝐺𝑒𝑟𝑟
𝑒𝑥𝑇𝐼), as well as fractions of simulated times for which the computed free energy difference 

is within a given tolerance cutoff from the value obtained using the full simulation time 

ΔΔ𝐺𝑓𝑟𝑎𝑐
𝑀𝐵𝐴𝑅 𝑡𝑜𝑙. Considered tolerances were 1 kJ mol-1, ½ kT, kT and 1 kcal mol-1, while fractions 

of data and OI were ranging from 0.1 – 0.9 with a step of 0.1. 

Simulation update scheme 

Several update schemes for simulation time at different λ-points were tested. Starting from 

initial set of simulations (6 or 11 equidistant λ-points with 0.5 or 1 ns per point), convergence of 

different λ-segments was tested. In particular, segments of 0.025, 0.05, 0.1 or 0.2 in terms of Δλ 

were considered. The convergence criteria were based on 4 tolerance cutoffs applied to the error 
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estimate from MBAR and / or the computed free energy difference using half of the simulation 

data (ΔΔ𝐺ℎ𝑎𝑙𝑓
𝑀𝐵𝐴𝑅 𝑡𝑜𝑙, equivalent to ΔΔ𝐺𝑓𝑟𝑎𝑐

𝑀𝐵𝐴𝑅 𝑡𝑜𝑙 with the fraction of 0.5). All tested schemes were 

separated in two main update strategies. Update strategy 1 consists of iterations in which all the 

λ-segments are checked for the convergence. For segments (between λ1 and λ2) that do not reach 

the criteria yet, the simulation time at λ1 and λ2 are doubled by prolonging the simulations. 

Simultaneously a new λ point is introduced at 𝜆 =
𝜆1+𝜆2

2
, and two independent simulations are 

performed for the same amount of simulation time. This approach ensures that the wall time of 

each simulation stays constant (allowing for efficient parallelization on a high performance 

computing (HPC) cluster) and that in each iteration the simulation time at already simulated λ-

points doubles, while at newly added it immediately reaches the same amount.  

 In the update strategy 2, the total amount of simulated time (the same as in the initial iteration) 

is distributed over the λ-segment which did not reach the convergence (the same criteria as in the 

strategy 1), based on the weights obtained from one or a combination of all four calculated 

properties: error estimate from MBAR; computed free energy difference using half of the 

simulated data and MBAR; overlap integral; and differences in exTI predictions from 

neighboring λ-points. This approach ensures that the total simulation time in each iteration stays 

constant, facilitating plannability of the use of computer recourses. 

RESULTS AND DISCUSISON 

Perturbation topology builder 

An initial step in perturbation free-energy calculations is the definition of the alchemical 

pathway. A dual topology is widely used to transform all atoms of one compound from real 

atoms into non-interacting dummy atoms, and the other way around for the other compound. 

This approach is arguably inferior to matching the common atoms of the two compounds and 
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perturbing the rest, especially in case of compounds with a high level of similarity. However, this 

approach usually involves a cumbersome manual procedure of defining the matches and 

mismatches. To address this, an automated tool able to generate a perturbation topology of two 

compounds by finding their maximum common substructure was developed. It is based on the 

VF algorithm for graph isomorphism matching,41 where the potential common substructures are 

enumerated iteratively. A pruning function ensures reasonable running times, even though this is 

not a guarantee, as graph isomorphism matching is of exponential complexity. This 

notwithstanding, several tests on small molecules, post-translational modifications and amino-

acid mutations were completed within seconds. Importantly, while enumerating the 

substructures, the algorithm also evaluates the perturbations based on molecular topologies, 

making it possible to guide the search towards the maximum number of matched atom types as 

defined by the force field used. This is arguably one of the most common choices, and when 

performed on lysine trimethylation modification (Figure 1A) results in all atoms being mapped 

to each other, with three hydrogen atoms assigned for perturbation into methyl groups (note that 

methyl groups within the GROMOS force field are modeled as a single united-atom particle). On 

the other hand, one can design other matching criteria, for instance by minimizing the number of 

