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Abstract

De novo, in-silico design of molecules is a challenging problem with applications
in drug discovery and material design. We introduce a masked graph model, which
learns a distribution over graphs by capturing conditional distributions over unobserved
nodes (atoms) and edges (bonds) given observed ones. We train and then sample from
our model by iteratively masking and replacing different parts of initialized graphs.
We evaluate our approach on the QM9 and ChEMBL datasets using the GuacaMol
distribution-learning benchmark. We find that validity, KL-divergence and Fréchet
ChemNet Distance scores are anti-correlated with novelty, and that we can trade off
between these metrics more effectively than existing models. On distributional metrics,
our model outperforms previously proposed graph-based approaches and is competitive
with SMILES-based approaches. Finally, we show our model generates molecules with
desired values of specified properties while maintaining physiochemical similarity to the
training distribution.

Introduction
The design of de novo molecules in-silico with desired properties is an essential part of
drug discovery and materials design but remains a challenging problem due to the very
large combinatorial space of all possible synthesizable molecules [1]. Recently, various deep
generative models for the task of molecular graph generation have been proposed, including:
neural autoregressive models [2, 3], variational autoencoders [4, 5], adversarial autoencoders
[6], and generative adversarial networks [7, 8].

A unifying theme behind these approaches is that they model the underlying distribution
p?(G) of molecular graphs G. Once the underlying distribution is captured, new molecular
graphs are sampled accordingly. As we do not have access to this underlying distribution, it
is typical to explicitly model p?(G) by a distribution pθ(G). This is done using a function fθ
so that pθ(G) = fθ(G). The parameters θ are then learned by minimizing the KL-divergence
KL(p?‖pθ) between the true distribution and the parameterized distribution. Since we do not
have access to p?(G), KL(p?‖pθ) is approximated using a training set D = (G1, G2, ..., GM )
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which consists of samples from p?. Once the model has been trained on this distribution, it
is used to carry out generation.

Each of these approaches makes unique assumptions about the underlying probabilistic
structure of a molecular graph. Autoregressive models [2, 9, 3, 10, 11, 12] specify an ordering
of atoms and bonds in advance to model the graph. They decompose the distribution p(G) as
a product of temporal conditional distributions p(gt|G<t), where gt is the vertex or edge to
be added to G at time t and G<t are the vertices and edges that have been added in previous
steps. Generation from an autoregressive model is often done sequentially by ancestral
sampling. Defining such a distribution requires fixing an ordering of the nodes and vertices
of a graph in advance. Although directed acyclic graphs have canonical orderings based
on breadth-first search (BFS) and depth-first search (DFS), graphs can take a variety of
valid orderings. The choice of ordering is largely arbitrary, and it is hard to predict how a
particular choice of ordering will impact the learning process [13].

Latent variable models such as variational autoencoders and adversarial autoencoders
assume the existence of unobserved (latent) variables Z = {z1, z2, ..., zk} that aim to capture
dependencies among the vertices V and edges E of a graph G. Unlike an autoregressive
model, a latent variable model does not necessarily require a predefined ordering of the graph
[14]. The generation process consists of first sampling latent variables according to their prior
distributions, followed by sampling vertices and edges conditioned on these latent variable
samples. However, learning the parameters θ of a latent variable model is more challenging
than learning the parameters of an autoregressive model. It requires marginalizing latent
variables to compute the marginal probability of a graph, i.e., p(G) =

∫
Z
p(G|Z)p(Z)dZ,

which is often intractable. Recent approaches have focused on deriving a tractable lower-
bound to the marginal probability by introducing an approximate posterior distribution
q(Z) and maximizing this lowerbound instead [4, 5, 6]. Unlike variational autoencoders,
generative adversarial networks (GAN) do not use KL-divergence to measure the discrepancy
between the model distribution and data distribution and instead estimate the divergence as
a part of learning.

Here, we explore another approach to probabilistic graph generation based on the insight
that we do not need to model the joint distribution p(G) directly to be able to sample
from it. We propose a masked graph model, a generative model of graphs that learns the
conditional distribution of masked graph components given the rest of the graph, induced
by the underlying joint distribution. This allows us to use a procedure similar to Gibbs
sampling to generate new molecular graphs, as Gibbs sampling requires access only to
conditional distributions. Concretely, our approach, to which we refer as masked graph
modeling, parameterizes and learns conditional distributions p(η|G\η) where η is a subset
of the components (nodes and edges) of G and G\η is a graph without those components
(or equivalently with those components masked out). With these conditional distributions
estimated from data, we sample a graph by iteratively updating its components. At each
generation iteration, this involves choosing a subset of components, masking them, and
sampling new values for them according to the corresponding conditional distribution.

By using conditional distributions, we circumvent the assumptions made by previous
approaches to model the unconditional distribution. We do not need to specify an arbitrary
order of graph components, unlike in autoregressive models, and learning is exact, unlike in
latent variable models. Our approach is inspired by masked language models [15] that model
the conditional distribution of masked words given the rest of a sentence, which have shown
to be successful in natural language understanding tasks [16, 17, 18, 19, 20, 21] and text
generation [22]. As shown in previous works [23, 24, 22], sampling from a trained denoising
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autoencoder, which is analogous to sampling from our masked graph model, is theoretically
equivalent to sampling from the full joint distribution. Therefore, even though we train our
model on conditional distributions, sampling repeatedly from these distributions is equivalent
to sampling from the full joint distribution of graphs. We use a graph-based model instead
of a string-based model as the ability of a language model to model molecules is limited
by the string representation used [25]. Directly modeling molecular graphs bypasses the
need to find better ways of serializing molecules as strings. It also allows for the use of
graph-specific features such as distances between atoms, which are not readily encoded as
strings. Developing datasets and benchmarks that incorporate these features would enable
more informative comparisons between models that use different molecular representations.

Our approach differs from existing graph-based generative models of molecules, which
attempt to directly model the joint distribution. Some of these models follow the autore-
gressive framework earlier described. Li et al. [26] proposed a deep generative model of
graphs that predicts a sequence of transformation operations to generate a graph. You et al.
[27] proposed an RNN-based autoregressive generative model that generates components
of a graph in breadth-first search (BFS) ordering. To speed up the autoregressive graph
generation and improve scalability, Liao et al. [28] extended autoregressive models of graphs
by adding blockwise parallel generation. Dai et al. [29] proposed an autoregressive generative
model of graphs that utilizes sparsity to avoid generating the full adjacency matrix and
generates novel graphs in log-linear time complexity. Grover et al. [30] proposed a VAE-based
iterative generative model for small graphs. They restrict themselves to modeling only
the graph structure, whereas we consider generating a full graph including node and edge
features for molecule generation. Liu et al. [31] proposed a graph neural network model based
on normalizing flows for memory-efficient prediction and generation. Mercado et al. [32]
proposed a graph neural network-based generative model that learns functions corresponding
to whether to add a node to a graph, connect two existing nodes or terminate generation.
These learned functions are then used to generate de-novo graphs. The approach requires
selecting an ordering of graph components, which the authors choose to be the BFS ordering.

There are also latent variable methods for graph generation. For example, Simonovsky
and Komodakis [33] proposed a graph VAE to generate graph representations of molecules.
Jin et al. [34] proposed using a VAE to generate a junction tree followed by the generation
of the molecule itself. This approach is likely to generate valid chemical structures as it uses
a predetermined vocabulary of valid molecular substructures. Kwon et al. [35] proposed a
non-autoregressive graph variational autoencoder, which is trained with additional learning
objectives to the standard VAE ELBO for unconditional and conditional molecular graph
generation.

Along with these works on autoregressive and latent variable generative models of graphs,
there is work applying reinforcement learning objectives to the task of molecular graph
generation [36, 37, 38] and reaction-driven molecule design [39, 40, 41]. In addition, Yang
et al. [42] proposed a target augmentation approach for improving molecular optimisation, a
model-agnostic framework that can be used with any black box model. Hence several existing
works on generating graph representations of molecules (see Section A of the Supplementary
Information for more examples) directly model the joint distribution p(G) or incorporate
additional objectives that can be used with a variety of models including our own.

