
The density matrix via few dominant observables: the quantum

interference in the isotope effect for atto-pumped N2

K. Komarova,1,a) F. Remacle,1,2 and R. D. Levine1,3

1The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of

Jerusalem, Jerusalem 91904, Israel
2Theoretical Physical Chemistry, UR MolSys B6c, University of Liège, B4000 Liège, Belgium

3Department of Chemistry and Biochemistry and Department of Molecular and Medical Pharmacology,

David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

ABSTRACT

Atto- and sub-femto-photochemistry enables preparation of molecules in a coherent super-

position of several electronic states. Recently [J. Ajay et al, PNAS 2018] we examined an

effect of the nuclear mass during the non-adiabatic transfer between strongly coupled Ryd-

berg and valence electronic states in N2 excited by an ultrafast pulse. Here we develop and

analyze an algebraic description for the density matrix and its logarithm, the surprisal, in

such a superposition of states with a focus on the essentially quantum effect of mass. This

allows the identification of a few observables that accurately characterize the density matrix

of the system with several coupled electron-nuclear states. We compact the time evolution

in terms of the time dependent coefficients of these observables.
Using the few observables we derive an analytical expression for the time-dependent sur-

prisal. This provides a mass-dependent phase-factor only in the observables off-diagonal in
the electronic index. The isotope effect is shown to be explicitly driven by the shift in equi-
librium position of the valence state potential. It is analytically given as a time-dependent
phase factor describing the interference in the overlap of the two wave packets on the coupled
electronic states. This phase factorizes as a product of classical and quantal contributions.

a)Author to whom correspondence should be addressed: ksenia.komarova@mail.huji.ac.il
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I. INTRODUCTION

Interference amongst discrete states is an inherently quantal effect. Over the years experi-

mental spectroscopy could coherently excite states separated from one another by an ever

increasing energy gap. Earliest was NMR when the gap between states of nuclear spins

up and down in a magnetic field was in the microwave region. The corresponding pe-

riod was in the time scale of molecular processes in condensed phases. More recently came

’femtochemistry’1 where localized wave packets of the motion of the atoms could be prepared

as coherent superpositions of stationary vibrational states. Currently, with attosecond laser

pulses, interference can be observed between different electronic states. In molecules, such an

interference between different electronic states can result in an unprecedented fast migration

of charge across the molecular backbone.2 This process that is dependent on the coherence

between the wave packets moving on different electronic states and is distinct from electronic

state reorganization induced by the motion of the nuclei. We here adapt the dependence

of the motion of the nuclei on their mass to untangle these two contributions to the charge

reorganization. The task is made simpler by working in a diabatic basis of electronic states.

Potential energy curves can therefore cross and the coupling between them is through a

mass-independent potential energy term.

The curve crossing problem is extensively discussed3,4 since Landau and Zener.5 The

new aspect in this problem is the special way of preparing molecule in excited electronic

states. The molecule is pumped by a coherently broad in energy ultrafast pulse hence our

initial conditions for the non-adiabatic transfer are such that both of the electronic states

are already initially populated. It is the interference between the vibrational wave packets

on these two states that is at the center of our attention. In a density matrix language, we

highlight the evaluation of the off-diagonal elements of the density matrix. As we shall see

the mass dependent phase difference between the wave packets on the two electronic states

can make the transfer go in either direction. The formal connection to the isotope effect

in the non-adiabatic transfer6 is that the rate of change of the population between the two

states is determined by their coherence.7

It was shown by Heller8 that a motion of the coherent state already even on a single

harmonic potential can generate a phase factor. This phase cancels out for the diagonal
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elements of a density matrix and it is only through the coherence of two different electronic

states that this phase can give rise to observable effects. In this paper we formulate the

dynamics in Liouville space so that we can trace the origin of the mass-dependent phase. We

do so by expanding the density and its logarithm, the surprisal, in a small set of observables.

In particular we need to use observables that are sufficient to describe both the electronic

and the nuclear motions. The mass-dependent phase-factor is present only in the observables

off-diagonal in the electronic index. For three electronic states this means three observables.

The analytical derivation allows the factorization of the role of the mass in the dynamics

into a classical and a quantal effect. By classical we mean that a heavier mass moves more

slowly. The quantal effect is described by the mass-dependent phase-factor.

Our aim is to demonstrate the role of the mass on the inter electronic coherence via an

algebraic route to the density matrix. The primary benefit of an algebraic approach is that it

allows identifying a few dominant operators (= constraints) that accurately characterize the

density matrix. This is not only computationally useful but also provides physical insight.

We here use the isotope effect to illustrate both these aspects.

To describe the dynamics of coupled electronic states we implement an algebraic formula-

tion of quantum dynamics that is motivated by an information-theoretic approach.9–11 It is

a predictive, dynamical, version of the procedure known as surprisal analysis.12,13 In essence

the dynamical approach seeks to identify such operators, that we call ‘constraints’, whose

mean values are sufficient to provide an exact or realistically approximate description of the

dynamics. We use the term ‘sufficient’ in its technical meaning in statistics.14 The distribu-

tion of interest depends only on the mean value of (one or more) sufficient statistics. The

formalism of maximal entropy15,16 identifies a sufficient statistic as a mean value which, when

the distribution is constrained to the given value, lowers the entropy of the distribution. A

distribution of maximal entropy that is consistent with the given mean value of a sufficient

statistic can be shown to be of the exponential type. Important details need to be addressed

when the distribution is quantum mechanical17,18 but the final conclusion remains. In the dy-

namical, predictive approach the sufficient statistics are identified not by an analysis of data

but by using the change in time induced in a given state by the Hamiltonian of the system.