perturbed bonds, which would lead to a different perturbation topology. In the case of lysine 

methylation the hydrogen atoms are perturbed into dummy atoms, while the methyl groups are 

grown from dummy particles, with the rest of the atoms being matches (Figure 1B). It is worth 

noting that the algorithm allows for wide flexibility in tuning the MCS search by setting different 

penalty weights for different types of individual perturbations compared to each other, including 

atoms types, perturbed bonds, angles, improper dihedrals or dihedrals. The enumerated solutions 

are sorted according to the score defined by the penalty weights. In addition, this feature can be 
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used not only to select the preference towards a specific type of perturbation, but also to generate 

different perturbation definitions (pathways) between a given pair of compounds of interest, 

which can be tested for their performance.  

When it comes to matching ring structures, the algorithm allows for two options: 1) partial 

match of polycyclic compounds where only a complete match of individual rings is allowed 

(Figure S1); and 2) only complete match is allowed. In the case of matching between ring and 

non-ring atoms, three options are provided: 1) partial match of maximum of 2 atoms (that share a 

bond); 2) partial match of only one atom; and 3) no match of a ring to a non-ring atom is allowed 

(Figure S2). Option 1 was chosen to be default in both cases, as it permits for matching larger 

maximum common substructure. Note that allowing for a partial match of three or more atoms in 

a ring structure would potentially affect the sampling of the conformational space of the end 

states. Arguably, allowing a partial match of two atoms that share a bond would not have such an 

effect, however this assumption remains to be tested in simulation. For this reason, the 

alternative choices are provided allowing one or no atom as a partial match. 

When it comes to multiple topologies (3 or more), the algorithm is able to find the expected 

common substructures when applied on a set of simple compounds, including alkane chains and 

cycloalkanes of same length with additional methyl groups at different position (Figure S3 and 4) 

or polycycles as shown in Figure 2. In addition to these simplified test cases, in a recently 

published work,44 EDS topologies were generated using this tool based on automatically 

recognized scaffold among different sets of molecules. Note that an EDS topology is a single 

topology (defining reference state Hamiltonian) that can represent multiple molecules by 

switching atom types, where the free energy differences between the molecules are calculated 

using a one step perturbation approach from the reference state. They include a set of 16 
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glutamate receptor A2 (GRA2) allosteric modulators, a set of 8 trypsin inhibitors and a set of 10 

phenylethanolamine N-methyltransferase inhibitors. Such a multi-topology approach can also be 

used to generate a closed thermodynamic cycle for a set of compounds. Note however, finding 

maximum common substructure on a set of multiple topologies requires longer runtimes (in 

minutes), compared to dual topologies.  

While it is tempting to try applying this multi-topology algorithm on a big set of diverse 

compounds, e.g. screening libraries of compounds, this would most probably lead to intractable 

running times. However, such sets of compounds are arguably also not relevant in the context of 

the EDS methodology or evaluation of the cycle closure, since the number of states / perturbation 

lags would be too large for meaningful calculations. On the other hand, this toolkit offers an 

alternative way of tackling a large set of compounds by employing pairwise generation of dual 

perturbation topologies, potentially in combination with utilizing EDS techniques42–44 on small 

subgroups of similar compounds or by optimizing the choices of pairwise perturbations as 

proposed by Liu et al.60 

Application of the tool on a set of histone-related post-translational modifications and 

convergence analysis of the perturbation calculations 

Lysine acetylation, lysine 3-methylation and serine phosphorylation, as representative 

modifications of each type of the most important histone modifications were chosen as a test set. 

Firstly, the influence of the type of the perturbation pathway as a possible source of inaccuracy 

and potential convergence issues was tested. To this end, the predicted values of the partial 

derivatives of the Hamiltonian with respect to λ (at λ-points that were not simulated) were used. 

