Quadruplex folding promotes the condensation of linker histones and DNAs via liquid-liquid phase separation

Masahiro Mimura^{†,‡}, Shunsuke Tomita^{*,‡}, Yoichi Shinkai^{*}, Takuya Hosokai^{*}, Hiroyuki Kumeta^{//},

Tomohide Saio[¶], Kentaro Shiraki[†], Ryoji Kurita ^{*,†,‡,§}

[†]Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan,
 [†]Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1
 [†]Higashi, Tsukuba, Ibaraki 305-8566, Japan, *Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan, *National Metrology Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan, //Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan, [§]DAILAB, DBT-AIST International Center
 [†]for Translational and Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan,
 ^{*}Corresponding author

13 KEYWORDS, Chromatin condensation, G-quadruplex, Histone, Liquid-liquid phase separation

ABSTRACT: Liquid-liquid phase separation (LLPS) of proteins and DNA has recently emerged as a possible mechanism un-15 derlying the dynamic organization of chromatin. We herein report the role of DNA quadruplex folding in liquid droplet for-16 mation via LLPS induced by interactions between DNA and linker histone H1 (H1), a key regulator of chromatin organization. 17 Fluidity measurements inside the droplets, binding assays using G-quadruplex-selective probes, and structural analyses 18 based on circular dichroism demonstrated that quadruplex DNA structures, such as the G-quadruplex and i-motif, promote 19 droplet formation with H1 and decrease molecular motility within droplets. The dissolution of the droplets in the presence 20 of additives and the LLPS of the DNA structural units indicated that in addition to electrostatic interactions between the DNA 21 and the intrinsically disordered region of H1, π - π stacking between quadruplex DNAs could potentially drive droplet formation, unlike in the electrostatically driven LLPS of duplex DNA and H1. According to phase diagrams of anionic molecules 23 24 with various conformations, the high LLPS ability associated with quadruplex folding arises from the formation of interfaces consisting of organized planes of guanine bases and the side surfaces with high charge density. Given that DNA quadruplex 25 structures are well documented in heterochromatin regions, it is imperative to understand the role of DNA quadruplex folding 26 in the context of intranuclear LLPS. 27

28 Introduction

14

²⁹ Genomic DNA in eukaryotic cells wraps around histone protein cores to form nucleosomes, which are further compacted into chromatin.¹ The level of chromatin condensation is closely related to gene transcription;² heterochromatin is a tightly packed form that is inaccessible to polymerases and thus inactivates gene transcription, whereas gene transcription is activated in euchromatin, in which the nucleosomes are loosely packed.³ Chromatin undergoes highly dynamic changes in its condensed structure during a cell cycle. However, the mechanisms that govern the organization of chromatin remain largely unknown.

Liquid-liquid phase separation (LLPS) has emerged as a possible mechanism for the control of chromatin 42 organization through the promotion of nucleosome pack-⁴³ ing.⁴ Biological LLPS is a process in which solutions of biom-⁴⁴ acromolecules spontaneously separate into two phases.^{5,6} ⁴⁵ In such events, one phase is usually a small-volume droplet-46 like phase in which the biomacromolecules are concen-47 trated in aqueous media, while the other is the surrounding ⁴⁸ phase, which is depleted of the biomacromolecules.⁷ Multi-49 valent weak intermolecular interactions involving intrinsi-50 cally disordered regions (IDRs) of proteins, such as electrostatic, cation- π , and π - π interactions, play crucial roles in 52 LLPS.^{5,6} For instance, binding of the IDR-containing heteros chromatin protein HP1 α to the histone H3K9 methylation 54 site induces LLPS in specific domains of heterochromatin.^{8,9} 55 LLPS also occurs in euchromatin regions that are rich in 56 acetylated histone tails when the transcriptional regulator ⁵⁷ protein BRD4, which contains a long IDR, is co-localized.^{10,11}

⁵⁸ Thus, the nature of the relationship between LLPS-⁵⁹ mediated chromatin-condensation and proteins is gradu-⁶⁰ ally determined.

Several reports have indicated that DNA is also involved in the LLPS associated with chromatin condensation. The length of the inter-nucleosome linker DNA strongly affects the LLPS of nucleosome arrays.¹⁰ Double-stranded DNA induces LLPS in the presence of histone H1,¹² which is capable of regulating chromatin organization via binding to internucleosome linker DNA. However, knowledge regarding the structure of the DNA involved in LLPS-mediated chromatincondensation is still very limited. Therefore, in this work, we have focused on the secondary structures of DNA, espetically the most common G-quadruplex structure.¹³

G-quadruplex is a stacking planar structure formed 72 ⁷³ through Hoogsteen hydrogen bonds between four guanine ⁷⁴ residues (Figure 1A).¹³ Guanine-rich sequences with the po-75 tential to fold into the G-quadruplex structure are fre-76 quently observed in oncogene promoter sequences and te-77 lomere regions, which are known as quadruplex clusters or 78 G4 clusters,^{14,15} where they may promote or inhibit the ac-79 cess of transcriptional factors or telomere binding pro-⁸⁰ teins.^{16,17} Recently, it has been revealed that G-quadruplex ⁸¹ sequences are also abundant in heterochromatin region;¹⁸ ⁸² however, the role of these sequences on chromatin conden-83 sation has not been clarified. Thus, we attempted to eluci-⁸⁴ date the relationship between the G-quadruplex DNA struc-85 ture and the LLPS of chromatin constituents using a variety ⁸⁶ of sequences that are capable of forming quadruplex struc-87 tures. The presented findings will facilitate the understand-⁸⁸ ing of the role of G-quadruplex structures in the cell nucleus ⁸⁹ and chromatin condensation.