In this work, we evaluate our approach on two popular molecular graph datasets, QM9
[43, 44] and ChEMBL [45], using a set of five distribution-learning metrics introduced in the
GuacaMol benchmark [46]: the validity, uniqueness, novelty, KL-divergence [47] (KLD) and
Fréchet ChemNet Distance [48] (FCD) scores. The KL-divergence and Fréchet ChemNet
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Distance scores are measures of the similarity between generated molecules and molecules
from the combined training, validation and test distributions, which we call the dataset
distribution. We find that the validity, Fréchet ChemNet Distance and KL-divergence scores
are highly correlated with each other and inversely correlated with the novelty score. We
show that state-of-the-art autoregressive models are ineffective in controlling the trade-off
between novelty and the validity, Fréchet ChemNet Distance, and KL-divergence scores,
whereas our masked graph model provides effective control over this trade-off. Overall, the
proposed masked graph model, trained on the graph representations of molecules, outperforms
previously proposed graph-based generative models of molecules and performs comparably
to several SMILES-based models. Additionally, our model achieves comparable performance
on validity, uniqueness, and KL-divergence scores compared to state-of-the-art autoregressive
SMILES-based models, but with lower Fréchet ChemNet Distance scores. We also carry out
conditional generation to obtain molecules with target values of specified physiochemical
properties. This involves predicting the masked out components of a molecular graph
given the rest of the graph, conditioned on the whole graph having a specified value of the
physiochemical property of interest. Example target properties for this approach include
the LogP measure of lipophilicity, and molecular weight. We find that our model produces
molecules with values close to the target values of these properties without compromising
other metrics. Compared with a baseline graph generation approach, the generated molecules
maintain physiochemical similarity to the training distribution even as they are optimized for
the specified metric. Finally, we find that our method is computationally efficient, needing
little time to generate new molecules.

Results

Masked Graph Modeling Overview
A masked graph model (MGM) operates on a graph G, which consists of a set of N vertices
V = {vi}Ni=1 and a set of edges E = {ei,j}Ni,j=1. A vertex is denoted by vi = (i, ti), where i is
the unique index assigned to it, and ti ∈ Cv = {1, ..., T} is its type, with T the number of
node types. An edge is denoted by ei,j = (i, j, ri,j), where i, j are the indices to the incidental
vertices of this edge and ri,j ∈ Ce = {1, ..., R} is the type of this edge, with R the number of
edge types.

We use a single graph neural network to parameterize any conditional distribution induced
by a given graph. We assume that the missing components η of the conditional distribution
p(η|G\η) are conditionally independent of each other given G\η:

p(η|G\η) =
∏
v∈V

p(v|G\η)
∏
e∈E

p(e|G\η), (1)

where V and E are the sets of all vertices and all edges in η respectively.
To train the model, we use fully observed graphs from a training dataset D. We corrupt

each graph G with a corruption process C(G\η|G), i.e. G\η ∼ C(G\η|G). In this work,
following the work of Devlin et al. [15] for language models, we randomly replace some of
the node and edge features with the special symbol MASK. After passing G\η through our
model we obtain the conditional distribution p(η|G\η). We then maximize the log probability
log p(η|G\η) of the masked components η given the rest of the graph G\η. This is analogous
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to a masked language model [15], which predicts the masked words given the corrupted
version of a sentence. This results in the following optimization problem:

arg max
θ

EG∼DEG\η∼C(G\η|G) log pθ(η|G\η). (2)

Once we have trained the model, we use it to carry out generation. To begin generation,
we initialize a molecule in one of two ways, corresponding to different levels of entropy. The
first way, which we call training initialization, uses a random graph from the training data as
an initial graph. The second way, which we call marginal initialization, initializes each graph
component according to a categorical distribution over the values that component takes in
our training set. For example, the probability of an edge having type r ∈ Ce is equal to the
fraction of edges in the training set of type r.

We then use an approach motivated by Gibbs sampling to update graph components
iteratively from the learned conditional distributions. At each generation step, we sample
uniformly at random a fraction α of components η in the graph and replace the values of
these components with the MASK symbol. We compute the conditional distribution p(η|G\η)
by passing the partially masked graph through the model, sampling new values of the masked
components according to the predicted distribution, and placing these values in the graph.
We repeat this procedure for a total of K steps, where K is a hyperparameter. A schematic
of this procedure is given in Supplementary Figure 4.

We carry out conditional generation using a modified version of this approach. We frame
this task as generating molecules with a target value of a given physiochemical property. We
use the same training and generation procedures as for unconditional generation but with
an additional, conditioning, input to the model. This input y is the molecule’s graph-level
property of interest. During training, y corresponds to the ground-truth value y? of the
molecule’s graph-level property of interest. This results in a modified version of statement 2:

arg max
θ

EG∼DEG\η∼C(G\η|G) log pθ(η|G\η.y = y?) (3)

During generation, y instead corresponds to the target value ŷ of this property. The
initialisation process is the same as for unconditional generation. Iterative sampling involves
updating the graph by computing the conditional distribution p(η|G\η, y = ŷ).

Mutual Dependence of Metrics from GuacaMol
We evaluate our model and baseline molecular generation models on unconditional molecular
generation using the distribution-learning benchmark from the GuacaMol [46] framework.
We first attempt to determine whether dependence exists between metrics from the Guacamol
framework. We do this because we notice that some of these metrics may measure similar
properties. For example, the Fréchet and KL scores are both measures of similarity between
generated samples and a dataset distribution. If the metrics are not mutually independent,
comparing models using a straightforward measure such as the sum of the metrics may not
be a reasonable strategy.

To determine how the five metrics are related to each other, we calculate pairwise the
Spearman (rank) correlation between all metrics on the QM9 dataset [43, 44], presented
in Table 1, while varying the masking rate, initialization strategy and number of sampling
iterations K. We carry out a similar run for three baseline autoregressive SMILES-based
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models that we train ourselves: two Transformer models [3] with different numbers of
parameters(Transformer Small and Transformer Regular) and an LSTM. Each of these
autoregressive models has a distribution output by a softmax layer over the SMILES
vocabulary at each time step. We implement a sampling temperature parameter in this
distribution to control its sharpness. By increasing the temperature, we decrease the
sharpness, which increases the novelty. The Spearman correlation results for these baselines
are shown in Table 2.

Validity Uniqueness Novelty KL Div Fréchet Dist

Validity 1.00 -0.56 -0.83 0.73 0.75
Uniqueness -0.56 1.00 0.50 -0.32 -0.37
Novelty -0.83 0.50 1.00 -0.94 -0.95
KL Div 0.73 -0.32 -0.94 1.00 0.99
Fréchet Dist 0.75 -0.37 -0.95 0.99 1.00

Table 1: Spearman’s correlation coefficient between benchmark metrics for re-
sults using the masked graph model on the QM9 dataset.

Validity Uniqueness Novelty KL Div Fréchet Dist

Validity 1.00 0.03 -0.99 0.98 0.98
Uniqueness 0.03 1.00 0.00 0.03 0.03
Novelty -0.99 0.00 1.00 -0.99 -0.99
KL Div 0.98 0.03 -0.99 1.00 1.00
Fréchet Dist 0.98 0.03 -0.99 1.00 1.00

Table 2: Spearman’s correlation coefficient between benchmark metrics for re-
sults using LSTM, Transformer Small and Transformer Regular on the QM9
dataset.