In the quantum variant of the predictive approach one finds an expression for the density

matrix as an exponential function of not necessarily commuting quantum-mechanical oper-
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ators. The mean values of these operators serve as constraints in lowering the information

entropy of the density matrix. The final result is ρ̂ = exp
(
−∑k λk(t)Âk

)
9,11 with the time

dependence carried by the Lagrange multipliers λk(t). Below we discuss computing the time

dependence of the Lagrange multipliers for the quantum multi electronic state problem. This

allows a compact representation of the surprisal and thereby of the density matrix. Specifi-

cally in our example we will need far fewer than 10% of the number of operators needed to

fully characterize the quantal system.

Detailed distributions of final electronic states have been measured for a variety of very

exothermic chemical reactions where energy is plentiful.19–21 Interestingly, often the observed

distributions are essentially statistical meaning that they are of maximal entropy without

the need to impose any dynamical constraints. One can speculate whether this is due to

the multitude of curve crossings that is typical of such triatomic or larger systems.22 Here

however we discuss a single curve crossing and the constraints that are needed to describe

the time evolving dynamics.

To focus on the essence we determine the constraints for a ‘toy model’ of a curve cross-

ing. It is a model that has been validated against exact dynamics6 and has been shown

to reproduce the role of the mass and other key features. The crossing is between excited

(diabatic) Rydberg and valence electronic states of N2. In the toy model the two potentials

are taken to be harmonic with the valence excited state having a larger equilibrium distance

than the Rydberg state, see Fig. 1. The diabatic coupling of the two states is localised in the

Franck-Condon region and set to be a linear fit to the coupling identified by Spelsberg and

Meyer.23 An initial state that is a coherent superposition of these two, b and c, electronic

states of N2 is prepared by an ultrafast pulse. We seek to identify the sufficient statistics by

algebraic means and analyze its mass-dependence.

In this paper we examine the isotope effect in the distribution of electronic and vibrational

states. Already in the very first applications of surprisal analysis13,24 the role of the isotope

in the distribution of vibrational states in electronically adiabatic processes received central

attention. The early example was Cl+HI vs Cl+DI.13,24 The clear and simple answer was

that the distribution of products vibrational energy is essentially independent of mass. So

the distribution of vibrational energy in HCl is the same as that of DCl when plotted vs.

the vibrational energy. An example for the four reactions F+H2, F+D2, F+HD and F+DH
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FIG. 1. Diabatic potentials for the ground (V1, black) and two excited electronic states (V2 and V3 in blue

and orange, respectively). The Franck-Condon region is shown as a gray shaded area around the equilibrium

position Req = 0 of the ground state. The diabatic coupling between the excited states (V23, in cm−1) is

shown in red. The coupling is delocalized but as emphasized by Landau and by Zener5 the effective coupling

is localized about the diabatic curve crossing region.

is figure 4.26 of Ref. 25. Soon after, the same behavior was found for the distribution of

rotational energy. A relation between the distribution of products vibrational states and the

overlap between products vibrational wave functions with the wave function of the reactants

was indeed proposed early on.26,27 The difference between these experiments and the present

system is that here we deal with electronic non-adiabatic transitions resulting upon an atto-

second excitation. The view of the dynamics in a time-domain is therefore more suitable

than the picture of the dynamics in an energy domain.

The paper is organized in three sections. Sec. II provides details of the computation

where the motion of the surprisal is discussed in section II.B. The concept of the dominant

constraints, the major contributors to the surprisal is outlined in section II.C. The key

computational results and their interpretation are discussed in section III. In particular,

the isotope effect computed both in an exact dynamical computation and by retaining only

the dominant constraints is presented. An analytical interpretation of the role of the mass

5



is provided in section IV. The (analytical) mass dependence of the phase in the Lagrange

multipliers of the constraints off-diagonal in the electronic state is the main result.

II. METHODS AND COMPUTATIONAL DETAILS

A. Model potentials, coupling and parameters of the laser field

We use model potentials similar to the one defined in Ref. 6 in the toy-model. This toy-

model aims to reproduce the strong isotope effect that is computed6 in the case of realistic

potentials and couplings in 1Πu excited states of N2.23 It allows an algebraic description of

the dynamics and enables to get the origin of the effect of mass on the non-adiabatic transfer.

In the toy-model the diabatic potentials of the electronic states involved in the dynamics

are taken to be harmonic with the same force constant but different position of equilibrium

internuclear distance. In the absence of coupling between the diabatic states a Gaussian

wave packet, a coherent state, will remain Gaussian. The ground electronic state V1 and the

first excited (Rydberg) state V2 are assumed to have the same equilibrium distance, while

the potential for the second excited state V3, a prototype of the valence state, has significant

shift in its equilibrium position, δR = 0.36 a.u., see Fig. 1 and Table S1 in section S1 of the

supplementary material. In this toy model we are able to identify a small set of dominant

constraints and to determine a dimensionless parameter for the mass dependence.