90 Results and Discussion

91 LLPS of G-quadruplex-forming ssDNA with H1

⁹² To investigate the effect of G-quadruplex formation on LLPS ⁹³ in the context of chromatin condensation, we chose histone 94 H1 (H1) and various single-stranded DNA (ssDNA) 95 sequences. H1 controls the packing density of nucleosomes 96 via non-specific electrostatic interactions between its 97 positively charged lysine-rich IDR at its C-terminal and ⁹⁸ negatively charged DNA (Figure 1B).¹⁹ Shakya et al. recently 99 reported that among histone proteins, H1 has the highest 100 ability to form droplets with DNA via LLPS.²⁰ Four 22 nt 101 ssDNA sequences were initially prepared (Figure 1C): an 102 oncogene *c-myc* promoter sequence that can fold into a par-¹⁰³ allel G-quadruplex structure (Pu22)²¹; sequences in which 104 one or two of the successive guanines of Pu22 were re-¹⁰⁵ placed with adenine (Pu22-1 and Pu22-2, respectively); and 106 a simple repeat of deoxyadenylic acid (poly(dA)) with a ran-107 dom coil structure. The nucleotides are arranged an all-anti ¹⁰⁸ configuration in the parallel forms of G-quadruplexes, while 109 the antiparallel forms contain nucleotides in both syn and 110 anti configurations (Figures 1A and S1A). The secondary 111 structure of each ssDNA was examined by circular

dichroism (CD) measurements, which revealed that with
decreasing number of guanines, the content of G-quadruplex structures decreased (Pu22 to Pu22-1), whereby Pu222 exhibits a random coil-like structure (for details, see section 3 of the Supporting Information).

The turbidity of the aqueous solutions of the guanine-117 118 containing sequences (Pu22, Pu22-1, and Pu22-2) in-119 creased upon addition of H1 up to a certain concentration ([H1]/[ssDNA] = 0.2-0.4) (Figure 2A), indicating that inter-121 actions between the ssDNA sequences and H1 resulted in 122 the formation of large assemblies. Interestingly, the maxi-123 mum turbidity values of the solutions increased with the 124 number of continuous guanines in the ssDNA sequence 125 (Pu22 > Pu22-1 > Pu22-2). The decreased turbidity at high 126 concentrations of H1 probably results from repulsive forces 127 that arise from the excess of positive charge; 12,23 thus, elec-128 trostatic interactions between the cationic H1 and anionic 129 ssDNA are presumably a dominant force in the formation of 130 the assemblies. However, although poly(dA), like the other 131 ssDNA sequences, is anionic, the poly(dA) solution did not 132 exhibit an apparent increase in turbidity upon addition of 133 H1.

¹³⁵ Figure 1. Sequence and higher order structure of the molecules ¹³⁶ used in this study. (A) Schematic illustration of the parallel G-¹³⁷ quadruplex DNA structure (left), which consists of stacked G-¹³⁸ quartets (right). (B) Disorder probability of the H1 structure as ¹³⁹ predicted using the Protein DisOrder prediction System ¹⁴⁰ (PrDOS).²² Regions of the sequence that exhibit a score bigger ¹⁴¹ than 0.5 are defined as intrinsically disordered regions (high-¹⁴² lighted in light blue). The sequence of H1 from bovine thymus ¹⁴³ was obtained from Uniprot code Q0IIJ2. (C) Sequences and ¹⁴⁴ structures of the ssDNA used in this study.

147

148

149

150

151

152

153

Figure 2. Liquid-like droplets of G-quadruplex-forming ssDNA with H1. (A) Turbidity of solutions that contain various ssDNA sequences (10 μ M) and H1 (0-10 μ M). (B) Phase-contrast-microscopy images of solutions that contain ssDNA (10 μ M) and H1 (2 μ M); scale bar = 25 μ m. (C) Fusion process of the Pu22/H1 droplets; scale bar = 10 μ m. (D) Left: FRAP recovery curves for the different ssDNA structures. Right: recovery times of fluorescence calculated by exponential fitting (colored lines; N = 3), and fluorescence images obtained during the FRAP measurement of a Pu22/H1 liquid droplet. The white arrowhead indicates the bleaching site; scale bar = 5 μ m. (E) Selectivity of the ssDNA sequences for the droplet formation with H1. Either Pu22 or poly(dA) was modified with FAM, and both (10 μ M) were mixed with H1 (2 μ M). The fluorescence intensity along the white line was quantified from the brightness of each pixel; scale bar = 20 μ m. All experiments were carried out in 10 mM Tris-EDTA buffer (pH = 7.4).

Spherical assemblies were observed via phase-contrast 154 155 microscopy for all turbid ssDNA solutions ([H1]/[ssDNA] = 156 0.2; Figure 2B), similarly to our recent studies of cationic ¹⁵⁷ protein/anionic polymer pairs.^{24,25} Time-lapse images 158 showed rapid, sub-millisecond fusion of the assemblies (Figure 2C). This behavior indicates that these assemblies 159 are not gel-like aggregates, but instead liquid-like droplets 160 with highly fluid properties, as have been observed for 161 ¹⁶² other phase-separating proteins.²⁶ Consistent with the tur-¹⁶³ bidity measurements (Figure 2A), the size of the observed ¹⁶⁴ droplets decreased with decreasing number of continuous 165 guanines in the ssDNA sequence. In the case of poly(dA), 166 only small droplets (diameter $< 1.0 \mu m$) were formed. Simi-167 lar behavior was observed for other ssDNA sequences, including an anti-parallel G-quadruplex sequence present in 169 telomeric regions (22AG), its derivatives, and a simple re-170 peat of deoxythymidylic acid (poly(dT)) (Figure S1). Thus, 171 ssDNA sequences capable of forming G-quadruplex are 172 likely to have a high ability to form droplets with H1.