For example, such predictions from different simulated λ-points largely diverge for lysine 

methylation when perturbing hydrogen into a methyl group and a related bond (Figure 1A and 
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Figure 3A), which is not the case for the same modification and a different perturbation path 

(Figure 1B and Figure 3B). Similar discrepancies of ∂H/∂λ predictions, but to a much smaller 

extent, were observed for serine phosphorylation involving perturbations of hydrogen to heavy 

atoms with related bonds, leading to the conclusion that such type of perturbation paths are to be 

avoided. As observed in previous studies,61,62 the source of this behavior is arguably due to bond 

perturbation, since even small changes in the distance between bonded atoms lead to a great 

difference in the potential energy or its derivative with respect to the coupling parameter λ. 

Therefore, all other results reported here do not involve bond perturbation.  

To test how different choices of simulated λ-points affect the computational costs, i.e. total 

simulation time required to reach converged calculations, a number of different scenarios were 

assumed, with different number of initial λ-points and allowing or prohibiting non-equidistant λ 

points and different simulation time. Four convergence criteria of different stringency were 

considered, and the amount of simulation time required to reproduce the reference data (full 

simulation data with MBAR) within 1 kJ mol-1, ½ kT, kT and 1 kcal mol-1 was determined. Note 

that the convergence criteria were applied to each λ-segment to avoid compensation of errors. In 

addition, the performance of different methods for computing the free energy differences from 

simulation data was explored. Allowing non-equidistant λ-points drastically decreases 

computational costs of free energy calculations, while additional improvement is observed with 

variable simulation time for different λ-points (Figure 4). This analysis also revealed that MBAR 

and extended TI in combination with MBAR for predicting the ∂H/∂λ at non-simulated λ-points 

(exTIMBAR) perform similarly and better than the other tested methods, followed by BAR and 

exTIlin. Interestingly, plain thermodynamic integration did not reach convergence for any of the 

tested systems of tolerance cutoff applied, with the largest one of 1 kcal mol-1. One should note 
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that the minimum possible simulation time (Figure 4), as well as an ideal set of λ-points (Figure 

4 most right bar) can be determined only in a post-analysis using extensive simulation data. 

Obviously, one would prefer to select the optimal protocol a priori. 

To address this, the attention was turned to a number of error estimators and other related 

properties (Table S1), including error estimates from MBAR and BAR, error estimates from 

bootstrapping, overlap integrals and differences in exTI predictions from neighboring λ-points, 

as well as fractions of simulated times for which the computed free energy difference is within a 

given tolerance cutoff from the complete simulation time. The simulated data was separated in 

different subsets of λ-points and simulated times by applying non-overlapping and overlapping 

sliding windows on the time and λ scale, respectively. In this way, a large number of independent 

simulation data subsets was generated to improve statistical analyses. 

While displaying various forms and levels of correspondence to the true errors, ΔΔGtrue, 

estimated as the difference to the free energy computed from the complete extensive simulation 

data, such error estimates fail at providing quantitative predictions of true errors. For examples 

see Figure 5. This result, in addition to potential limitations of the estimators themselves, is most 

probably the consequence of sampling issues. Most notably, it is impossible to predict the effect 

of simulation diffusing to other energy minima in the phase space that were not visited thus far in 

the simulation. This in turn highlights the importance of adequate sampling and enhanced 

sampling techniques.11,44,63,64 Interestingly, making pairwise comparisons between these different 

estimators shows that some pairs correlate almost perfectly with each other, while some show 

anti-correlation or no correlation (Figure S5 and 6). This suggests that the examined estimators 

rely and report on different aspects of convergence behavior of the simulations.  
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Furthermore, to explored how the convergence of calculations depend on the set of error 

estimators directly measurable from the simulations, accuracy-sensitivity analysis was 

performed. Here, the accuracy is defined as the fraction of considered segments (simulation 

subsets fulfilling a given criterion with respect to the error estimators) yielding the free energy 

difference within a given tolerance cutoff from the full simulation data (i.e. ΔΔGtrue smaller than 

the tolerance). The sensitivity on the other hand was calculated as the fraction of accurate 

segments identified by the error estimator compared to the total number of accurate segments, up 

to a given tolerance cutoff. In other words, high accuracy implies low number of inaccurate 

segments, while high sensitivity reflects low number of accurate segments that are not detected. 