The diabatic coupling between the two excited states is localized in the Franck Condon

region. At the onset of the dynamics the wave packet on the shifted potential moves out of

the coupling region. The other wave packet, the one on the Rydberg like state, stays behind

and can spawn amplitude on the shifted potential in a region that is essentially empty. This

is an only weakly mass dependent unistate transfer.6 The strongly mass dependent bistate

transfer occurs later when the wave packet that moved out returns to the coupling region. In

the toy model, to reduce the unistate transfer the coupling is acting only upon the recurrence

of the V3 wave packet in the coupling region. We also use a coupling that is twice weaker than

the realistic diabatic coupling in N2 as given in Ref. 23. The trends in the mass dependence

remain similar to the full exact computations as reported in Ref. 6.
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The total Hamiltonian is written as follows:

Ĥ = |1〉 ĥ1 〈1|+ |2〉 ĥ2 〈2|+ |3〉 ĥ3 〈3|+
(
|2〉 V̂23 〈3|+ |3〉 V̂23 〈2|

)
− µ12E(t)

(
|1〉 Î 〈2|+ |2〉 Î 〈1|

)
− µ13E(t)

(
|1〉 Î 〈3|+ |3〉 Î 〈1|

) (1)

The operator |i〉 Î 〈i| is a projector on a basis of the ground (i = 1) and the two excited

(i = 2, 3) electronic states involved in the dynamics, with Î being the identity operator in

the supspace of vibrations. Operators ĥi are harmonic Hamiltonians of the three uncoupled

electronic states, ĥ3 has a shifted equilibrium position. A more detailed form of the Hamil-

tonian is given in section S1 of the supplementary material. The coupling of the diabatic

states is fitted to a linear form in the nuclear displacement, V̂23 = c0 + c1 · R̂ (c0 = −0.0016

Eh and c1 = 0.0033 Eh ·a−1
0 ). The transition dipole moments from the ground to two excited

states, µ12 and µ13, are taken to be constant in nuclear displacement and correspond to a

realistic transition dipoles for the ground to Rydberg and ground to valence state excitations

defined at the Franck-Condon region (µ12 = −0.27 a.u. and µ13 = −0.64 a.u.).23 Atomic

units are used throughout (~ = 1).

The interaction with the XUV-pulse is described by taking into account the explicit time

profile of the laser field:

~E(t) = ~Ep exp
(
−(t− tp)2/2σ2

p

)[
cos(ωpt)−

(t− tp)
ωpσ2

p

sin(ωpt)
]

(2)

where tp and σp are mean value and the variance of the envelope of the pulse. These

parameters of the envelope correspond to less than 1 fs duration of the pulse centered about

2.4 fs. The frequency ωp is 0.5 a.u. (109.7·103 cm−1) which is high enough to excite both V2

and V3 electronic states. The polarization of the laser field, ~Ep is taken to be perpendicular

to the interatomic bond.

B. Time-evolution of the surprisal and its transformation to the density matrix

In order to identify the sufficient statistics from the results of a numerical quantum dynamics

on multiple electronic states we need to compute the time-evolution of the surprisal, the

logarithm of the density operator Î = − ln ρ̂. Here we propagate the surprisal in a finite

basis representation that achieves numerical convergence.11

The choice of the basis states is dictated on the one hand by the fact that the initial wave

packets pumped by an ultrafast excitation are localized in the Franck Condon region. On
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the other hand the highest excited state has a potential with a shifted equilibrium distance.

So a coherent superposition of stationary vibrational states is a good representation for a

possibly large number of the excited vibrational states. We use throughout this paper a finite

basis of N = 5 coherent vibrational states,28 {|i, αk〉}, for each electronic state i. This rather

small set of coherent states is sufficient to represent the dynamics in particular because on

the third state we use functions that are moving in time.

At time t = 0 the basis functions are real functions of the nuclear coordinate R, displace-

ment from equilibrium position of the ground electronic state, and differ only by their mean

position, 〈R〉αk
= Rk:

|αk(0)〉 =
(
mω

π

) 1
4

exp
(
−mω2 (R−Rk)2

)
(3)

Here ω is the frequency of the toy-model potentials and m is the reduced mass, both are

defined for each isotopomer studied. The mean values Rk are set to span the distance [-2,

2] a.u. so that for N = 5 these basis functions are effectively not overlapping.

There is no nuclear dynamics on the ground and first excited potentials so their basis

functions are not changing with time. The potential V3 is shifted in equilibrium position

compare to the other two electronic states, hence the nuclear basis functions for this state

are taken to be time-dependent. The time-dependence of the basis functions on V3 potential

is defined using a time-dependent shift operator D̂:28

|3, αk(t)〉 = D̂(η(t)) |3, αk(0)〉 = eiαk Im{η} |η(t) + αk(0)〉

D̂(η(t)) = exp
(
η(t)â† − η(t)∗â

)
η(t) = ξ

(
1− e−iωt

)
, ξ =

√
mω/2 ·Req

(4)

The time-dependent shift η(t) is determined from the analytical solution of the evolution

of the surprisal after the laser field is over, see section S1 of the supplementary material

for the details. The shift of the center Rk and mean momentum is the same for all the

basis functions on the electronic state 3. The mass dependence of the shift is governed by

the dimensionless parameter ξ that is linear in the shift of the valence potential equilibrium

distance, Req, times
√
mω. As will be argued later the quantum effect on the coherence

during the transfer is quadratic in ξ. The classical effect is determined by the above η(t)

that is linear in ξ. This means that the quantum effect is more sensitive to the details of the

potentials.
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The rate of change of the surprisal in time is defined by its commutation relation with

the Hamiltonian, Eq. (1):

dÎ
dt = −i

[
Ĥ, Î

]
(5)

The basis functions depend on time therefore the time-derivatives of the matrix elements of

the surprisal involve also the derivatives of the basis functions wrt time:

d
dt 〈αm(t), i| Î(t) |j, αk(t)〉 = 〈αm(t)| dÎ

ij

dt |αk(t)〉

+
〈

dαm(t)
dt

∣∣∣∣∣ Î ij(t) |αk(t)〉+ 〈αm(t)| Î ij(t)
∣∣∣∣∣dαk(t)dt

〉 (6)

see section S2 of the supplementary material for more details on the propagation routine

via a Runge-Kutta 4th order propagator.