From Tables 1 and 2, we make three observations. First, the validity, KL-divergence
and Fréchet Distance scores correlate highly with each other. Second, these three metrics
correlate negatively with the novelty score. Finally, uniqueness does not correlate strongly
with any other metric. These observations suggest that we can look at a subset of the
metrics, namely the uniqueness, Fréchet and novelty scores, to gauge generation quality. We
now carry out experiments to determine how well MGM and baseline models perform on
the anti-correlated Fréchet and novelty scores, which are representative of four of the five
evaluation metrics.

Analysis of Representative Metrics
To examine how the masked graph model and baseline autoregressive models balance the
Fréchet ChemNet Distance and novelty scores, we plot these two metrics against each other
in Figure 1. To obtain the points for the masked graph models, we evaluate the scores
after various numbers of generation steps. For the QM9 MGM points, we use both training
and marginal initializations, which start from the top left and bottom right of the graph
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Figure 1: Plots of the Fréchet ChemNet Distance score against novelty, two anti-
correlated metrics from the GuacaMol [46] distribution-learning benchmark, on
QM9 and ChEMBL. Each point corresponds to the values of these two metrics for
a set of molecules that are generated using the same model with the same generation
hyperparameters. Different points of the same color correspond to different sets of molecules,
with each set generated from the same model using different generation hyperparameters
(number of generation iterations and masking rate for the masked graph models, sampling
temperature for autoregressive models). The percentages indicated next to MGM in the
figure legends indicate the masking rate at generation time. (For example, MGM 10%
indicates an MGM model with a generation masking rate of 10%.) For each QM9 MGM
model, the series of points originating at the top left of the graph corresponds to training
initialization, whereas the series of points originating at the bottom right corresponds to
marginal initialization. For ChEMBL, only training initialization was used to sample valid
molecules due to computational constraints, as marginal initialization did not yield enough
valid molecules to calculate reliable distributional metrics in a reasonable amount of time.
This is likely because the masking rate is low so it would take a long time for the sampler
to converge to the training distribution. Using a high masking rate would result in a large
number of spurious edges, which would be problematic for the MPNN to handle. Finding a
way to alleviate this issue would be a valuable direction for future work.

respectively, and converge in between. For the ChEMBL MGM points, we use only training
initialization.

On both QM9 and ChEMBL, we see that as novelty increases, the Fréchet ChemNet
Distance score decreases for the masked graph models as well as for the LSTM and Transformer
models. We also see that the line’s slope, which represents the marginal change in Fréchet
ChemNet Distance score per unit change in novelty score, has a lower magnitude for the
masked graph model than for the autoregressive models. This shows that our model trades
off novelty for similarity to the dataset distributions (as measured by the Fréchet score) more
effectively relative to the baseline models. This gives us a higher degree of controllability in
generating samples that are optimized towards either metric to the extent desired.

On QM9, we see that our masked graph models with a 10% or 20% masking rate maintain
a larger Fréchet ChemNet Distance score as the novelty increases, compared to the LSTM
and Transformer models. Several of the MGM points on the plot are beyond the Pareto
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Model Valid Uniq Novel KL Div Fréchet Dist

SM
IL

E
S

CharacterVAE 0.103 0.675 0.900 N/A N/A
GrammarVAE 0.602 0.093 0.809 N/A N/A
LSTM (ours) 0.980 0.962 0.138 0.998 0.984

Transformer Sml (ours) 0.947 0.963 0.203 0.987 0.927
Transformer Reg (ours) 0.965 0.957 0.183 0.994 0.958

G
ra

ph

GraphVAE 0.557 0.760 0.616 N/A N/A
MolGAN 0.981 0.104 0.942 N/A N/A

NAT GraphVAE (ours) 0.875 0.317 0.895 0.843 0.509
MGM (ours proposed) 0.886 0.978 0.518 0.966 0.842

Table 3: Distributional results on QM9. CharacterVAE [49], GrammarVAE [50], Graph-
VAE [33] and MolGAN [51] results are taken from Cao and Kipf [51]. NAT GraphVAE [35]
stands for non-autoregressive graph VAE. Models labelled as ‘ours’ were trained by us and
subsequently used to carry out generation. Our masked graph model results correspond
to a 10% masking rate and training graph initialization, which has the highest geometric
mean for all five benchmark metrics. (See Supplementary Information Sections B and C
for details.) Values of validity(↑), uniqueness(↑), novelty(↑), KL Div(↑) and Fréchet Dist(↑)
metrics are between 0 and 1.

frontier formed by each baseline model. On ChEMBL, the LSTM and Transformer models
generally achieve a higher combination of novelty and Fréchet ChemNet Distance score than
does the masked graph model with either masking rate. However, to the bottom right of
Figure 1b, we can see a few points corresponding to the 5% masking rate that are beyond
the Pareto frontier of the points formed by the Transformer Regular model.

We also observe that for ChEMBL, which contains larger molecules, using a 1% masking
rate yields points that are beyond the Pareto frontier of those obtained using a 5% masking
rate. This further indicates that masking a large number of components hurts generation
quality, even if this number represents a small percentage of the graph.

We plot validity against novelty in Supplementary Figure 3 and observe that the same
analysis holds for the trade-off between these two metrics. Hence even though state-of-the-art
autoregressive models can trade off between representative metrics by changing the sampling
strategy, the trade-off is poor and leads to a rapid decline in molecule quality as the novelty
increases. MGM, on the other hand, is able to maintain a similar molecule quality as the
novelty increases.

Comparison with Baseline Models
We now compare distributional benchmark results for MGM using our ‘best’ initialization
strategy and masking rate (see Supplementary Information Sections B and C for details) to
baseline models. The baseline models include models we train ourselves and those for which
we obtain results from the literature. The distributional benchmark results on QM9 and
ChEMBL are shown in Table 3 and Table 4 respectively.

On QM9, our model performs comparably to existing SMILES-based methods. Our
approach shows higher validity and uniqueness scores compared to CharacterVAE [49] and
GrammarVAE [50], while having a lower novelty score. Compared to the autoregressive
LSTM and Transformer models, our model has lower validity, KL-divergence and Fréchet
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Model Valid Uniq Novel KL Div Fréchet Dist

SM
IL

E
S

AAE 0.822 1.000 0.998 0.886 0.529
ORGAN 0.379 0.841 0.687 0.267 0.000
VAE 0.870 0.999 0.974 0.982 0.863
LSTM 0.959 1.000 0.912 0.991 0.913

Transformer Sml (ours) 0.920 0.999 0.939 0.968 0.859
Transformer Reg (ours) 0.961 1.000 0.846 0.977 0.883

G
ra

ph

Graph MCTS 1.000 1.000 0.994 0.522 0.015
NAT GraphVAE 0.830 0.944 1.000 0.554 0.016

MGM (ours proposed) 0.849 1.000 0.722 0.987 0.845

Table 4: Distributional results on ChEMBL. LSTM, Graph MCTS [52], AAE [53],
ORGAN [54] and VAE [49] (with a bidirectional GRU [55] as encoder and autoregressive
GRU [55] as decoder) results are taken from Brown et al. [46]. NAT GraphVAE [35] stands for
non-autoregressive graph VAE. Models labelled as ‘ours’ were trained by us and subsequently
used to carry out generation. Our masked graph model results correspond to a 1% masking
rate and training graph initialization, which has the highest geometric mean for all five
benchmark metrics. (See Supplementary Information Sections B and C for details.) Values
of validity(↑), uniqueness(↑), novelty(↑), KL Div(↑) and Fréchet Dist(↑) metrics are between
0 and 1.

Distance scores; however it exhibits slightly higher uniqueness and significantly higher novelty
scores.

Compared to the graph-based models, our approach performs similarly to or better than
existing approaches. Our approach has higher validity and uniqueness scores compared to
GraphVAE [33] and MolGAN [51], and a lower novelty score. KLD and Fréchet Distance
scores are not provided for these two models. Our model outperforms the non-autoregressive
graph VAE [35] on all metrics except novelty.