The effect of the ssDNA sequence on the fluidity inside the droplet was compared using fluorescence recovery after photobleaching (FRAP), which is a common method for evaluating the motility of molecules inside the droplets.²⁷ The diffusion rate of the carboxyfluorescein (FAM)- ¹⁷⁸ modified ssDNA sequences increased with decreasing num-¹⁷⁹ ber of continuous guanines [poly(dA) > Pu22-2 > Pu22-1 > ¹⁸⁰ Pu22], i.e., in the opposite order of the content of quadru-¹⁸¹ plex structures (Figure 2D). Interestingly, the density of the ¹⁸² ssDNAs inside the droplet was correlated with their motility ¹⁸³ (Figure S2), i.e., the higher the G-quadruplex content, the ¹⁸⁴ lower the density inside the droplet, despite the stronger in-¹⁸⁵ termolecular interactions inside the droplet. Therefore, the ¹⁸⁶ G-quadruplex folding also controls the motility and density ¹⁸⁷ of the molecules inside the resulting droplets, which could ¹⁸⁸ potentially affect cellular functions such as the inhibition of ¹⁸⁹ gene transcription.

To study the sequence selectivity of the droplet formation, either Pu22 or poly(dA) was labeled with FAM, and then both were mixed with H1. When Pu22 was labeled, the inside of the droplet emitted strong fluorescence, whereas the fluorescence inside and outside of the droplet was comparable for labeled poly(dA) (Figure 2E), suggesting sequence selectivity not only in the formation of droplets with H1, but also in the incorporation of ssDNA into the resulting droplets.

Based on these results, it seems feasible to conclude that ssDNA sequences that can fold into G-quadruplex structures plays a significant role in (i) the generation of LLPS through

204

205

206

207

Figure 3. Analysis of G-quadruplex structures inside the liquid droplets using fluorescent molecular probes. (A) Chemical structures of the fluorescent probes ThT and NMM, which exhibit greatly enhanced fluorescence upon their selective binding to G-quadruplex structures. The binding selectivity of ThT and NMM is taken from refs ²⁸ and ²⁹, respectively. Fluorescence intensity of (B) ThT and (D) NMM in solutions that contain ssDNA (10 μ M) with or without H1 (2 μ M). Fluorescence microscopy images of ssDNA/H1 liquid droplets after the addition of (C) ThT and (E) NMM; scale bar = 25 μ m (10 μ m for poly(dA)).

²⁰⁶ interactions with H1, (ii) the motility and density of the mol-²⁰⁹ ecules inside the formed droplets, and (iii) the ability of the ²¹⁰ droplets to incorporate other ssDNAs.

211 G-quadruplex folding within liquid-like droplets

²¹² The stability of the G-quadruplex structure is affected by ²¹³ protein binding.¹⁷ Since the components of the droplets ²¹⁴ formed through LLPS are generally concentrated within the ²¹⁵ droplets by a factor of several to several hundred compared 216 to the surrounding phase,^{10,30} the G-quadruplex content 217 might fluctuate due to the presumably high concentration 218 of H1 inside the droplets. Therefore, we investigated the 219 folding state of the ssDNA within the droplet using two 220 fluorogenic probes that selectively bind to G-quadruplex 221 structures, thioflavin T (ThT) and N-methylmesoporphyrin 222 IX (NMM) (Figure 3A). ThT binds to G-quadruplex 223 structures regardless of their configration,²⁸ while NMM 224 recognizes only parallel-folded G-quadruplexes.²⁹ These 225 probes are almost nonfluorescent in aqueous solution, but 226 exhibit strong emission when bound to G-quadruplex 227 structures.

In the absence of H1, the overall fluorescence intensity of the solutions in the presence of ThT follows the order Pu22 Pu22-1 > Pu22-2 >> Poly(dA), i.e., the abundance of Gquadruplex structures increases with increasing number of successive guanines in the ssDNA sequence (Figure 3B; for the fluorescence spectra, see Figure S3A). The fluorescence intensity of ThT after the droplet formation is comparable for the Pu22-2/H1 or poly(dA)/H1 solutions, while that of the Pu22/H1 and Pu22-1/H1 solutions increases 1.5- and 237 1.6-fold, respectively (Figure 3B). These fluorescence en238 hancements were not due to changes in the dielectric con239 stant within the droplets, peak shifts, or changes in the flu240 orescence lifetimes, but instead to the enhanced formation
241 of the G-quadruplex structure to which ThT can bind (for
242 details, see section 4 of the Supporting Information).

Fluorescence microscopy images of the Pu22 and Pu22-1 solutions showed significant fluorescence inside the droptets (Figure 3C), demonstrating that the binding of ThT to the G-quadruplex occurred mainly inside the droplets. In contrast, the Pu22-2 and poly(dA) solutions exhibited very weak fluorescence. We found that other fluorescent dyes (8anilino-1-naphthalenesulfonic acid, Nile red, and rhodamine 6G) tended to be concentrated in the ssDNA/H1 droplets, regardless of the dye structure or ssDNA sequence (Figure S4). Unlike these dyes, in addition to being concentrated in the ssDNA-rich droplets, ThT must be bound to the Gquadruplex in order to emit visible fluorescence, as indites cated in section 4 of the Supporting Information.

The CD spectra of the droplet suspensions and con-²⁵⁷ densed phases supported the possibility of the promotion ²⁵⁸ and maintenance of G-quadruplex folding inside the drop-²⁵⁹ lets (for details, see section 5 of the Supporting Infor-²⁶⁰ mation). The measurements of the condensed phase using ²⁶¹ high-resolution magic angle spinning nuclear magnetic res-²⁶² onance (HR-MAS-NMR), which is a suitable technique for ²⁶³ the NMR measurement of samples with high viscosity,³¹ ²⁶⁴ suggested that the conformation of quadruplex Pu22 inside ²⁶⁵ the droplets may be polymorphic within the range to which ²⁶⁶ G-quadruplex specific probes can bind (for details, see sec-²⁶⁷ tion 5 of the Supporting Information).