This analysis shows that by applying a well-defined cutoff to a given estimator, one can achieve 

a high accuracy, however, often to a price of relatively low sensitivity (Figure 6, S7). For 

example, when using MBAR as free-energy estimator and simulations in which Δ𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅 is 

smaller than 1 kJ mol-1, one can expect that roughly 75 % of the segments are accurate within 1 

kT, with 95 % of all accurate segments detected. This suggests, as expected, that the estimators, 

although lacking a quantitative agreement, provide at least a qualitative match to the true errors 

in the free-energy differences. Taken together with the observations from the pairwise 

correlation analysis (low correlation between some pairs of estimators as seen in Figure S6), one 

can potentially create a collective variable, i.e., a combination of the studied estimators, to 

improve the quantitative aspect of the predictions. To test this, different combinations and 

conditions applied to different estimators were screened. In particular, ΔΔ𝐺𝑓𝑟𝑎𝑐
𝑀𝐵𝐴𝑅 𝑡𝑜𝑙 (fractions 

ranging 0.1 – 0.9 in steps of 0.1), Δ𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅, Δ𝐺𝐵𝑆𝑒𝑟𝑟

𝑀𝐵𝐴𝑅, Δ𝐺𝑒𝑟𝑟
𝑒𝑥𝑇𝐼 with the tolerance of 1 kJ mol-1, ½ 

kT, kT and 1 kcal mol-1, and OI in the range 0.1 – 0.9 in steps of 0.1 were used. In Figure 7, the 
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individual points represent sets of segments that fulfil the above defined combinations and 

conditions.  

When applied to the combined data from all simulated GGXGG systems, both high accuracy 

and selectivity is achieved (Figure 7, top). More than 60 % of tested cases provide an accuracy 

higher than 0.9 for a stringent 1 kJ mol-1 tolerance, with some of them showing a sensitivity 

greater than 0.4. This behavior is even more prominent for less stringent tolerance cutoffs, where 

a sensitivity greater than 0.8 can be achieved with an accuracy of 0.9 within the tolerance of 1 

kcal mol-1. However, this approach unfortunately breaks down when applied to the individual 

systems. In particular, for lysine methylation and acetylation perturbation the overall well-

functioning conditions retain high accuracy and selectivity (Figure 7, second and third row), 

however, fail to repeat the success for the serine phosphorylation perturbation, dropping in the 

percentage of conditions for which the accuracy is higher than 0.9 (Figure 7, last two rows). This 

highlights that the development of such a protocol is strongly system-dependent and would be 

applicable only to systems with very similar perturbation pathway, which is often not the case. 

Potentially, this assumption could hold for instance when applying the same perturbation 

between two ligands in water and the bound state, a setup often applied in relative binding free 

energy calculations.1,26,35,36 

Iterative simulation update scheme for free energy calculations 

With the observed limitations revealed by the above analyses, an alternative approach of 

determining the choice and simulation times at different λ-points, based on an iterative 

simulation update scheme, was further developed and tested. Three design principles were used: 

1) optimization of the usage of available computational resources, 2) flexibility and 3) practical 

usage. In particular, an initial set of simulation time and λ-points is selected, e.g., 11 equidistant 
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λ-points with 1 ns long simulation each. The update scheme is then run for a number of cycles in 

such a way that in each iteration, the user-defined sets of λ-segments are tested for convergence 

using a set of conditions with a given tolerance cutoff. For each segment (e.g. 0.1 <  λ < 0.2) that 

did not reach the convergence, simulations at its bordering λ-points (λ = 0.1 and λ = 0.2) get 

prolonged to reach double simulated time, while an extra intermediate λ-point is added (λ = 0.15) 

and two independent simulations are run starting from configurations obtained in simulations of 

each of the bordering points. This design (update strategy 1) ensures that at each iteration (cycle) 

the amount of simulation is quadrupled at the non-converged segments, while the simulation 

time of individual simulations remains constant, increasing the parallelization potential. 