On ChEMBL, our approach outperforms existing graph-based methods. Compared to
graph MCTS [52] and non-autoregressive graph VAE [35], our approach shows lower novelty
scores while having significantly higher KL-divergence and Fréchet Distance scores. The
baseline graph-based models do not capture the properties of the dataset distributions, as
shown by their low KL-divergence scores and almost-zero Fréchet scores. This demonstrates
that our proposed approach outperforms graph-based methods in generating novel molecules
that are similar to the dataset distributions.

The proposed masked graph model is competitive with models that rely on the SMILES
representations of molecules. It outperforms the GAN-based model (ORGAN) across all five
metrics and outperforms the adversarial autoencoder model (AAE) on all but the uniqueness
score (both have the maximum possible score) and the novelty score. It performs comparably
to the VAE model with an autoregressive GRU [55] decoder on all metrics except novelty. Our
approach lags behind the LSTM, Transformer Small and Transformer Regular SMILES-based
models on the ChEMBL dataset. It outperforms both Transformer models on KL-divergence
score but underperforms them on validity, novelty and Fréchet score. Our approach also
results in lower scores across most of the metrics when compared to the LSTM model.

Some examples of generated molecules after the final sampling iteration are shown
in Supplementary Figures 6 and 7. Full lists of molecules can be accessed via the Data
Availability section.
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(a) Training initialization
(b) Marginal initialization

Figure 2: Generation trajectory of a molecule each for training initialization and
marginal initialization, for QM9 with a 10% masking rate.

Generation Trajectories
We present a few sampling trajectories of molecules from the proposed masked graph model
in Figures 2–3. Each image represents the molecule after a certain number of sampling
iterations; the first image in a figure is the molecular graph initialization before any sampling
steps are taken. Figure 2 shows a trajectory each for training and marginal initializations
with a 10% masking rate. Figure 3 shows a trajectory each for 1% and 5% masking rates
with training initialization. All molecules displayed in the figures are valid, but molecules
corresponding to some of the intermediate steps not shown may not be.

Figure 2a shows the trajectory of a molecule initialized as a molecule from the QM9
training set. As generation progresses, minor changes are made to the molecule, yielding
novel molecules. After 100 generation steps, the molecule has converged to another non-novel
molecule. Further generation steps yield novel molecules once again, with the molecule’s
structure gradually moving further away from the initialized molecule.

Figure 2b shows the trajectory of a molecule initialized from the marginal distribution of
the QM9 training set. The initialized graph consists of multiple disjoint molecular fragments.
Over the first three generation steps, the various nodes are connected to form a connected
graph. These changes are more drastic than those in the first few steps of generation with
training initialization. The molecule undergoes significant changes over the next few steps
until it forms a ring and a chiral center by the 10-th step. The molecule then evolves slowly
until it converges to a non-novel molecule by 200 steps. Further generation steps yield a
series of novel molecules once again.

Figure 3a shows the trajectory of a ChEMBL molecule with a 1% masking rate. In the
first step, the molecule changes from one training molecule to another non-novel molecule,
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(a) 1% masking rate

(b) 5% masking rate

Figure 3: Generation trajectory of a molecule each for a 1% and 5% masking
rate, for ChEMBL with training initialization.
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following which it undergoes minor changes over the next few steps to yield a novel molecule.
Figure 3b shows the trajectory of a ChEMBL molecule with a 5% masking rate. In the first
step, this molecule also changes from one training molecule to another non-novel molecule.
Following this, further changes yield a novel molecule. The molecule evolves again in further
iterations, albeit forming unexpected ring structures after 300 steps.

Target Condition Model G-mean Unique Count Property Value KLD Score

MolWt = 120

NAT GraphVAE 0.623 3048 124.47 ± 7.58 0.843
MGM 0.522 8800 120.02 ± 7.66 0.811

MGM - Final Step 0.404 8509 119.42 ± 7.67 0.761
Dataset - - - 0.679

MolWt = 125

NAT GraphVAE 0.565 2326 127.21 ± 7.05 0.827
MGM 0.561 9983 125.00 ± 8.48 0.850

MGM - Final Step 0.354 9293 122.48 ± 7.20 0.936
Dataset - - - 0.835

MolWt = 130

NAT GraphVAE 0.454 1204 129.12 ± 6.79 0.614
MGM 0.501 9465 128.85 ± 8.85 0.705

MGM - Final Step 0.369 8892 126.85 ± 7.43 0.789
Dataset - - - 0.695

LogP = -0.4

NAT GraphVAE 0.601 2551 -0.409 ± 0.775 0.739
MGM 0.424 9506 -0.349 ± 0.503 0.803

MGM - Final Step 0.300 9495 -0.337 ± 0.523 0.876
Dataset - - - 0.811

LogP = 0.2

NAT GraphVAE 0.562 2188 0.051 ± 0.746 0.803
MGM 0.378 9524 0.200 ± 0.468 0.846

MGM - Final Step 0.376 9487 0.202 ± 0.462 0.895
Dataset - - - 0.816

LogP = 0.8

NAT GraphVAE 0.515 1837 0.588 ± 0.759 0.807
MGM 0.418 9360 0.769 ± 0.473 0.826

MGM - Final Step 0.300 9294 0.745 ± 0.442 0.857
Dataset - - - 0.797

Table 5: Conditional generation results on QM9. Results for MGM are chosen from
a range of sampling iterations and both initialization strategies. The results shown here
correspond to the best mean property value (MGM) or the final sampling iteration with
initialisation chosen according to the better geometric mean among the five GuacaMol
metrics (MGM - Final Step). Results for the NAT GraphVAE baseline model [35] that we
trained are also shown. ‘Dataset’ rows refer to molecules sampled from the dataset with
MolWt within ±1 for the MolWt conditions and LogP within ±0.1 for the LogP conditions.
G-mean refers to the geometric mean of validity, uniqueness and novelty.

Conditional Generation
In accordance with the framework proposed by Kwon et al. [35], we generate molecules
conditioned on three different target values of the molecular weight (MolWt) and Wildman-
Crippen partition coefficient (LogP) properties. We also compute KLD scores for the
generated molecules. The KLD score is expected to decrease compared to unconditional
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generation since MolWt and LogP are two of the properties used to calculate this score; as
these properties become skewed towards the target values, the similarity to the dataset will
decrease. If a model maintains a reasonably high KLD score while achieving a mean property
value close to the target value, it indicates that the other physiochemical properties of the
generated molecules are similar to those of the dataset molecules. Conditional generation
results for our model and the baseline Kwon et al. [35] model are shown in Table 5.

MGM generates molecules with property values close to the target value of the desired
property. For the MolWt=120, MolWt=125, LogP=0.2 and LogP=0.8 conditions, the mean
target property of the molecules generated by MGM is closer to the target value than
of those generated by NAT GraphVAE. For the MolWt=130 and LogP=-0.4 conditions,
the mean is slightly further. For LogP, MGM has lower standard deviations whereas for
MolWt, NAT GraphVAE has slightly lower standard deviations. A lower standard deviation
corresponds to more reliable generation of molecules with the target property. The G-means
of validity, uniqueness and novelty are similar for both models on MolWt, and better for
NAT GraphVAE on LogP.

The molecules generated by MGM have similar properties to the dataset molecules. This
is reflected by the KL-divergence scores, which are generally higher for MGM than for NAT
GraphVAE and greater than 0.8 in all cases but one. The KLD scores in the Dataset rows of
Table 5 are considerably less than 1, showing the decrease in similarity to the full dataset as
the MolWt or LogP values are skewed. MGM achieves a higher KL-divergence score than
Dataset in the majority of cases. This indicates that MGM produces molecules that are
optimized for the target property while maintaining physiochemical similarity to the dataset
distribution.

The results for MGM - Final Step approach slightly differ from those for MGM. By
design, the mean values of the target properties are a little further from the target values
than for MGM. Compared with MGM, the standard deviations and G-means for MGM -
Final Step are generally lower while the KL-divergence scores are higher.