The origin of the enhancement of the G-quadruplex fold-268 269 ing was explored using two model cationic polymers in-270 stead of H1: a simple repeat poly-L-lysine (PLL), and PLL 271 with a polyethylene glycol chain, which inhibits droplet 272 growth (for details, see section 6 of the Supporting Infor-273 mation). Briefly, the results suggest that one of the domi-274 nant factors was the direct non-specific interactions be-275 tween polycationic chains and ssDNAs. Such interactions 276 could potentially lead to suppression of the inter- and intra-277 molecular repulsion of ssDNAs by neutralization of the ²⁷⁸ phosphate groups and subsequent promotion of nucleobase ²⁷⁹ stacking. Another possibility is that the molecular crowding causes dehydration of G-quadruplex structures, which sta-280 bilizes this conformation.³² The dense, crowded environ-281 ment inside the droplets may also lead to enhanced folding. 282

In the case of a telomere-derived sequence (22AG) that is 283 ²⁸⁴ capable of folding into an anti-parallel G-quadruplex struc-²⁸⁵ ture, ThT gave results similar to Pu22 (Figure S3B), whereas 286 NMM exhibited interesting behavior. Aqueous solutions of ²⁸⁷ Pu22 showed similar strong fluorescence with or without 288 H1 after the addition of NMM, which is specific to parallel-²⁸⁹ type G-quadruplexes (Figure 3D), indicating that the paral-²⁹⁰ lel G-quadruplex structure of Pu22 is not significantly dena-²⁹¹ tured by H1. On the other hand, substantial NMM emission ²⁹² was observed from the entire solution of anti-parallel 22AG ²⁹³ only after droplets were formed by the addition of H1. Sim-²⁹⁴ ilar to the emission of ThT, that of NMM was concentrated ²⁹⁵ inside the droplets for both ssDNA sequences (Figure 3E). 296 The enhancement in the fluorescence after droplet for-²⁹⁷ mation for 22AG suggests that the G-quadruplex structures ²⁹⁸ of 22AG transitioned from the anti-parallel to the parallel ²⁹⁹ form. The CD spectra of the condensed phases also indicate 300 the possibility of the structural transition (Figure S18B). Similar to the enhanced folding of Pu22, this structural tran-301 302 sition seems to be mainly due to the interaction with the cat-303 ionic tail of H1 (for details, see section 6 of the Supporting 304 Information), but the molecularly crowded environments 305 might also be significant.³³ It has been reported that the 306 anti-parallel to parallel transition in telomere-derived 307 ssDNA inhibits telomerase processability.³³ Thus, if transi-308 tion of the G-quadruplex structures of 22AG is coupled to 309 the droplet-formation-inducing interaction with H1, it was 310 presumably involved in the telomere activity switching 311 mechanism in the cell nucleus.

312 Generality of the promotion of LLPS by the quadruplex313 conformation

³¹⁴ To clarify the generality of the promotion of LLPS by quad-³¹⁵ ruplex structures in ssDNA, we tested another quadruplex ³¹⁶ structure formed by successive cytosine bases, the so-called ³¹⁷ i-motif (Figure 4A).³⁴ As in the case of G-quadruplex, the in-³¹⁸ crease in turbidity upon addition of H1 was greater for an i-³¹⁹ motif-forming sequence (22CT) than for a shuffled variant ³²⁰ of this sequence in which the cytosines are not successive 321 (22CT_{shuffle}) (Figure 4B). Consistent with the turbidity re- 322 sults, the droplets formed by 22CT were significantly larger 323 than those formed by 22CT_{shuffle} (Figure 4B). The CD spec- 324 trum of the condensed phase suggested that the folding of 325 22CT into the i-motif was promoted by the process of drop- 326 let formation (Figure S18C).

Thus, the dependence of the phase separation behavior on the arrangement of the ssDNA suggests that the quadruplex structure is important in promoting LLPS with H1, regardless of the kind of constituent nucleobases. In addition, we found that the droplet formation between quadruplexforming ssDNAs and polycationic chains such as H1 was synchronized with structural stabilization or transition.

³³⁴ Driving forces for the formation of droplets between³³⁵ DNAs and H1

³³⁶ Subsequently, we investigated the reason that the quadru-³³⁷ plex structures promote droplet formation between H1 and ³³⁸ ssDNA. To gain further insight into the driving forces of ³³⁹ droplet formation, we examined the effects of additives ³⁴⁰ (NaCl and 1,6-hexanediol) that can inhibit electrostatic and ³⁴¹ hydrophobic interactions, respectively,³⁵ by adding them to ³⁴² solutions containing the DNA/H1 liquid droplets. For com-³⁴³ parison, we also used 11-base pairs of double-stranded ³⁴⁴ DNA (dsDNA₁₁; Figure 1C), which had the same total num-³⁴⁵ ber of nucleobases as the other ssDNAs. The duplex struc-³⁴⁶ ture has some features similar to those of the quadruplex ³⁴⁷ structure: (i) nucleobases embedded by base pairing, (ii) a ³⁴⁸ relatively rigid structure, and (iii) LLPS when mixed with ³⁴⁹ H1.^{12,36}

³⁵¹ Figure 4. Droplet formation in a solution that contains cytosine-³⁵² based quadruplex structures and H1. (A) Schematic illustration ³⁵³ of the i-motif structure and the DNA sequences used in this ex-³⁵⁴ periment. (B) Formation of liquid droplets in solutions of i-mo-³⁵⁵ tif DNA (22CT) or a shuffled sequence (22CTshuffle) with H1 (2 ³⁵⁶ μ M); scale bar = 20 μ m.

NaCl markedly reduced both the turbidity of the solution and the droplet size (Figures 5A and S5). In all DNAs, the droplets disappeared completely at higher-than-physiological NaCl concentrations (~300 mM), as observed previously.¹² This result demonstrates that the electrostatic interactions between the cationic C-terminus of H1 and the anionic phosphate groups of DNAs are the dominant driving force in the generation of LLPS.