Populations and coherences between the electronic states are tracked throughout the

dynamics by diagonalization of the surprisal matrix and subsequent transformation to the

density using the spectral representation of the surprisal:

Î(t) =
3N∑
s=0

µs |s(t)〉〈s(t)|

ρ̂(t) = exp
(
−Î(t)

)
=

3N∑
s=0

exp(−µs) |s(t)〉〈s(t)|
(7)

Here {µs, 〈s(t)|} - is a pair of eigenvalue and eigenvector of the surprisal given at a time t.

N = 5 is the number of basis functions per electronic state. Although at time t = 0 the basis

functions are effectively not overlapping, as the dynamics unfolds, Eq. (4), the off-diagonal

matrix elements of the overlap matrix can increase. To account for the non-orthogonality

of our vibrational basis functions we transform the matrix of the surprisal to the basis of

eigenstates of the overlap matrix at each time step of the dynamics.

It is quite often of interest to consider the dynamics for an initial state that is a pure state.

Under a unitary time evolution the density matrix will remain a pure state. This means that

in Eq. (7) there is one eigenstate that dominates. It is the overwhelmingly larger eigenvalue

of the density matrix or the smallest eigenvalue of the surprisal. That it requires a limiting

operation is the mathematical statement of the physical restriction on reaching a pure state.

Initial state is the state of maximal entropy, a thermal state ρ̂(0) = Z−1 exp
{
−βĤ0

}
. Its
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surprisal is given by:

Î(0) = − ln ρ̂(0) = lnZ + βĤ0 = V1 |1〉 Î 〈1|+ V2 |2〉 Î 〈2|+ V3 |3〉 Î 〈3|

+ βω |1〉 â†â 〈1|+ βω |2〉 â†â 〈2|+ βω |3〉 â†â 〈3|

V1 = lnZ + 1
2βω V2 = lnZ + 1

2βω + βV
(0)

2 V3 = lnZ + 1
2βω + βV

(0)
3

(8)

here â and â† are creation and annihilation operators28 and V (0)
i = Vi(Req) is the potential

energy at the equilibrium distance for the electronic state i. The partition function is given

by: Z = ∑3N
s=0 exp (−βεs), where {εs} are the eigenvalues of the harmonic Hamiltonian Ĥ0.

The matrix elements of the operators involved in Î(0) in the basis of coherent states are

analytical:

〈αk(0), i|i〉 Î 〈i|j, αm(0)〉 = 〈αk(0)|αm(0)〉 δij

〈αk(0), i|i〉 â†â 〈i|j, αm(0)〉 = α∗k(0)αm(0) 〈αk(0)|αm(0)〉 δij

〈αk(0)|αm(0)〉 = e−|αk(0)|2/2e−|αm(0)|2/2eα
∗
k(0)αm(0)

(9)

See more details about matrix elements of coherent states in Ref. 28.

The inverse temperature β = (kT )−1 is set to large enough value to approach the nu-

merical limit of a pure state, the lowest vibrational state of the ground electronic state of

the Hamiltonian Ĥ0, β · ω = 40. This allows us to use a wave function propagation on a

grid29,30 as a numerical benchmark for comparison with the surprisal dynamics. The initial

state on a grid is defined via the only one eigenvector of the density that has a non-zero

eigenvalue, |s(0)〉 Eq. (7). More details about the grid propagation are given in section S3

of the supplementary material.

C. Determining a set of dominant constraints

For discussing the density matrix and the surprisal of a quantum system we use observables,

Hermitian operators that act as constraints. It is clear that the initial state of the surprisal,

defined by Eq. (8), is a linear combination of a set of six Hermitian operators. Therefore

its propagation in time can be written using the unitary time-evolution operator, Û =

exp
(
−iĤ · t

)
, governed by the Hamiltonian Eq. (1):

Î(t) = Û(t)Î(0)Û †(t) =
M0∑
k

λkÛ(t)Âk(0)Û †(t) (10)
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where {Âk(0), λk} is the set of M0 operators, here M0 = 6, with their coefficients, the La-

grange multipliers. The time-evolution of the initial state is thereby driven by the evolution

of the initial set of constraints. Our main goal is to rewrite this expression in the following

form:

Î(t) ≈
M∑
k

λk(t)Âk (11)

where the time-dependence is fully compacted into the vector of M Lagrange multipliers.

Here the constraints Âk are not changing with time. Their mean values still can be time-

dependent, governed by the time-dependence of the density, ρ̂ = exp
(
−∑M

k λk(t)Âk
)
. The

number of operators that affect the dynamics can be different from the initial set of con-

straints, M ≥ M0. The equality occurs for the dynamics that is closed upon commutation

with the Hamiltonian for all the initial constraints:
[
Âk, Ĥ

]
=

M0∑
s

gksÂs (12)

In this closed case Eq. (11) becomes exact.9,11 If the evolution of the operators in Eq. (10) is

not closed, the set of constraints in Eq. (11) can be significantly larger (in principle, infinite)

than that needed to describe the initial state and the problem reduces to the search for

the minimal set of dominant observables. In our example M0 = 6 involves only observables

diagonal in the electronic index. The interaction with the field must raise this number to 9

to include off diagonal elements. In practice we find that M = 9 is sufficient. This finite set

of 9 operators are the dominant constraints.

It may be of interest to discuss what is the numerically exact number of constraints

M . For the evolution of the matrix elements of the surprisal we find that it takes 5 basis

functions per electronic state. So for the desired numerical accuracy the Hilbert space is 15

dimensional. The matrices in the Liouville space are therefore 15 by 15. To represent all

possible such Hermitian matrices one needs 15 by 15 independent matrices as a basis. The

result that M = 9 basis matrices are numerically enough is then a significant compaction of

the dynamics.