Computational Efficiency
Time taken to train and generate from models is shown in Table 6. For each sample,
generation time per sampling iteration is low (on the order of milliseconds), as the forward
pass through the neural network is computationally cheap and many molecules can be
processed in parallel. The ChEMBL model takes longer than the QM9 model for generation
as it has more MPNN layers and also because ChEMBL molecules are on average larger than
QM9 molecules. The ChEMBL model takes longer to train per epoch than the QM9 model
for the same reasons and also because ChEMBL has many more molecules than QM9. Note
that training time for ChEMBL could be significantly lowered if dynamic batching strategies
are used so that the batch size is not constrained by the size of the largest molecule in the
dataset. See the Datasets and Evaluation part of the Methods section for more details on
the datasets. We use one Nvidia Tesla P100-SXM2 GPU with 16 GB of memory for all our
experiments; the use of multiple GPUs or a GPU with larger memory would further increase
computational speed.

Discussion
In this work, we propose a masked graph model for molecular graphs. We show that we can
sample novel molecular graphs from this model by iterative sampling of subsets of graph
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Dataset Training time per epoch (min) Generation time/sample/sampling iteration (sec)
QM9 6 0.00542

ChEMBL 280 0.00622

Table 6: Time taken for training and generation. Generation time/sample/sampling
iteration is measured as: time taken to carry out 100 sampling iterations for a batch of J samples

100J . For
QM9, J = 2500 whereas for ChEMBL, J = 1500 due to memory constraints.

components. Our proposed approach models the conditional distribution of subsets of graph
components given the rest of the graph, avoiding many of the previously proposed models’
drawbacks such as expensive marginalization and fixing an ordering of variables.

We evaluate our approach on the GuacaMol distribution-learning benchmark on the
QM9 and ChEMBL datasets. We find that the benchmark metrics are correlated with
each other, so models and generation configurations with higher validity, KL-divergence and
Fréchet ChemNet Distance scores usually have lower novelty scores. Hence evaluating models
based on the trade-off between different metrics may be more informative than evaluating
them based on a heuristic such as the sum of the metrics. We observe that by varying
generation hyperparameters, our model balances these metrics more efficiently than previous
state-of-the-art baseline models.

For some applications, it is convenient to evaluate results based on one masking rate rather
than evaluating this trade-off. A discussion of how to choose this generation hyperparameter
is given under the Model Architecture, Training and Unconditional Generation Details part
of the Methods section. We recommend using a generation masking rate corresponding to
masking out 5-10 edges of a complete graph having the median number of nodes in the
dataset.

We show that on distribution-learning metrics, overall our model outperforms baseline
graph-based methods. We also observe that our model is comparable to SMILES-based ap-
proaches on both datasets, but underperforms the LSTM, Transformer Small and Transformer
Regular SMILES-based autoregressive models on ChEMBL. There are several differences
between the QM9 and ChEMBL datasets (see the Datasets and Evaluation part of the
Methods section) that could account for this, including number of molecules, median molecule
size and presence of chirality information. There has also been extensive work in developing
language models compared to graph neural networks, which may account for the greater
success of the LSTM and Transformers. Furthermore, the ChEMBL dataset is provided
as SMILES strings and the GuacaMol benchmark requires that graph representations be
converted into SMILES strings before evaluation. This may advantage approaches that work
with SMILES strings directly rather than converting to and from graph representations
of molecules. Although there are molecular benchmarks for evaluating different aspects
of machine learning-based molecular generation [56, 46], they use string representations of
molecules and do not evaluate graph-level properties. Developing datasets and benchmarks
that incorporate graph-level information that is not readily encoded as strings, such as
spatial information, would alleviate this issue. We leave further investigation into the reasons
behind the difference in performance to future work.

From our observations of molecular trajectories, we see that molecules converge towards
the space of dataset molecules regardless of whether training or marginal initialization is
used. This verifies that the sampler produces molecules from the distribution that it was
trained on. We also see that using a higher masking rate results in greater changes between
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sampling iterations and molecules that are less similar to the dataset used. We hypothesize
that this is the case for two reasons. First, a greater proportion of the graph is updated
at each step. Second, the predictive distributions are formed from a graph with a greater
proportion of masked components, resulting in higher entropy.

We carry out conditional generation, observing that our model captures the target
properties of molecules better than a baseline graph-based generative model while maintaining
similarity of the generated molecules to the distribution of dataset molecules.

Finally, we observe the computational cost of our models and note that generation time
per molecule is low after training the model.

Future avenues of work include incorporating additional information such as inter-atomic
distances into our graph representations. In the GuacaMol benchmark [46], for example,
the data is provided as strings and must be converted back into strings for evaluation.
Hence features that are not readily encoded as strings are not used by either the text-
based or graph-based models, and cannot be a part of evaluation. The development of
benchmarks that account for the spatial nature of molecules, for example by incorporating 3D
coordinates, would help highlight the advantages of graph-based generative models compared
to SMILES-based models.

As discussed in the Model Architecture, Training and Unconditional Generation Details
part of the Methods section, using the same masking rate for molecules of different sizes
results in a disproportionately large number of ‘prospective’ edges being masked out for large
molecules, which is problematic for our MPNN to handle. Finding a way to address this
problem would be beneficial in scaling this work to larger molecules.

Another direction is to make our model semi-supervised. This would allow us to work with
target properties for which the ground-truth cannot be easily calculated at test time and only
a few training examples are labelled. Our work can also be extended to proteins, with amino
acids as nodes and a contact map as an adjacency matrix. Conditional generation could be
used in this framework to redesign proteins to fulfil desired functions. Furthermore, although
we use the principle of denoising a corrupted graph for learning the joint distribution, the
same procedure could be adapted for lead optimization. Finally, as our approach is broadly
applicable to generic graph structures, we leave its application to non-molecular datasets to
future work.

Methods

Model Architecture
A diagram of our model including featurization details is given in Figure 4. We start
by embedding the vertices and edges in the graph G\η to get continuous representations
hvi ∈ Rd0 and hei,j ∈ Rd0 respectively, where d0 is the dimensionality of the continuous
representation space [57]. We then pass these representations to a message passing neural
network (MPNN) [58]. We use an MPNN as the fundamental component of our model
because of its invariance to graph isomorphism. An MPNN layer consists of an aggregation
step that aggregates messages from each node’s neighboring nodes, followed by an update
step that uses the aggregated messages to update each node’s representation. We stack L
layers on top of each other to build an MPNN; parameters are tied across all L layers. For
all except the last layer, the updated node and edge representations output from layer l
are fed into layer l + 1. Unlike the original version of the MPNN, we also maintain and
update each edge’s representation at each layer. Any variant of a graph neural network that
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effectively models the relationships between node and edge features can be used, such as an
MPNN. Our specific design is described below.

Diagrams of our MPNN’s node and edge update steps are given in Supplementary Figure
5. At each layer l of the MPNN, we first update the hidden state of each node vi by
computing its accumulated message u(l)vi using an aggregation function Jv and a spatial
residual connection R between neighboring nodes:

u(l)vi = Jv(h
(l−1)
vi , {h(l−1)vj }j∈N(i), {h(l−1)ei,j }j∈N(i)) +R({h(l−1)vj }j∈N(i)),

Jv(h
(l−1)
vi , {h(l−1)vj }j∈N(i), {h(l−1)ei,j }j∈N(i)) =

∑
j∈N(i)

h(l−1)ei,j · h
(l−1)
vj ,

R({h(l−1)vj }j∈N(i)) =
∑

j∈N(i)

h(l−1)vj ,

h(l)vi = LayerNorm(GRU(h(l−1)vi , u(l)vi )),

where N(i) is the set of indices corresponding to nodes that are in the one-hop neighbourhood
of node vi. GRU [55] refers to a gated recurrent unit which updates the representation of
each node using its previous representation and accumulated message. LayerNorm [59] refers
to layer normalization.