Importantly, this update strategy, regardless of the system, initial set of λ-points and simulation 

times, convergence conditions or λ-segments checked for convergence, reached a very low 

discrepancy with the true free energy difference, with only four instances of the discrepancy 

exceeding kT, out of which two exceeded 1 kcal mol-1 (Figure 8). It is worth noting, that a 

complex system of lysine methylation in the context of a histone tail bound to a PHD finger 

domain was added to the test set. The perturbation simulations for that system were performed 

using the GROMACS simulation package, as its performance allows for more rapid data 

collection. Similarly to other analyses in this study, lysine acetylation and methylation in water 

reach the convergence relatively quickly. Serine phosphorylation and lysine methylation within a 

complex environment go through the maximum number of iterations without reaching the 

convergence, however, still approach the true free energy difference to a relative low 

discrepancy below kT for almost all tested conditions.  

To test whether a further optimization in effective usage of computer resources could be 

achieved, an alternative flavor of this iterative simulation update strategy to the same set of 
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systems was applied. This procedure (update strategy 2) in each iteration cycle distributes a total 

amount of simulation time (set by the user) over a set of λ-segments identified as not converged, 

using the same types of user-defined criteria as in the strategy 1. The simulation length of each 

individual λ-point simulated within an iteration (cycle) is determined using weighting based on 

error estimators. Interestingly, regardless of the choice of four such estimators (∆𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅, 

∆∆𝐺ℎ𝑎𝑙𝑓
𝑀𝐵𝐴𝑅, overlap integral and ∆𝐺𝑒𝑟𝑟

𝑒𝑥𝑡𝑇𝐼) as well as a combination thereof, almost identical 

results were obtained (data not shown). This strategy indeed lowers the total simulation times 

compared to the strategy 1, however also with a cost of increasing the discrepancy with the true 

free energy difference (Figure 9), with six instances exceeding a relatively high cutoff of 1 kcal 

mol-1.  

Strikingly, in both update strategies all such cases of increased discrepancy to the true free 

energy, i.e. in cases that failed to reproduce the true free energy difference within 1 kT, are based 

on schemes using either a lower number of initial λ-points (Δλinit = 0.2) or shorter initial 

simulations (simulation time of 0.5 ns), or a combination of both. It is also worth noting that 

these schemes employ exclusively the free-energy difference on half of the simulated data 

(∆∆𝐺ℎ𝑎𝑙𝑓
𝑀𝐵𝐴𝑅) as the convergence criterium. On the other hand, when 1-ns-long simulations at 11 

equidistant λ-points are applied in the initial iteration and/or the error estimate from MBAR 

(∆𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅) as the convergence criterium, the discrepancy with the true-free energy difference 

remains well below kT regardless of the system, update strategy and other criteria used (Figure 8 

and 9). Furthermore, this update approach is able to identify the amount of simulation time (and 

λ-points) needed to reach the convergence, which is strongly depending on the system in 

question. More importantly, this approach provides great flexibility in terms of the setup of the 

simulation scheme, which can be adjusted according to the complexity of the perturbation system 
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or availability of computational resources. This design also allows for performing additional 

cycles (iterations) of simulations if needed. Note that the implementation of the update scheme is 

independent of the simulation package, as it takes the simulated data as input and returns a set of 

λ-points and simulation times as output in each iteration.  

CONCLUSIONS 

In this study two important challenges related to the perturbation free energy approaches were 

addressed. Firstly, an automated tool for generating dual perturbation topologies (GROMOS and 

GROMACS file formats) based on a maximum common substructure algorithm is introduced. In 

each enumeration step of generating matched subgraphs, force-field defined topology parameters 

are checked and stored. This allows for a flexible maximum common substructure search by 

setting weighted preference towards minimizing perturbations of atom types or different types of 

bonded interactions such as bonds, angles, improper dihedrals or dihedrals. In addition to 

perturbation topologies between two states, this algorithm is able to generate a combined 

perturbation topology for a set of multiple topologies (three or more), which is primarily aimed 

to be used in combination with EDS techniques, but can also be applied to define closed 

thermodynamic cycles. 