Unexpectedly, the droplets consisting of the various G-365 ³⁶⁶ quadruplex-forming ssDNAs gradually dissolved as the 1,6-367 hexanediol concentration was increased, whereas the tur-368 bidity of the solutions containing droplets formed by 369 dsDNA₁₁ did not change at all, even in the presence of 20% 1,6-hexanediol (Figures 5B and S6). This result suggests 370 that hydrophobic interactions contribute substantially to 371 372 the stabilization of the droplets of G-quadruplex-forming 373 ssDNAs, but not those of dsDNA11. To better understand the ³⁷⁴ nature of these hydrophobic interactions, the relationship 375 between LLPS and the nucleotide-monophosphate (NMP) 376 DNA structural units was examined. Among the four NMPs, 377 only guanine monophosphate (GMP) caused droplet for-³⁷⁸ mation in the presence of both H1 and high concentrations 379 of PEG, which is known to promote the generation of LLPS 380 (Figures 5C and S7).37

Guanine has the lowest energy of stacking interaction with both aromatic amino acids³⁸ and nucleobases³⁹ among the nucleobases. Considering the fact that H1 contains only several aromatic amino acids (only two Phe and three Tyr in 194 aa), more stable stacking of the guanine bases may explain the results observed for the various NMPs, i.e., it is plausible that the hydrophobic π - π stacking of guanine bases is a significant factor for the LLPS of G-quadruplexes.

Taken together, (i) electrostatic interactions between the 380 390 DNAs and the intrinsically disordered region of H1 and (ii) $\pi - \pi$ stacking between quadruplex DNAs drove droplet for-³⁹² mation between G-quadruplex DNA and H1, unlike in the electrostatically driven LLPS of duplex DNA and H1. In ad-393 ³⁹⁴ dition to electrostatic interactions, π - π interactions are 395 known to be significant in protein phase separation to di-396 rect the state of the assembly towards liquid-like droplets ³⁹⁷ rather than gel-like aggregates.⁴⁴ Hydrogen-bonding inter-³⁹⁸ actions between partially exposed guanine bases and lysine ³⁹⁹ residues⁴⁵ of H1, and cation- π interactions, which stabilize ⁴⁰⁰ a wide variety of intracellular droplets,^{46,47} between the 401 same pairs may also contribute to the stability of the 402 DNA/H1 droplets. These considerations were also sup-⁴⁰³ ported by an experiment using ssDNA with shuffled vari-404 ants of G-quadruplex-forming sequences (for details, see ⁴⁰⁵ Section 7 of the Supporting Information).

⁴⁰⁶ Role of structural rigidity on the formation of droplets⁴⁰⁷ between DNAs and H1

Although the key driving forces have been identified, the effects of the structuring of ssDNA on the formation of droptio lets are still puzzling. It is generally believed that biological

⁴¹² Figure 5. Physicochemical properties of the DNA/H1 liquid ⁴¹³ droplets. (A and B) Turbidity of solutions of the ssDNA/H1 liq-⁴¹⁴ uid droplets in the presence of (A) 0–300 mM NaCl or (B) 0-⁴¹⁵ 20% 1,6-hexanediol. Insets are phase-contrast images of the ⁴¹⁶ Pu22/H1 liquid droplets in the presence of NaCl; scale bar = 25 ⁴¹⁷ μ m. (C) Phase-contrast microscopy images of solutions that ⁴¹⁸ contain 20 mM NMP, 2 μ M H1, and 15% PEG4000; scale bar = ⁴¹⁹ 10 μ m.

⁴²⁰ LLPS requires flexible sequences (e.g., IDR).⁴⁸ It has been re-⁴²¹ ported that when DNAs are stiffened by the formation of ⁴²² secondary structures such as double strands or loops, they ⁴²³ form gel-like aggregates rather than liquid-like droplets in ⁴²⁴ the presence of cationic macromolecules,^{49,50} or are ex-⁴²⁵ cluded from protein droplets.⁵¹ The high droplet formation ⁴²⁶ ability of the compact and rigid quadruplex folding struc-⁴²⁷ ture seems to be inconsistent with these findings.

Therefore, the effect of structuring was investigated by comparing the LLPS of flexible poly(dA) and a highly rigid, hydrophilic, spherical poly(amidoamine) (PAMAM) dendrimer with 64 carboxyl groups on its surface. According to the phase diagrams of H1 vs. NaCl concentration (Figures 6, S8 and S9), Pu22, whose rigidity is intermediate between those of dsDNA⁴⁰ and the PAMAM dendrimer,⁵² clearly exbilited the highest phase separation ability (Figure 6). This result implies that structural flexibility is not necessarily an essential factor for LLPS with H1. The PAMAM dendrimer such as the histone chaperone prothymosin alpha, which and condense H1 without LLPS,⁵³ and our result may be similar to the behavior of such proteins.

The observed high LLPS ability of quadruplex folding structures is possibly due to the formation of interfaces condata sisting of organized top/bottom planes of guanine bases and the side surfaces with high charge density. As recently reported, interactions between interfaces formed by structuring can promote LLPS.⁵⁴ Short dsDNAs also undergo

449

450

Figure 6. Phase diagrams of aqueous mixtures of H1 and various anionic molecules. The solution states are plotted as the NaCl concentration vs. the molar mixing ratio of H1 to DNAs (10 μM) or PAMAM (3.44 μM). The concentration range of PAMAM (64 anions per molecule) was chosen to have the same charge as the DNA solution (22 anions per molecule). Pink dots: no phase separation; 451 blue dots: liquid-liquid phase separation; black dots: solid-liquid phase separation (i.e., aggregation). The order of the rigidity and 452 charge density of the molecules was based on references 40 and 41, and 42 and 43, respectively. 453

⁴⁵⁴ hierarchical self-assembly by end-to-end stacking of base ⁴⁵⁵ pairs at the terminal interfaces upon droplet formation with ⁴⁵⁶ polycations.⁵⁵ The G-quadruplex exhibits more open and 457 wider stacking interfaces compared to the duplex, and 458 DNAs with quadruplex structures tend to stack intermolec-459 ularly in the longitudinal direction at high concentra-460 tions.^{56,57} These characteristics explain the smaller contri-461 bution of hydrophobic interactions in the duplexes com-⁴⁶² pared to that in the G-quadruplexes. Indeed, the phase dia-463 grams showed that Pu22 droplets appeared to be more tol-⁴⁶⁴ erant to salts than dsDNA₁₁ droplets (Figures 6 and S10). This difference should be attributed to improved stability 465 ⁴⁶⁶ due to hydrophobic inter-nucleobase stackings provided by ⁴⁶⁷ the upper and lower surfaces of G-quartets. Turbidity meas-⁴⁶⁸ urements (Figure 2A) showed that one H1 molecule bound ⁴⁶⁹ to multiple ssDNAs. This bridging of ssDNAs by H1 likely 470 contributed to the facilitation of the stacking, and eventually ⁴⁷¹ stabilized the intermolecular G-quadruplex formation.