Similarly, the hidden state of each edge hei,j is updated using the following rule for all
j ∈ N(i):

h(l)ei,j = Je(h
(l−1)
vi + h(l−1)vj ).

The sum of the two hidden representations of the nodes incidental to the edge is passed
through Je, a two-layer fully connected network with ReLU activation between the two layers
[60, 61], to yield a new hidden edge representation.

The node and edge representations from the final layer are then processed by a node
projection layer Av : Rd0 → ΛT and an edge projection layer Ae : Rd0 → ΛR, where ΛT

and ΛR are probability simplices over node and edge types respectively. The result is the
distributions p(v|G\η) and p(e|G\η) for all v ∈ V and all e ∈ E .

Property Embeddings
Node Property Embeddings We represent each node using six node properties indexed
as {κ ∈ Z : 1 ≤ κ ≤ 6}, each with its own one-hot embedding. The properties are obtained
using RDKit [62]. Each node in a graph corresponds to a heavy atom in a molecule. During
the forward pass, each of these embeddings is multiplied by a separate weight matrix
Wκ ∈ RTκ×d0 , where Tκ is the number of categories for property κ. The resulting continuous
embeddings are summed together to form an overall embedding of the node. The entries of
the one-hot embeddings for each of the properties are:

• Atom type: chemical symbol (e.g. C, N, O) of the atom;

• Number of hydrogens: number of hydrogen atoms bonded to the atom;

• Charge: net charge on the atom, where the first index represents the minimum charge
on an atom in the dataset and the last index represents the maximum;
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Figure 4: Model architecture. A description of the node and edge features is given in the
Property Embeddings part of the Methods section.

• Chirality type: unspecified, tetrahedral clockwise, tetrahedral counter-clockwise,
other;

• Is-in-ring: atom is or is not part of a ring structure;

• Is-aromatic: atom is or is not part of an aromatic ring.

Each one-hot embedding also has an additional entry corresponding to the MASK symbol.
After processing the graph with the MPNN, we pass the representation of each node

through six separate fully-connected two-layer networks with ReLU activation between the
layers. For each node, the output of each network is a distribution over the categories
of the initial one-hot vector for one of the properties. During training, we calculate the
cross-entropy loss between the predicted distribution and the ground-truth for all properties
that were masked out by the corruption process.

The choice of nodes for which a particular property is masked out is independent of
the choice made for all other properties. The motivation for this is to allow the model to
more easily learn relationships between different property types. The atom-level property
information that we use in our model is the same as that provided in the SMILES string
representation of a molecule. We also tried masking out all features for randomly selected
nodes, but this yielded a significantly higher cross-entropy loss driven largely by the atom
type and hydrogen terms.

Since the ChEMBL dataset does not contain chirality information, the chirality type
embedding is superfluous for ChEMBL.

We note from preliminary experiments that using fewer node features, specifically only
the atom type and number of hydrogens, results in a substantially higher cross-entropy loss
than using all the node features listed above.
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Edge Property Embeddings We use the same framework as described for node property
embeddings. We only use one edge property with the weight matrix W ∈ RR×d0 , whose
one-hot embedding is defined as follows:

• Bond type: no, single, double, triple or aromatic bond.

Model Architecture, Training and Unconditional Generation Details
For the QM9 dataset, we use one 4-layer MPNN, with parameter sharing between layers. For
the ChEMBL dataset, we use one 6-layer MPNN with parameter sharing. We experiment
with using more layers for ChEMBL in case more message passing iterations are needed to
cover a larger graph. The results of an extensive hyperparameter search on ChEMBL are
given in Supplementary Table 2. For both datasets, we use an embedding dimensionality
d0 = 2048. We use the Adam optimizer [63] with learning rate set to 0.0001, β1 = 0.9 and
β2 = 0.98. We use a batch size of 800 molecules for QM9 and 512 molecules for ChEMBL. For
ChEMBL, we perform 16 forward-backward steps with minibatches of 32 each to compute
the gradient of the minibatch of 512 molecules, in order to cope with the limited memory
size on a GPU. We clip the gradient for its norm to be at most 10.

During training, we uniformly at random mask each node feature (including atom type)
and edge feature (including bond type) with probability α, while randomly varying α
uniformly between 0 and 0.2. Nodes are considered as neighbors in the MPNN if they are
connected by an edge that is either masked out, or does not have bond type no-bond. For the
purposes of masking, the total number of edges in the graph is |V |(|V |−1)2 i.e. every possible
node pair (excluding self-loops) in the symmetric graph is considered as a ‘prospective edge’
that can be masked out. During validation, we follow the same procedure but with α fixed
at 0.1, so that we can clearly compare model checkpoints and choose the checkpoint with
the lowest validation loss for generation.

For QM9, we carry out generation experiments while using a masking rate of either 10%
or 20%, corresponding to the mean and maximum masking rates during training respectively.
For ChEMBL, we use a masking rate of either 1% or 5%, as we found that the higher masking
rates led to low validity scores in our preliminary experiments. The number of prospective
edges masked and replaced for a median ChEMBL molecule with a 1% masking rate and for
a median QM9 molecule with a 10% masking rate are both approximately 4. This indicates
that the absolute number rather than portion of components masked out directly impacts
generation quality. For a constant masking rate, the number of masked out prospective edges
scales as the square of the number of nodes in the graph. The number of bonds in a molecule
does not scale in this way; larger molecules are likely to have sparser adjacency matrices
than small molecules. Masking out a very large number of prospective edges could degrade
performance as this would yield an unnaturally dense graph to the MPNN. This is because
every prospective edge of type ‘no edge’ that is masked out would appear as an edge to the
MPNN. This would result in message passing between many nodes in the input graph that
are far apart in the sparse molecule. We therefore propose a masking rate corresponding to
masking out a similar number of prospective edges (approximately 5-10) when using MGM
on other datasets. Nevertheless, finding an automated way of setting the masking rate would
be a valuable direction for future research.

We use the same independence constraint during generation as we use during training
when choosing which properties to mask out for each node or edge. We vary the initialization
strategy between training and marginal initialization.
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For QM9, we run 400 sampling iterations sequentially to generate a sequence of sampled
graphs. For ChEMBL, we run 300 iterations. We calculate the GuacaMol evaluation metrics
for our samples after every generation step for the first 10 steps, and then every 10-20 steps,
in order to observe how generation quality changes with the number of generation steps.

Conditional Generation Details
We carry out conditional generation corresponding to two different molecular properties:
molecular weight (MolWt) and the Wildman-Crippen partition coefficient (LogP). We train
a separate model for each property on QM9, with the same hyperparameters as used for the
unconditional case. For each property, we first normalize the property values by subtracting
the mean and dividing by the standard deviation across the training data. We obtain an
embedding of dimension d0 for the property by passing the one-dimensional standardised
property value through a two-layer fully-connected network with ReLU activation between
the two layers. We add this embedding to each node embedding and then proceed with the
forward pass as in the unconditional case. For generation, we use a 10% masking rate and
carry out 400 sampling iterations with both training and marginal initializations.

We evaluate 10,000 generated molecules using the framework outlined by Kwon et al. [35]
in their work on non-autoregressive graph generation. This involves computing summary
statistics of the generated molecules for target property values of 120, 125 and 130 for MolWt,
and -0.4, 0.2 and 0.8 for LogP. We choose results corresponding to the initialization and
number of sampling iterations that yield the mean property value that is closest to the
target value. We also provide results from the final generation step with the initialization
corresponding to the higher geometric mean among the five GuacaMol metrics.

Finally, we calculate KLD scores for molecules from the QM9 dataset with property
values close to the target values. For the MolWt conditions, we sample 10,000 molecules
from the dataset that have a MolWt within 1 of the target MolWt. For the LogP conditions,
we sample 10,000 molecules from the dataset that have LogP value within 0.1 of the target
LogP value.