The dynamics driven by the Hamiltonian, Eq. (1), leads to a not closed set of con-

straints. A large amplitude motion of the wave packet on the shifted potential gives rise

to an exponential shift operator in the off-diagonal in the electronic index matrix elements
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of the surprisal, see details in section S1 of the supplementary material. Yet it is often the

case that using a finite and small set of operators already offer a good approximation for the

surprisal.11 In the absence of coupling between the diabatic states closure is enabled by using

a time-dependent basis of coherent vibrational states on the shifted electronic state, Eq. (4).

In the presence of coupling it is only closure of dominant constraints. A detailed derivation

in section S1 of the supplementary material shows that the matrix elements of the surprisal

in the time-dependent basis can be written as a linear superposition of the matrix elements

of the initial set of constraints but in the basis of non-shifted coherent states |αn(0)〉, for

example:

I23
mn(t) = 〈αm(0), 2| Î(t) |3, αn(t)〉 =

M0∑
k

λ23
k (t) 〈αm(0)| Âk |αn(0)〉 (13)

In what follows we use 〈αm| Î23 |αn(t)〉 = 〈αm(0), 2| Î(t) |3, αn(t)〉 shorthand notation for

clarity.

In order to identify this dominant set of constraints we compute the time-dependent

Lagrange multipliers from the exact surprisal, propagated in the finite basis, section II.B.

The minimal set of constraints is listed in Table I.

TABLE I. Dominant set of 9 operators and their conjugate Lagrange multipliers: (a) operators diagonal

in the electronic index; (b) operators off-diagonal in the electronic index. The operators off-diagonal in

the electronic index are listed without their hermitian conjugates as their Lagrange multipliers are not

independent, i 6= j : (λij
k )∗ = λji

k , to keep the surprisal Hermitian.

(a) |1〉〈1| |2〉〈2| |3〉〈3|

Î |1〉 Î 〈1| , λ11
I |2〉 Î 〈2| , λ22

I |3〉 Î 〈3| , λ33
I

â†â |1〉 â†â 〈1| , λ11
a†a |2〉 â†â 〈2| , λ22

a†a |3〉 â†â 〈3| , λ33
a†a

(b) |1〉〈2| |1〉〈3| |2〉〈3|

Î |1〉 Î 〈2| , λ12
I |1〉 Î 〈3| , λ13

I |2〉 Î 〈3| , λ23
I

The basis of coherent vibrational states allows us to simplify the computation of the

Lagrange multipliers in terms of the time-dependent matrix elements of the exact surprisal.

In what follows we assume that Eq. (11) is an accurate numerical approximation at all

the times of interest for the dynamics. The matrix elements of the surprisal then are given
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as a sum of the matrix elements of the time-independent constraints listed in Table I with

their time-dependent coefficients, the Lagrange multipliers. As we discussed, these matrix

elements of the constraints are evaluated in an initial, time-independent basis of the coherent

states, Eq. (13).

The only operator that contributes to the 〈0, i| Î |j, 0〉 (t) matrix element of the surprisal

for the coherent state basis function with
〈
R̂
〉
αk

= 0 and |αk| = 0 is the identity operator,

|i〉 Î 〈j|. This diagonal in the vibrational index matrix element for the identity operator,

〈0, i| Î |j, 0〉, equals to 1, Eq. (9). Thereby one can identify the Lagrange multipliers for the

diagonal and off-diagonal in the electronic index operators, |i〉 Î 〈j| as:

λijI (t) = 〈0, i| Î |j, 0〉 (t) (14)

Assuming that the surprisal can be described by the set of constraints listed in Table I, we

also need to identify the Lagrange multipliers for the operators â†â of the different electronic

states, see Table Ia. Considering a diagonal matrix element of the surprisal, 〈αk, i| Î |i, αk〉 (t),

if |αk| 6= 0 the only two operators that contribute to it are |i〉 Î 〈i| and |i〉 â†â 〈i|.

〈αk, i| Î |i, αk〉 (t) = λiiI (t) 〈αk, i| Î |i, αk〉+ λiia†a(t) 〈αk, i| â†â |i, αk〉 (15)

According to Eq. (9) the first constraint contributes only with λiiI (t), and the 〈αk, i| â†â |i, αk〉

matrix element equals to |αk|2. The Lagrange multipliers for this constraint are then com-

puted as follows:

λiia†a(t) = 1
|αk(0)|2

(
〈αk, i| Î |i, αk〉 (t)− λiiI (t)

)
(16)

where αk can be any of the basis functions except the one with
〈
R̂
〉
αk

= 0. We verify the

accuracy of the approximation Eq. (11) and computed Lagrange multipliers by comparing

the dynamics of both populations and coherences with those obtained from the wave function

propagation on a grid. The transformation to the density of the approximate surprisal is

similar to the exact one, given by Eq. (7), as discussed in section II.B.

III. RESULTS AND DISCUSSION

There is a time gap following the excitation until the subsequent mass dependent transfer

between the excited diabatic states. It is the duration required for the excited wave packet

13



on the shifted potential to complete a vibrational cycle and return to the Franck Condon

region. We deal first with the earlier time scale and demonstrate that the dominant con-

straints reproduce the dynamics. Then we show that the same set stays relevant also during

the transfer. The key conclusion is that the oscillatory change in time of the coherence

governs the rate of transfer and that the mass dependence is fully captured by the density

as determined by the constraints.