Secondly, this study investigates how the efficiency and the convergence of perturbation free 

energy calculations can be improved by optimizing the choice of λ-points and simulation times, 

using a set of test systems based on common post-translational modifications accruing in histone 

tails. Allowing non-equidistant λ-points and non-constant simulation time reduced drastically the 

total simulation time required to reach the convergence in tested systems. This is not surprising, 

however also not practically useful, as such an optimization is only possible in post-processing 

when the converged result is already known. To address this, the attention was turned to 
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examining how a number different properties (e.g. bootstrapping error estimate, MBAR error 

estimate, overlap integral, etc.) calculated from the simulated data predict the level of 

convergence. While a qualitative agreement to the difference from the true ΔG (the free energy 

change calculated from an extensive simulation) was observed, all tested estimators failed at 

quantitative prediction of the error. As some pairs of the estimators showed no correlation to 

each other, in order to improve the predictive power, defining new estimators as collective 

variables (combinations) of the individual ones was attempted, however with a limited success 

only. Building further on the performed analyses, an iterative simulation update scheme was 

proposed, aimed at effective usage of computational resources by prioritizing simulations at λ-

points with poor convergence. In particular, in each iteration (cycle) of the update scheme a new 

set of λ-points and related simulation times is suggested based on thus far collected simulation 

data with two main update strategies available, oriented at utilizing the parallelization potential 

of a computer cluster or at further reducing the total amount of simulation time. Various flavors 

of the update scheme were successfully applied on test systems with different complexity of 

perturbation. Importantly, different levels of enhanced efficiency was achieved through allowing 

both variable simulation times and non-equidistant λ-points, convergence within 1 kT 

discrepancy from the true ΔG was reached in almost all cases, especially when more simulation 

time is collected in the initial step. 

Finally, it can be expected that the advances presented in this study might significantly 

improve the applicability of perturbation free energy methodology in different contexts ranging 

from estimation of protein stability to binding affinity calculations to rational drug development. 

To this end, this toolkit is provided as an open source python package via a github repository 

(https://github.com/drazen-petrov/SMArt).  
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FIGURES 

 

Figure 1. Alternative scenarios for the methylation of the lysine sidechain. Maximum common 

substructure of lysine (left) and its methylated form (right). A) The perturbation topologies are 

generated by maximizing the number of matching atoms and B) by minimizing the number of 

perturbed bonds (B). Perturbed atoms are highlighted in red, while dummy atoms are highlighted 

in gray.  
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Figure 2. Multi-topology perturbation of three ring compounds. Top row represents individual 

compounds, while the bottom row corresponding EDS states where dummy atoms are 

highlighted in gray. 
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Figure 3. Representative ∂H/∂λ curves. Simulated (black points) and predicted (using extended 

TI approach) ∂H/∂λ values are shown on the left side of the figure. The predictions to the smaller 

λ-points (left from the simulated point) are shown with short blue lines and the predictions to the 

larger λ-points (right from the simulated point) are shown with short red lines. The black solid 

line represents the linear interpolation between the predicted values of ∂H/∂λ. Right side of the 

figure shows the total difference in the predictions (between the blue and the red lines of the left 

panel) from neighboring simulated λ-points as red lines. At the simulated λ-points these 

differences were calculated between the simulated values (black points left) and the predictions 
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from the closest larger λ-point. Red points represent the difference between the simulated values 

(black points left) and the predictions from the closest smaller λ-point. LYS -> K3C* and LYS -