Details of Baseline Models
We train two variants of the Transformer [3] architecture: Small and Regular. The Trans-
former Regular architecture consists of 6 layers, 8 attention heads, embedding size of 1024,
hidden dimension of 1024, and dropout of 0.1. The Transformer Small architecture consists
of 4 layers, 8 attention heads, embedding size of 512, hidden dimension of 512, and dropout
of 0.1. Both Transformer-Small and -Regular are trained with a batch size of 128 until the
validation cross-entropy loss stops improving. We set the learning rate of the Adam optimizer
to 0.0001, β1 = 0.9 and β2 = 0.98. The learning rate is decayed based on the inverse square
root of the number of updates. We use the same hyperparameters for the Transformer Small
and Regular models on both QM9 and ChEMBL.

We follow the open-source implementation of the GuacaMol benchmark baselines at
https://github.com/BenevolentAI/guacamol_baselines for training an LSTM model on
QM9. Specifically, we train the LSTM with 3 layers of hidden size 1024, dropout of 0.2 and
batch size of 64, using the Adam optimizer with learning rate 0.001, β1 = 0.9 and β2 = 0.999.
We do not train the rest of the baseline models ourselves. For QM9: CharacterVAE [49],
GrammarVAE [50], GraphVAE [33], and MolGAN [51] results are taken from Cao and Kipf
[51]. For ChEMBL: AAE [6], ORGAN [54], Graph MCTS [52], VAE, and LSTM results
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are taken from Brown et al. [46]. NAT GraphVAE results are taken from Kwon et al. [35]
for ChEMBL. To carry out unconditional and conditional generation from NAT GraphVAE
on QM9, we train a model using the publicly available codebase provided by the paper’s
authors at https://github.com/seokhokang/graphvae_approx .

Datasets and Evaluation
We evaluate our approach using two widely used [49, 33, 64] datasets of small molecules:
QM9 [43, 44], and a subset of the ChEMBL database [45] (Version 24) as defined by Fiscato
et al. [65] and used by Brown et al. [46]. All references to ChEMBL in this paper are
references to this subset of the database. Heavy atoms and bonds in a molecule correspond
to nodes and edges in a graph, respectively.

The QM9 dataset consists of approximately 132,000 molecules with a median and
maximum of 9 heavy atoms each. Each atom is of one of the following T = 4 types: C, N, O,
and F. Each bond is either a no-bond, single, double, triple or aromatic bond (R = 5). The
ChEMBL dataset contains approximately 1,591,000 molecules with a median of 27 and a
maximum of 88 heavy atoms each. It contains 12 types of atoms (T = 12): B, C, N, O, F,
Si, P, S, Cl, Se, Br, and I. Each bond is either a no-bond, single, double, triple or aromatic
bond (R = 5).

The QM9 dataset is split into training and validation sets, while the ChEMBL dataset is
split into training, validation and test sets. We use the term dataset distribution to refer to
the distribution of the combined training and validation sets for QM9, and the combined
training, validation and test sets for ChEMBL. Similarly, we use the term dataset molecule
to refer to a molecule from the combined QM9 or ChEMBL dataset.

To numerically evaluate our approach, we use the GuacaMol benchmark [46], a suite of
benchmarks for evaluating molecular graph generation approaches. The GuacaMol framework
operates on SMILES strings, so we convert our generated graphs to SMILES strings before
evaluation. Specifically, we evaluate our model using distribution-learning metrics from
GuacaMol: the validity, uniqueness, novelty, KL-divergence [47] and Fréchet ChemNet
Distance [48] scores. GuacaMol uses 10,000 randomly sampled molecules to calculate each
of these scores. Validity measures the ratio of valid molecules, uniqueness estimates the
proportion of generated molecules that remain after removing duplicates and novelty measures
the proportion of generated molecules that are not dataset molecules. The KL-divergence
score compares the distributions of a variety of physiochemical descriptors estimated from
the dataset and a set of generated molecules. The Fréchet ChemNet Distance score [48]
measures the proximity of the distribution of generated molecules to the distribution of the
dataset molecules. This proximity is measured according to the Fréchet Distance in the
hidden representation space of ChemNet, which is trained to predict the chemical properties
of small molecules [66].

Data Availability
Data, pretrained models and lists of generated molecules can be found via https://github.
com/nyu-dl/dl4chem-mgm .

20

https://github.com/seokhokang/graphvae_approx
https://github.com/nyu-dl/dl4chem-mgm
https://github.com/nyu-dl/dl4chem-mgm


Code Availability
Code, training and generation scripts for MGM and baseline models can be found at
https://github.com/nyu-dl/dl4chem-mgm .
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Supplementary Information

A Related Work
In-Silico Molecular Generation Many of the previously proposed generative models of
molecules focused on extending the variational autoencoder (VAE) for molecular generation.
Gómez-Bombarelli et al. [49] proposed the first variational autoencoder (VAE) [4] based
model for generating molecules in their SMILES representations. To address the issue of
VAEs generating syntactically invalid SMILES strings, Kusner et al. [50] explicitly added the
grammar of SMILES strings to VAEs for molecule generation. Wang et al. [67], Guimaraes
et al. [54] and Cao and Kipf [51] used a generative adversarial network (GAN) [7] to build
a generative model of small molecular graphs. Unlike most recent work that has focused
on neural network-based approaches, Jensen [52] showed that genetic algorithms based on
Monte Carlo Tree Search (MCTS) could be competitive on the task of molecular generation.

Masked Language Models Masked language models, such as BERT [15], have been
shown to bring significant improvements to a variety of discriminative language understanding
tasks such as question answering [68, 69] and natural language inference [70, 71]. Wang
and Cho [72], Ghazvininejad et al. [73] and Mansimov et al. [22] proposed ways to generate
text directly from trained masked language models. Wang and Cho [72] proposed the use
of Gibbs sampling, and Mansimov et al. [22] proposed the use of adaptive Gibbs sampling
approaches for effective text generation using masked language models. Ghazvininejad et al.
[73] used conditional masked language models for parallel decoding in machine translation.
They first predict all target words in parallel, and then repeatedly mask out and regenerate
the subset of words that the model is least confident about for a fixed number of iterations.
In parallel to the work investigating masked language models for text generation, Welleck
et al. [74], Stern et al. [75] and Gu et al. [76] proposed methods for non-monotonic sequential
text generation. Although these methods could be applied for generating molecular graphs in
flexible ordering, there has not been work empirically validating this. Due to the popularity
of masked language models in natural language processing tasks, there has been recent work
investigating a similar approach for learning graph representations. Hu et al. [77] investigated
the transfer to downstream tasks of graph neural networks that were trained to predict the
masked node and edge attributes of graphs. Maziarka et al. [78] proposed the molecule
attention transformer architecture that was pretrained to predict masked input nodes and
investigated its transfer to downstream property prediction tasks. Unlike our work, neither
Hu et al. [77] nor Maziarka et al. [78] investigated ways of generating novel molecular graphs
with their trained models.

B Effect of Generation Hyperparameters on Generation
Quality

We analyze the effect of changing the masking rate and graph initialization on generation
quality. In order to do so, we must choose results corresponding to a certain number of
generation steps for each combination of masking rate and initialization. We therefore
evaluate samples at intermediate steps of the generation process, as shown in Supplementary
Figure 1, to determine how the values of the evaluation metrics change as the number of
generation steps increases.
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(a) Training initialization, 10% masking rate

10 50 100 150 200 250 300 350 400
Generation Steps

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Metric
Validity
Uniqueness
Novelty
KL
Frechet

(b) Marginal initialization, 10% masking rate
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(c) Training initialization, 20% masking rate
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(d) Marginal initialization, 20% masking rate

Supplementary Figure 1: Plots of generation scores as a function of number of
generation steps for each initialization and masking rate on QM9.