A. Dominant constraints during an atto-second excitation

The set of constraints needed to describe the initial state, the ground vibrational state of the

ground electronic state, consists of two operators in the nuclear Hilbert subspace and three

operators in electronic subspace: {Î, â†â} ⊗ {|1〉〈1| , |2〉〈2| , |3〉〈3|}, see section II.B. Results

for the dynamics of this initial state during an ultrafast excitation are shown on Fig. 2 as

computed from the wave function propagated on a grid compared with the picture given by

the set of 9 dominant constraints, Table I. Interaction with the laser pulse induces population

transfer to the excited electronic states in the Franck-Condon region and gives rise to the

off-diagonal elements of the density that are coherences between different electronic states.

The onset of the coherence is reflected by the rapid rise of the Lagrange multipliers of the

identity operator that is off-diagonal in the electronic index, |i〉 Î 〈j| (Table Ib), see Fig. 3.

The values of the multipliers for the operators |i〉 Î 〈i|, diagonal in the electronic index,

are also changing during the excitation, as shown in Fig. 3a. The rise in λ11
I of the ground

electronic state goes together with the decrease in the excited state multipliers λ22
I and λ33

I ,

preserving the value of the sum: λ11
I +λ22

I +λ33
I . This is also true for the Lagrange multipliers

of the |i〉 â†â 〈i| operator, although the latter do not change significantly during the dynamics.

The diagonal in the electronic index operators are the only ones which contribute to the trace

of the surprisal. These relations between the Lagrange multipliers follow from the trace being

unaltered under a unitary transformation: Tr(ln ρ̂(t)) = Tr
(
Û ln ρ̂(0)Û †

)
= Tr(ln ρ(0)).

The ratio of the values λ22
I and λ33

I (≈ 1/7) is similar to the ratio of the populations in

these states after the pulse, which is governed by the ratio of the square of the transition

dipole moments. As seen in Fig. 3a after the field is over the Lagrange multipliers for the

operators diagonal in the electronic index do not change with time. At the same time-range

the oscillatory dynamics of the off-diagonal Lagrange multipliers {λ12
I , λ

13
I , λ

23
I } is governed

14
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FIG. 2. Mean values and population profiles computed from the wave function propagation on the grid

(solid lines) and via dominant set of 9 constraints (dashed lines), see Table I. (a) Population dynamics in

excited electronic states
〈
|2〉 Î 〈2|

〉
and

〈
|3〉 Î 〈3|

〉
vs. time during the interaction with the laser pulse (time

profile shown in pink). (b) Population distribution as a function of the nuclear coordinate on ground (V1,

shown in black) and two excited (V2, V3 shown in blue and orange color, respectively) electronic states just

after the laser pulse is over, at about t = 3 fs.

FIG. 3. Time-evolution of the Lagrange multipliers (λij
I in 14N2, see Table 1) of the electronic states during

the interaction with the pulse for operators (a) diagonal and (b) off-diagonal in the electronic index. The

Lagrange multipliers of the operators diagonal in the electronic index are real. For the off-diagonal λij
I and

its complex conjugate, only the dynamics of the real part is shown. Î is the identity element in the space of

vibrations.

by the energy difference of the potential energy of the states V (0)
i = Vi(Req), each taken

at its equilibrium distance, see Table S1 in section S1 of the supplementary material. The

oscillatory trends are very evident in the analytical expressions for the time dependence of

15



the Lagrange multipliers for times after the field is over, section IV, Eq. (19).

B. Isotope effect during the non-adiabatic transfer after interaction with the

laser field

Already during the interaction with the laser field, at ≈ 2.4fs, the wave packet on the shifted

potential begins to move out from the Franck-Condon region. Fig. 4 contrasts dynamics for

the physically correct N2 with atomic mass of nitrogen 14 and an insilico mass of 10. Heavier

nuclei move slower: just after the pulse there is no significant difference in the population

distribution between the two isotopomers, however the first vibrational cycle for mass 10 is

completed almost 2 fs sooner compare to mass 14 (Fig. 4c).

3(3) fs 10.4 (8.8) fs 14.2 (12.4) fs

V2

V3
(a) (b) (c)

-0.5      0.0       0.5      1.0
R, a.u.

V2

V3

-0.5      0.0       0.5      1.0

V2

V3

-0.5      0.0       0.5      1.0
R, a.u. R, a.u.

FIG. 4. Population dynamics for N2 at three different times as shown, for atomic mass 14. For the lighter

mass 10 the time is given in parenthesis. The population distribution is presented for two excited (V2, V3

shown in blue and orange, respectively) electronic states as the dynamics unfolds: (a) just after the pulse;

(b) when the V3 wave packet reaches the outer turning point; (c) when the V3 wave packet is entering the

coupling region at the recurrence. Shown are two computations for the wave packets, a propagation on a

grid, shaded area, and surprisal given by the dominant constraints (Table I), envelope in dashed lines.

This Newtonian effect of mass is reflected also in the coherence revival times, seen both

in ρ31 =
〈
|3〉 Î 〈1|

〉
and ρ32 =

〈
|3〉 Î 〈2|

〉
dynamics (Fig. 5). The figure shows both exact

numerical results for the dynamics as well as computations of the surprisal using the real-

istic set of nine constraints, see Table I. In such a procedure the time dependent Lagrange

multipliers for the selected constraints are computed from the exact surprisal as discussed in

section II.C. Using these Lagrange multipliers we get an accurate but approximate surprisal

as in Eq. (11).

As the wave packet on the third electronic state goes out of the Franck-Condon region

its overlap with the other two wave packets, and consequently their coherence, goes to zero.