The correlation between the LLPS ability of DNAs with 472 473 the same number of charges [Pu22, dsDNA11, and poly(dA)] ⁴⁷⁴ and charge density (Figure 6) also suggests the importance ⁴⁷⁵ of increasing the charge density via structuring. In addition 476 to the planar interfaces preferred for π - π stacking on the 477 top and bottom surfaces, the formation of high-charge-den-⁴⁷⁸ sity interfaces on the side surfaces that allow strong electro-479 static contacts⁵⁸ provides unique features favorable for 480 droplet formation. We thus concluded that the densification 481 of the electrostatic and stacking interactions via the for-⁴⁸² mation of such structures is a key to the high LLPS ability of 483 quadruplex folding structures.

The possible existence of G-quadruplex droplets in the 484 ⁴⁸⁵ cell nucleus is suggested by the fact that the droplets formed ⁴⁸⁶ by G-quadruplexes became larger with increasing molecu-487 lar concentration, even at physiological ionic strength, un-488 like random structured DNA (Figure S11). The quadru-489 plexes in the nucleus are inhomogeneously distributed de-⁴⁹⁰ pending on the surrounding environment and protein

491 binding. For example, G-quadruplex DNAs and RNAs are ⁴⁹² concentrated in the promoter and telomere regions of spe-493 cific genes to form G-quadruplex clusters.^{14,15} The concen-494 trations of G-quadruplex DNAs and RNAs thus formed in the 495 nucleus could potentially exceed the thresholds of LLPS lo-496 cally and transiently, and could be involved, for example, in ⁴⁹⁷ H1-mediated chromatin LLPS that changes over time.³⁶ 498 Careful observations of guadruplex DNAs in cells from the 499 perspective of LLPS will shed new light on the role of quad-500 ruplex DNAs.

501 Conclusion

⁵⁰² In summary, we have demonstrated that the formation of 503 quadruplex structures in single-strand DNA (ssDNA), in-504 cluding guanine-based parallel and anti-parallel G-quadru-⁵⁰⁵ plexes and cytosine-based i-motif structures, promotes the 506 formation of liquid-like droplets with linker histone H1 via ⁵⁰⁷ liquid-liquid phase separation (LLPS). The quadruplex fold-⁵⁰⁸ ing is maintained or, in some cases, promoted inside the 509 droplet. Increasing the quadruplex content decreases both 510 the motility and the density of the molecules that comprise 511 the droplet. These droplets are likely formed via not only 512 electrostatic interactions between the anionic ssDNA and 513 the cationic C-terminus of H1, but also via π - π interactions 514 between the quadruplex structures. Thus, DNA quadruplex 515 structures may be capable of regulating LLPS-mediated dy-516 namic chromatin condensation in the nucleus. DNA and 517 RNA with G-quadruplex structures can selectively interact 518 with nuclear proteins such as fused in sarcoma (FUS) and 519 hnRNPA1, which cause amyotrophic lateral sclerosis (ALS) ⁵²⁰ and tend to phase-separate.^{59,60} Accordingly, we expect that 521 the quadruplex structure can act as a hub that regulates bi-522 ological processes such as chromatin condensation in the 523 nucleus via LLPS.

524 AUTHOR INFORMATION

525 Corresponding Authors

- ⁵²⁶ **Shunsuke Tomita** ORCID: orcid.org/0000-0002-0586-6976;
- 527 E-mail: s.tomita@aist.go.jp
- 528 **Ryoji Kurita -** ORCID; orcid.org/0000-0001-5666-9561;
- 529 Email: r.kurita@aist.go.jp
- 530 Notes

⁵³¹ The authors declare no competing financial interest.

532 ACKNOWLEDGMENT

We thank Prof. Daisuke Miyoshi (Konan University) for fruitful
 discussions. This study was partially supported by a
 DAICENTER project grant from the DBT (Govt. of India), a spe cial strategic grant from AIST (Japan), and JSPS KAKENHI
 grants 18H02383 and 19K22377.