> K3C present lysine methylation perturbation involving and excluding the perturbation of 

hydrogens to methyl groups and related bonds, respectively. Note that the predicted and linearly 

interpolated values can only be visually distinguished for the LYS -> K3C* (top row left) 

perturbation, whereas they simply overlap in the other cases.  
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Figure 4. Minimal simulation time needed to obtain the free energy difference within the 

tolerance cutoff from the free energy calculated using the complete extensive set of simulation 

data (21 λ points with 5 ns each, using MBAR). MBAR and extended TI with MBAR 

(exTIMBAR) used for predicting ∂H/∂λ values converge to the free-energy difference obtained 

from complete data similarly and faster than BAR, that converges faster than extended TI in 

combination with linear interpolation (exTIlin), while plain thermodynamic integration (TI) fails 

to reach convergence regardless of the perturbation in question or tolerance cutoff applied. Each 

bar represents aggregate data over all simulations with indicated restrictions on the choice of the 
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simulated λ-points (equidistant or non-equidistant) and simulated time per point (constant or 

variable). For example, the left-most bar represents 21 equidistant λ-points (Δλ = 0.05) with 

constant simulation time per point (tconst), while the right-most bar represents the ideal case, i.e. 

any choice of λ-points (Δλ ≤ 1, non-equidistant points with the maximum distance of 1) with 

variable simulation time (tvar). Δλ* represents an additional restriction to the choice of the λ-

points, such Δλ* ≤ 0.1 and Δλ* ≤ 0.2 must include the points from the points from the sets of 

equidistant λ-points Δλ = 0.1 and Δλ = 0.2, respectively. Note that all sets (bars) include the end 

states (λ = 0 and λ = 1). Bars are colored according to the tolerance cutoff of 1 kJ mol-1, ½ kT, kT 

and 1 kcal mol-1, in red, blue, green and purple respectively. Empty bars with edge colors 

represent that no convergence for the stated restrictions was reached. Note that a calculation was 

considered converged only if each λ-subsegment reached convergence (according to the defined 

tolerance), such that potential compensation of error is avoided. Free energy differences are 

computed from the simulation data using 5 different methods.  
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Figure 5. Error estimators compared to the true error ΔΔGtrue, calculated as the difference to the 

free energy from the complete extensive set of simulation data (21 λ points with 5 ns each, using 

MBAR). While a certain relationship of the estimators to the true errors is observed, generally a 

low level of correlation indicates low predictive power. Example estimators shown, including the 

error estimate from MBAR, bootstrapping error estimate from BAR, the differences in predicted 

∂H/∂λ from exTI and overlap integrals (OI) for the neighboring λ-points. More than 8000 

segments (simulation subsets) of aggregated data for different simulation times, sets of simulated 

λ points and simulated peptide systems is shown.   
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Figure 6. Accuracy and sensitivity analysis of calculated ΔG values using error estimate from 

MBAR. Even though the correlation between this error estimator and the true error is rather 

weak, at low values of Δ𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅 high accuracy can be achieved. However, with the high 

accuracy, low sensitivity was observed, which is defined as a fraction of accurate segments in the 

total number of accurate segments. Average over all aggregated data for different simulation 

times, sets of simulated λ points and simulated peptide systems are shown. Lines colored 

according to the tolerance cutoff applied of 1 kJ mol-1, ½ kT, kT and 1 kcal mol-1, in red, blue, 

green and purple respectively.  
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Figure 7. Accuracy and sensitivity analysis of a collective variable by simultaneously applying 

several error estimators in an attempt to optimize both accuracy and sensitivity (top) and testing 

such an approach on individual systems. Screening for a set of conditions applied to the error 

estimators, including the error estimate from MBAR, the differences in predicted ∂H/∂λ from 

exTI, overlap integrals (OI) for the neighboring λ-points, and the difference in the calculated free 

energy from half and total simulated data, shows that a large fraction of applied conditions on the 
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aggregated data from all simulated GGXGG systems provides high accuracy of more than 0.9, 

with even more than 60 % of such for a stringent tolerance cutoff of 1 kJ mol-1 or staggering 99 