16



In addition to this essentially classical isotope effect there is also a noticeable change in the

phase of the slow ρ32 coherence, Fig. 5b. It is this coherence that governs the rate and the

direction of non-adiabatic transfer between the two excited states, as shown in Fig. 6. If for

mass 10 the sign of the first strong peak in the coherence is negative, which corresponds to

the loss of population from the shifted electronic state, for mass 14 the first peak is positive,

and as a result, the direction of the initial transfer is reversed. Both classical and quantum
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FIG. 5. Effect of the mass on the revival of two coherences Im
〈
|3〉 Î 〈1|

〉
(a) and Im

〈
|3〉 Î 〈2|

〉
(b) for N2

with the atomic mass 14 and the mass 10 (bottom and top panels, respectively). Darker solid lines (black

and blue) represent results for the wave function propagation on a grid, brighter colors (red and purple) -

are results for the computation of the surprisal given by the dominant set of constraints, Table I.

isotope effects in the dynamics of the coherences are well reproduced by the computation via

the dominant set of constraints. The largest error is in the tails of the coherences because

the wave function computed on the grid is a shade broader than a Gaussian.

The number of dominant constraints that are needed to accurately capture both the

Newtonian and the quantum effect of mass stays the same as during the interaction with

the laser field (Table I). The Lagrange multipliers λ23
I and λ13

I are most strongly affected

by the mass starting to be different already around 4 fs, see Fig. 7, where there is not yet

coupling of the diabatic states. In order to understand this non-trivial effect of mass on

the Lagrange multipliers we consider the analytical form of the time-dependent surprisal for

multiple electronic states in the absence of coupling of diabatic states in the time-evolution

operator.
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FIG. 6. Effect of the mass on the coherence Im
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(a) and the rate of transfer in the shifted electronic

state (b) between the two excited electronic states in the coupling region for atomic masses of nitrogen: 10

(blue), 14 (black) and 18 (red). One-to-one correspondence between the two panels is evident. Shown are

two sets of computational results: a wave function propagation on a grid (solid lines) and the surprisal as

represented by the dominant set of constraints (dots), see Table I.
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IV. DYNAMICS OF THE LAGRANGE MULTIPLIERS: ANA-

LYTICAL FORMOF THE TIME-DEPENDENT SURPRISAL

AND THE EFFECT OF MASS

After the laser field is over, in the absence of diabatic coupling terms the time-evolution

operator is diagonal in the electronic indices. It can be written as:

Û = exp
{
−iĤt

}
=
∑
i

|i〉 exp
{
−iĥit

}
〈i| (17)

where Ĥ is the sum of only the harmonic Hamiltonians ĥi of the three uncoupled electronic

states, namely the first three terms of Eq. (1). The dynamics under this separable form

simplify and allows an analytical derivation of the time-dependent surprisal, see detailed

derivation in section S1 of the supplementary material. Those matrix elements diagonal in

the electronic index appear to be not changing with time:

〈αk| Î11(t) |αm〉 = λ11
I (ts) 〈αk| Î |αm〉+ λ11

a†a(ts) 〈αk| â†â |αm〉

〈αk| Î22(t) |αm〉 = λ22
I (ts) 〈αk| Î |αm〉+ λ22

a†a(ts) 〈αk| â†â |αm〉

〈αk(t)| Î33(t) |αm(t)〉 = λ33
I (ts) 〈αk| Î |αm〉+ λ33

a†a(ts) 〈αk| â†â |αm〉

(18)

here |αj〉 are the basis functions, vibrational coherent states placed on each electronic state.

Note even so the basis functions |αj(t)〉 on the shifted electronic state |3〉 are time-dependent,

the matrix elements of the constraints are taken in the initial non-shifted basis |αj〉, see

discussion in section S1.5 of the supplementary material. The time ts is considered to be the

time when the pulse is over, at about 3fs of the actual dynamics, Fig. 2. The values of the

Lagrange multipliers at this time point are taken from the exact surprisal propagation, as

described in section II.C.

The off-diagonal in the electronic index matrix elements of the surprisal change with time

only due to the Lagrange multipliers of the identity operator, Table Ib:

〈αk| Î12(t) |αm〉 = λ12
I (ts)eiΩ12τ 〈αk| Î |αm〉 = λ12

I (t) 〈αk| Î |αm〉

〈αk| Î13(t) |αm(t)〉 = λ13
I (ts)eiΩ13τΘ(τ) 〈αk| Î |αm〉 = λ13

I (t) 〈αk| Î |αm〉

〈αk| Î23(t) |αm(t)〉 = λ23
I (ts)eiΩ23τΘ(τ) 〈αk| Î |αm〉 = λ23

I (t) 〈αk| Î |αm〉

(19)

here τ = t− ts is a shifted time of the dynamics. The oscillation frequencies are given by:

Ω12 = V
(0)

2 ,Ω13 = V
(0)

3 + κ0 and Ω23 = V
(0)

3 − V (0)
2 + κ0. The parameter κ0 = (1/2) · kR2

eq
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is mass-independent and accounts for the change in the energy due to the shift of the V3

potential to Req, see Table S1 in section S1 of the supplementary material for the parameters

of the harmonic potentials.

The only mass-dependent factor in Eq. (19) is the complex valued Θ(τ). Its phase is

determined by the shift of the upper potential. Its origin is the non commutativity of the

shift and the number operators of the harmonic potential in the time evolution operator

for motion on this potential, see Eqs. (S1.13-S1.15) in section S1 of the supplementary

material. The very same phase factor appears also for a more general initial states when

a larger set of dominant constraints is needed, section S1.6 of the supplementary material.

Such a generalization is useful for example when the interaction with the field is through an

R-dependent transition dipole.