538 REFERENCES

- Kouzarides, T. Chromatin Modifications and Their Function.
 Cell 2007, *128* (4), 693–705.
- Criscione, S. W.; Teo, Y. V.; Neretti, N. The Chromatin Landscape of Cellular Senescence. *Trends Genet.* 2016, *32*(11), 751–761.
- Grunstein, M. Histone Acetylation in Chromatin Structure and Transcription. *Nature* 1997, *389* (6649), 349–352.
- Erdel, F.; Rippe, K. Formation of Chromatin
 Subcompartments by Phase Separation. *Biophys. J.* 2018, 114 (10), 2262–2270.
- Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K.
 Biomolecular Condensates: Organizers of Cellular
 Biochemistry. *Nat. Rev. Mol. Cell Biol.* 2017, *18* (5), 285–298.
- Boeynaems, S.; Alberti, S.; Fawzi, N. L.; Mittag, T.;
 Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.;
 Wolozin, B.; Van Den Bosch, L.; Tompa, P.; Fuxreiter, M.
 Protein Phase Separation: A New Phase in Cell Biology. *Trends Cell Biol.* 2018, 28 (6), 420–435.
- Iwashita, K.; Mimura, M.; Shiraki, K. Control of Aggregation, Coaggregation, and Liquid Droplet of Proteins Using Small Additives. *Curr. Pharm. Biotechnol.* 2018, 19 (12), 946–955.
- Larson, A. G.; Elnatan, D.; Keenen, M. M.; Trnka, M. J.;
 Johnston, J. B.; Burlingame, A. L.; Agard, D. A.; Redding, S.;
- Narlikar, G. J. Liquid Droplet Formation by HP1α Suggests a
 Role for Phase Separation in Heterochromatin. *Nature* 2017, 547 (7662), 236–240.
- Strom, A. R.; Emelyanov, A. V.; Mir, M.; Fyodorov, D. V.;
 Darzacq, X.; Karpen, G. H. Phase Separation Drives
 Heterochromatin Domain Formation. *Nature* 2017, 547
 (7662), 241–245.
- Gibson, B. A.; Doolittle, L. K.; Schneider, M. W. G.; Jensen, L.
 E.; Gamarra, N.; Henry, L.; Gerlich, D. W.; Redding, S.; Rosen,
 M. K. Organization of Chromatin by Intrinsic and Regulated
 Phase Separation. *Cell* 2019, *179* (2), 470-484.e21.
- Shin, Y.; Chang, Y.-C.; Lee, D. S. W.; Berry, J.; Sanders, D. W.;
 Ronceray, P.; Wingreen, N. S.; Haataja, M.; Brangwynne, C. P.
 Liquid Nuclear Condensates Mechanically Sense and
 Restructure the Genome. *Cell* **2018**. *175* (6), 1481-1491.e13.
- Turner, A. L.; Watson, M.; Wilkins, O. G.; Cato, L.; Travers, A.;
 Thomas, J. O.; Stott, K. Highly Disordered Histone H1– DNA
- Model Complexes and Their Condensates. *Proc. Natl. Acad. Sci. U. S. A.* 2018, *115* (47), 11964-11969.
 Druge C. Parkingen C. N. Hard, P. Tadd, A. K. Naidh, C.
- Burge, S.; Parkinson, G. N.; Hazel, P.; Todd, A. K.; Neidle, S.
 Quadruplex DNA: Sequence, Topology and Structure.
 Nucleic Acids Res. 2006, *34* (19), 5402–5415.
- Yoshida, W.; Saikyo, H.; Nakabayashi, K.; Yoshioka, H.; Bay,
 D. H.; Iida, K.; Kawai, T.; Hata, K.; Ikebukuro, K.; Nagasawa,

K.; Karube, I. Identification of G-Quadruplex Clusters by High-Throughput Sequencing of Whole-Genome Amplified Products with a G-Quadruplex Ligand. *Sci. Rep.* **2018**, *8* (1), 3116.

586

587

588

- Su, Y.; Suzuki, Y.; Ito, K.; Komiyama, M. Telomeric Repeat-Containing RNA Structure in Living Cells. *Proc. Natl. Acad. Sci. U. S. A.* 2010, *107* (33), 14579–14584.
- Murat, P.; Balasubramanian, S. Existence and Consequences
 of G-Quadruplex Structures in DNA. *Curr. Opin. Genet. Dev.* 2014, 25 (1), 22–29.
- Paeschke, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps,
 H. J. Telomere End-Binding Proteins Control the Formation
 of G-Quadruplex DNA Structures in Vivo. *Nat. Struct. Mol. Biol.* 2005, *12* (10), 847–854.
- Hoffmann, R. F.; Moshkin, Y. M.; Mouton, S.; Grzeschik, N. A.;
 Kalicharan, R. D.; Kuipers, J.; Wolters, A. H. G.; Nishida, K.;
 Romashchenko, A. V.; Postberg, J.; Lipps, H.; Berezikov, E.;
 Sibon, O. C. M.; Giepmans, B. N. G.; Lansdorp, P. M. Guanine
 Quadruplex Structures Localize to Heterochromatin. *Nucleic*Acids Res. 2016, 44 (1), 152-163.
- Perišić, O.; Schlick, T. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
 Phys. Chem. B 2017, *121* (33), 7823–7832.
- Shakya, A.; King, J. T. Non-Fickian Molecular Transport in
 Protein–DNA Droplets. ACS Macro Lett. 2018, 7 (10), 1220–
 1225.
- Ambrus, A.; Chen, D.; Dai, J.; Jones, R. A.; Yang, D. Solution
 Structure of the Biologically Relevant G-Quadruplex
 Element in the Human c-MYC Promoter. Implications for GQuadruplex Stabilization. *Biochemistry* 2005, 44 (6), 2048–
 2058.
- 617 (22) Ishida, T.; Kinoshita, K. PrDOS: Prediction of Disordered
 Protein Regions from Amino Acid Sequence. *Nucleic Acids Res.* 2007, 35, W460-464.
- Kurinomaru, T.; Maruyama, T.; Izaki, S.; Handa, K.; Kimoto,
 T.; Shiraki, K. Protein–Poly(Amino Acid) Complex
 Precipitation for High-Concentration Protein Formulation. *J. Pharm. Sci.* 2014, *103* (8), 2248–2254.
- Matsuda, A.; Mimura, M.; Maruyama, T.; Kurinomaru, T.;
 Shiuhei, M.; Shiraki, K. Liquid Droplet of Protein Polyelectrolyte Complex for High-Concentration
 Formulations. J. Pharm. Sci. 2018, 107 (10), 2713–2719.
- Mimura, M.; Tsumura, K.; Matsuda, A.; Akatsuka, N.; Shiraki,
 K. Effect of Additives on Liquid Droplet of Protein–
 Polyelectrolyte Complex for High-Concentration
 Formulations. J. Chem. Phys. 2019, 150 (6), 064903.
- Brangwynne, C. P.; Eckmann, C. R.; Courson, D. S.; Rybarska,
 A.; Hoege, C.; Gharakhani, J.; Jülicher, F.; Hyman, A. A.
 Germline P Granules Are Liquid Droplets That Localize by
 Controlled Dissolution/Condensation. *Science* 2009, 324
 (5935), 1729–1732.
- Taylor, N. O.; Wei, M.-T.; Stone, H. A.; Brangwynne, C. P.
 Quantifying Dynamics in Phase-Separated Condensates
 Using Fluorescence Recovery after Photobleaching. *Biophys.* J. 2019, 117 (7), 1285–1300.
- Gabelica, V.; Maeda, R.; Fujimoto, T.; Yaku, H.; Murashima, T.;
 Sugimoto, N.; Miyoshi, D. Multiple and Cooperative Binding
 of Fluorescence Light-up Probe Thioflavin T with Human
 Telomere DNA G-Quadruplex. *Biochemistry* 2013, *52* (33),
 5620–5628.
- Nicoludis, J. M.; Barrett, S. P.; Mergny, J.-L.; Yatsunyk, L. A.
 Interaction of Human Telomeric DNA with N-Methyl
 Mesoporphyrin IX. *Nucleic Acids Res.* 2012, 40 (12), 5432–
 5447.