For training initialization (Supplementary Figures 1a and 1c), the initialized molecules
have perfect validity, uniqueness, KL and Fréchet scores, and zero novelty score. As generation
proceeds, changes are made to the training molecules, yielding some invalid molecules, so the
validity decreases. Some of the changes yield new, valid molecules, so the novelty increases.
These molecules are less similar to the dataset distributions than the training molecules
are themselves, so the KL and Fréchet scores decrease. On the other hand, for marginal
initializations (Supplementary Figures 1b and 1d), the initialized molecules are less likely to
be valid or similar to the dataset molecules. The probability of obtaining duplicate molecules
is low as well. Over time, the molecules converge to valid structures similar to the dataset
molecules, so the validity, KL and Fréchet scores increase. For both training and marginal
initializations, different initialized molecules may converge to the same molecule over time,
lowering uniqueness.

For all configurations and all metrics, the slope of the score with respect to the number
of generation steps tends to flatten over time. When presenting the results of our model
for different masking rates and initializations, we use the benchmark scores at the final
generation step.

We now use these results to analyze the effect of changing the masking rate and graph
initialization for generation in Supplementary Table 1. On QM9, we find that using marginal
initialization leads to slightly higher validity and novelty scores however with lower KL-
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Dataset Mask Rate Graph Init Valid Uniq Novel KL Div Fréchet Dist

QM9

10% train 0.886 0.978 0.518 0.966 0.842
10% marginal 0.922 0.972 0.568 0.930 0.645
20% train 0.678 0.988 0.789 0.901 0.544
20% marginal 0.719 0.982 0.792 0.893 0.529

ChEMBL 1% train 0.849 1.000 0.722 0.987 0.845
5% train 0.558 1.000 0.952 0.869 0.396

Supplementary Table 1: Effect of varying masking rate and graph initialization on
the benchmark results for our masked graph model on QM9 and ChEMBL.

divergence and Fréchet ChemNet Distance scores compared with using training initialization.
When using marginal initialization, the masked graph model generates marginally more novel
molecules at the expense of not capturing the properties of dataset molecules as well. On
ChEMBL, the marginal initialization strategy results in validity scores close to 0, which is
why we only consider the training initialization strategy in Supplementary Table 1. On both
QM9 and ChEMBL, novelty increases significantly when increasing the masking rate while
the validity, KL-divergence and Fréchet Distance scores drop.

Close observation of the results in Supplementary Table 1 suggests that the choice of
masking rate and initialization strategy impacts the balance among the five metrics. Most
significantly, increasing the masking rate results in a higher novelty score, and lower KL-
divergence and Fréchet Distance scores. We can trade off between different metrics as desired
by adjusting the initialization and masking rate.

C Selecting Best Unconditional Generation Results
We have shown that the GuacaMol benchmark metrics are correlated and that our model
can efficiently trade these metrics off against each other. Thus we cannot say that one
generation strategy definitively outperforms another unless it achieves a higher score on each
of the five metrics. However, for the sake of comparison with baseline models, we pick one
generation strategy as follows: we select results from Supplementary Table 1 for each dataset
corresponding to the highest geometric mean among all five metrics.

For QM9, the ‘best’ MGM results correspond to training initialization with a 10% masking
rate. For ChEMBL, the ‘best’ MGM results correspond to training initialization with a 1%
masking rate.

D Effect of Validation Loss on Generation Quality
To determine whether validation loss is a suitable proxy for generation quality, we carry out
generation from different training checkpoints of our ‘best’ QM9 model. During training, we
carried out a hyperparameter search to find the configurations with the lowest validation
loss, which we used as the criterion to select the best model for generation. The experiments
in this subsection explore whether this choice is justified.

Supplementary Figure 2 shows the values of all five benchmark metrics corresponding to
different loss values (i.e., different checkpoints) of our model. In general, as the validation
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(b) Marginal Initialization

Supplementary Figure 2: Benchmark metric results on QM9 corresponding to our
model’s checkpoints corresponding to different validation loss values. A masking
rate of 10% was used.

loss increases, the metrics’ values decrease. We attribute the decrease in validity to the fact
that a less well-trained model is less likely to have learned enough about the relationship
between different parts of a graph to predict masked components that respect the chemical
constraints inherent in this type of data. The increase in novelty and decrease in KL and
Fréchet scores are explained by better-trained models being more likely to predict masked
components from the most similar context in the training/validation data. Occasionally this
causes our model to generate an exact copy of a molecule from the training dataset, lowering
the novelty; in general, it produces molecules whose local neighborhoods are similar to those
of molecules in the training/validation data, thereby increasing the KL and Fréchet scores.
The sharp decrease in novelty and uniqueness as the loss increases from 1.17 to 1.65 can be
attributed to the low validity, as GuacaMol implicitly penalizes all metrics when the validity
drops below 0.5.

We conclude that selecting the model with the lowest validation loss for generation is a
reasonable strategy. This implies that using more powerful graph neural networks within
our masked graph modeling framework could improve generation quality. Finding model
architectures that lower the validation loss is a good direction for future work.
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E Further Supplementary Tables and Figures

d0 MPNNs Layers per MPNN Batch Size Learning Rate LR Decay Validation Loss
2048 1 4 100 0.0005 no 0.29
2048 1 4 800 0.0005 no 0.20
2048 1 6 512 0.0001 no 0.12
2048 1 6 512 0.0005 no 0.17
2048 1 6 512 0.005 yes 0.38
2048 1 6 1024 0.0005 no 0.16
2048 1 8 50 0.0005 no 0.32
2048 1 8 100 0.0005 no 0.23
2048 1 8 400 0.0005 no 0.19
2048 1 16 25 0.0005 no 0.40
2048 1 16 100 0.0005 no 0.23
2048 2 2 400 0.0005 no 0.22
2048 2 3 512 0.005 yes 0.38
2048 2 4 400 0.0005 no 0.17
4096 1 4 400 0.0005 no 0.28
4096 1 6 512 0.005 yes 1.00
4096 1 6 1024 0.0001 no 0.15
4096 1 6 1024 0.0005 no 0.19
4096 1 6 2048 0.0005 no 0.19

Supplementary Table 2: Hyperparameter configurations and corresponding valida-
tion set loss on the ChEMBL dataset. The rows are arranged in ascending order,
greedily by column from left to right. LR decay stands for learning rate decay and cor-
responds to decreasing the learning rate to a minimum of 0.0005 by halving the current
learning rate every 204,800 data points. The hyperparameter configuration corresponding to
the lowest loss is given in bold font and was used to generate the ChEMBL results presented
in this paper.
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Supplementary Figure 3: Plots of validity against novelty, two anti-correlated met-
rics from the GuacaMol [46] distribution-learning benchmark. The plots are gen-
erated in the same way as for Figure 1 in the main text.
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Supplementary Figure 4: Schematic for unconditional generation with an initial
graph with 10 nodes and a 10% masking rate. The initial graph can either be taken
from the training set (training initialization) or initialized using the training set distribution
(marginal initialization). At each of the K sampling iterations, 10

100 ∗ 10 = 1 node and
10
100 ∗

10(10−1)
2 ≈ 5 prospective edges are masked out and replaced.
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Feedforward Network

Feedforward Network

Shared weights GRU

LayerNorm

(a) Node Update Step. The diagram shows the calculation of the updated representation of node v1
in the graph at the top of the figure.

⊗
denotes elementwise multiplication.

Feedforward Network

(b) Edge Update Step. The diagram shows the calculation of the updated representation of edge
e
(l+1)
1,2 in the graph at the top of the figure.

Supplementary Figure 5: MPNN update steps

33



Supplementary Figure 6: A selection of unconditionally generated novel molecules
from ChEMBL. The molecules are randomly chosen from the subset of novel generated
molecules with QED > 0.9.
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Supplementary Figure 7: A selection of unconditionally generated novel molecules
from QM9. The molecules are randomly chosen from the subset of novel generated molecules
with QED > 0.6.
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