Θ(τ) contributes to the matrix elements of Î13(t) and Î23(t), with ξ =
√
mω/2 ·Req being

proportional to the shift in the equilibrium position Req of the V3 potential. The effect is

quadratic in the dimensionless parameter ξ:

Θ(τ) = exp
{
−iξ2

(
ωτ − sin(ωτ)

)}
(20)

The analytical form of the surprisal matrix elements given by Eq. (18-19) fully captures the

effect of mass, both classical and quantum, see Fig. S1 in section S4 of the supplementary

material. The revival of the low-frequency coherence Im
〈
|3〉 Î 〈2|

〉
between the two excited

states occurs at later times for heavier masses, and the oscillation of the coherence and its

change with the mass is reproduced on a quantitative level as compared to the numerical

surprisal represented by the dominant set of constraints.

The role of the mass-dependent factor Θ(τ) in the Lagrange multipliers λ13
I (t) and λ23

I (t),

Eq. (19), on the overall dynamics can be seen explicitly by contrasting the results with those

computed with Θ(τ) = 1, see Fig. 8. Without this factor only the classical effect of mass

is accurately captured (Fig. 8b), which is described by the time-dependent shift operator in

the vibrational coherent basis set, Eq. (4). There is no change in the interference pattern

upon the change in atomic mass. The mass-dependence of the Θ(τ) factor originates in ξ.

This phase-factor is crucially needed to reproduce the quantum effect of the mass on the

electronic coherence.

The highly non-linear effect of the mass on the dynamics of the Lagrange multipliers is
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also fully reproduced by the Eq. (19), see for example Fig. 9 for λ23
I (t). The same Lagrange

multiplier but computed taking Θ(τ) = 1 shows only oscillatory behavior, governed by the

eiΩ23τ phase-factor, Fig. S2 in section S4 of the supplementary material. In the time-evolution

of the λ23
I (t) there are two regimes: (i) oscillatory dynamics, 8-14 fs for mass 14 for example;

(ii) more stationary dynamics, 14-17 fs for mass 14. Similar features can be seen for other

masses, but for different time-windows. These time-windows correlate with the time ranges

of the effective transfer of the population, Fig. 6.

The switch between the two regimes is governed by the dynamics of the phase-factor in

the Θ(τ), see Fig. 10. The amplitude transfer is effective during the regime of stationary

phase. The direction of the transfer is determined by the value of the stationary phase. Fig.

10 is a summary that highlights the role of the mass in the coupling between the two states.

0

5

10

15

5 10 15 20 25M
as

s-
de

pe
nd

en
t 

ph
as

e 
fa

ct
or

/2
p 15

10

5

time, fs
5       10      15   20      25

Mass: 10 14    18

!! "# − %&'"# /2π

FIG. 10. Rapid growth of the mass-dependent phase factor ξ2(ωt− sinωt)/2π as the dynamics unfolds over

the region of curve crossing. There is evident a stationary phase region where the vibrational wave packets

on the two electronic states interfere constructively.

The phase-factor of Θ(τ) is rapidly changing with time in the interval when the wave

packet on state 3 is moving to the outer turning point and back towards the Franck Condon

region (Fig. 4). A heavier mass takes a little longer to cover this path. The rapid growth

of the phase with time leads to different phases when the different isotopomers reach the

coupling region. This affects the direction of transfer between the states, as seen in Fig. 6.
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V. CONCLUSIONS

We presented an algebraic based dynamical surprisal analysis for an electronically atto-

excited diatomic molecule. The excited states interact by non-adiabatic coupling that we

rewrote as coupling of diabatic states by a potential. In the absence of this potential we

can identify an algebra of electronic-vibrational operators with few members, an algebra

that accounts exactly for the dynamics following the excitation of a thermal initial state.

This set of nine operators, given in Table I, is sufficient to provide a close approximation

for the surprisal even when the states are coupled, see Fig. 6. Specifically, three of the nine

operators are non diagonal in the electronic state index, |1〉 Î 〈2|, |1〉 Î 〈3| and |2〉 Î 〈3|.

The analytic expressions for the time dependence of the Lagrange multipliers allows a

compact representation of the dynamics of the surprisal. The analytic matrix elements of

the surprisal in the absence of coupling of the diabatic states are written more simply by

working in a time-dependent basis of coherent states. On the shifted potential the Franck

Condon region is displaced with respect to the equilibrium distance. Therefore the initial

vibrational states excited on this potential are non stationary. It is therefore advantageous

to use time-dependent displaced coherent states.

The surprisal is expanded as an exact sum of the elements of the closed algebra, each

multiplied by its conjugate time-dependent Lagrange multiplier. This allows an explicit

analytic description of the role of the mass in the dynamics. The quantum mechanical

isotope effect is quantitatively captured in an analytic expression, see Fig. 8, by a complex

number of unit modulus in the Lagrange multiplier of the coherence operator between the

excited states, Eq. (19). The phase of this complex number represents the interference

between the wave packets moving on the two different electronic states. Explicitly this phase,

ξ2(ωt− sinωt), is a product of ξ, a dimensionless variable proportional to the displacement

of the upper electronic state and a time factor. Both factors depend in a known analytic way

on the mass. When this phase is stationary, Fig. 10, the transfer between the two states is

effective. The direction of the transfer, gain or loss, is mass dependent and is determined by

the value of the phase at its stationary time interval.
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SUPPLEMENTARY MATERIAL

The supplementary material contains the analytical derivation of the time-dependent sur-

prisal discussed in Sec. IV. It is followed by the computational details of the numerical

propagation of the surprisal in a finite basis, in particular, details about the time-derivatives

of the basis functions are specified. The numerical propagation of the wave function in a grid

representation is discussed in Sec. S3. The final Sec. S4 shows additional figures supporting

the results of the analytical derivation.
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