% for a weak cutoff of 1 kcal mol-1 (top). However, this approach breaks down when utilized for 

individual systems (last 4 rows), where the sets of optimized conditions perform well for 

methylation and acetylation perturbation providing the accuracy of at least 0.9 up to 1 kJ mol-1 

tolerance for all instances, while poorly in the case of phosphorylation modifications providing 

the same level of accuracy with only about 55 % of tested sets of conditions. Each point 

represents a subset of data according to the applied conditions to the error estimators with the 

accuracy and sensitivity calculated with a given tolerance cutoff. For example, one such 

combination Δ𝐺𝑒𝑟𝑟
𝑀𝐵𝐴𝑅 < 1 kJ mol-1; Δ𝐺𝐵𝑆𝑒𝑟𝑟

𝑀𝐵𝐴𝑅 < ½ kT; Δ𝐺𝑒𝑟𝑟
𝑒𝑥𝑇𝐼 < kT; ΔΔ𝐺ℎ𝑎𝑙𝑓

𝑀𝐵𝐴𝑅 < 1 kcal mol-1; OI > 

0.1 is depicted as a black star in each panel. Note that the last 4 rows contain only the 

corresponding data from the top row that falls in the group of conditions with the accuracy 

higher than 0.9. Points colored according to the tolerance cutoff applied: 1 kJ mol-1, ½ kT, kT and 

1 kcal mol-1, in red, blue, green and purple respectively. 
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Figure 8. Simulation time, convergence of tested simulation update schemes (strategy 1), 

together with the accuracy, represented as the difference from the free energy calculated using 

the complete extensive simulated data (21 λ-points with 5 ns each for peptide simulations and 41 

λ-points and 8 ns in three replicates each for the bound system using MBAR). Very good level of 

accuracy is reached almost regardless of the scheme applied or test system, with only a few 

exceptions reaching discrepancy greater than 1 kT from the true free energy difference, obtained 

from the complete simulated data. A broad range of total simulation times was reached, from 

only a few ns, up to more than 150 for some update schemes for the bounded state. Even though 

it is hard to postulate rules from this data, general trend shows that considering longer λ-

segments for convergence leads to improved efficiency without losing the accuracy, while 

collecting more simulated data in the initial cycle improves accuracy. Each bar represents an 

applied update scheme determined by the initial simulation time and λ-points, criteria to reach 

convergence, as well as the size of considered λ-segments for convergence. Filled bars indicate 

reached convergence, while empty ones with a dotted pattern indicate that the maximum number 

of update iterations has been reached (such that the maximum simulation time of a single λ-point 

does not exceed the total simulated time), colored according to the tolerance cutoff of 1 kJ mol-1, 

½ kT, kT and 1 kcal mol-1, in red, blue, green and purple respectively (lower panels). Each line in 

higher panels represents the difference from the true value calculated from the complete set of 

simulations. 
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Figure 9. Simulation time, convergence of tested simulation update schemes (strategy 2), 

together with the accuracy, represented as the difference from the free energy calculated using 

the complete extensive simulated data (21 λ-points with 5 ns each for peptide simulations and 41 

λ-points and 8 ns in three replicates each for the bound system using MBAR). Similar trends in 

the data were observed as compared to the update strategy 1 (Figure 8), however with improved 

efficiency and somewhat worse accuracy. Very good level of accuracy is reached almost 

regardless of the scheme applied or test system, with only a few exceptions reaching discrepancy 

greater than 1 kT from the true free energy difference, obtained from the complete simulated 

data. A broad range of total simulation times was reached, from only a few ns, up to more than 

120 ns for some update schemes for the bounded state. Each bar represents an applied update 

scheme determined by the initial simulation time and λ-points, criteria to reach convergence, as 

well as the size of considered λ-segments for convergence. Filled bars indicate reached 

convergence, while empty ones with a dotted pattern indicate that the maximum number of 

update iterations has been reached (such that the maximum simulation time of a single λ-point 

does not exceed the total simulated time), colored according to the tolerance cutoff of 1 kJ mol-1, 

½ kT, kT and 1 kcal mol-1, in red, blue, green and purple respectively (lower panels). Each line in 

higher panels represents the difference from the true value calculated from the complete set of 

simulations. 
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TABLES.  

Table 1. Post-translational modifications for which perturbation free-energy calculations were 

performed. 

codes modification 

LYS Kac lysine acetylation 

LYS Kme3 lysine trimethylation 

SER Sph1 serine phosphorylation (net charge -1) 

SER Sph2 serine phosphorylation (net charge -2) 
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