Lin, Y.; Protter, D. S. W.; Rosen, M. K.; Parker, R. Formation
 and Maturation of Phase-Separated Liquid Droplets by RNA Binding Proteins. *Mol. Cell* **2015**, *60* (2), 208–219.

653 (31) Simpson, A. J.; Kingery, W. L.; Shaw, D. R.; Spraul, M.;

- Humpfer, E.; Dvortsak, P. The Application of ¹H HR-MAS
 NMR Spectroscopy for the Study of Structures and
 Associations of Organic Components at the Solid- Aqueous
 Interface of a Whole Soil. *Environ. Sci. Technol.* 2001, 35 (16),
 3321–3325.
- Miyoshi, D.; Karimata, H.; Sugimoto, N. Hydration Regulates
 Thermodynamics of G-Quadruplex Formation under
 Molecular Crowding Conditions. J. Am. Chem. Soc. 2006, 128
 (24), 7957–7963.
- Kue, Y.; Kan, Z.-Y.; Wang, Q.; Yao, Y.; Liu, J.; Hao, Y.-H.; Tan, Z.
 Human Telomeric DNA Forms Parallel-Stranded
 Intramolecular G-Quadruplex in K+ Solution under
 Molecular Crowding Condition. J. Am. Chem. Soc. 2007, 129
 (36), 11185–11191.
- Phan, A. T.; Mergny, J. Human Telomeric DNA: G quadruplex, I motif and Watson Crick Double Helix.
 Nucleic Acids Res. 2002, 30 (21), 4618-4625.
- Lin, Y.; Mori, E.; Kato, M.; Xiang, S.; Wu, L.; Kwon, I.; McKnight,
 S. L. Toxic PR Poly-Dipeptides Encoded by the C9orf72
 Repeat Expansion Target LC Domain Polymers. *Cell* 2016,
 167 (3), 789-802.e12.
- 167 (3), 789-802.e12.
 Shakya, A.; Park, S.; Rana, N.; King, J. T. Liquid-Liquid Phase
 Separation of Histone Proteins in Cells: Role in Chromatin
 Organization. *Biophys. J.* 2020, *118* (3), 753–764.
- Park, S.; Barnes, R.; Lin, Y.; Jeon, B.-J.; Najafi, S.; Delaney, K.
 T.; Fredrickson, G. H.; Shea, J.-E.; Hwang, D. S.; Han, S.
 Dehydration Entropy Drives Liquid-Liquid Phase
 Separation by Molecular Crowding. *Commun. Chem.* 2020, 3
 (1), 83.
- Rutledge, L. R.; Campbell-Verduyn, L. S.; Wetmore, S. D.
 Characterization of the Stacking Interactions between DNA
 or RNA Nucleobases and the Aromatic Amino Acids. *Chem. Phys. Lett.* 2007, 444 (1), 167–175.
- Hobza, P.; Šponer, J. Structure, Energetics, and Dynamics of
 the Nucleic Acid Base Pairs: Nonempirical Ab Initio
 Calculations. *Chem. Rev.* **1999**, 99 (11), 3247–3276.
- Cohen, H.; Sapir, T.; Borovok, N.; Molotsky, T.; Di Felice, R.;
 Kotlyar, A. B.; Porath, D. Polarizability of G4-DNA Observed
 by Electrostatic Force Microscopy Measurements. *Nano Lett.* 2007, 7 (4), 981–986.
- ⁶⁹⁴ (41) Sim, A. Y. L. Nucleic Acid Polymeric Properties and
 ⁶⁹⁵ Electrostatics: Directly Comparing Theory and Simulation
 ⁶⁹⁶ with Experiment. *Adv. Colloid Interface Sci.* 2016, 232, 49–
 ⁶⁹⁷ 56.
- ⁶⁹⁶ (42) Zhang, Y.; Zhou, H.; Ou-Yang, Z. -C. Stretching Single ⁶⁹⁹ Stranded DNA: Interplay of Electrostatic, Base-Pairing, and
 ⁷⁰⁰ Base-Pair Stacking Interactions. *Biophys. J.* 2001, *81* (2),
 ⁷⁰¹ 1133–1143.
- Gatto, B.; Palumbo, M.; Sissi, C. Nucleic Acid Aptamers Based
 on the G-Quadruplex Structure: Therapeutic and Diagnostic
 Potential. *Curr. Med. Chem.* 2009, *16* (10), 1248–1265.
- Vernon, R. M.; Chong, P. A.; Tsang, B.; Kim, T. H.; Bah, A.;
 Farber, P.; Lin, H.; Forman-Kay, J. D. Pi-Pi Contacts Are an

Overlooked Protein Feature Relevant to Phase Separation. *Elife* **2018**, *7*, e31486.

707

- Czyżnikowska, Ż.; Lipkowski, P.; Góra, R. W.; Zaleśny, R.;
 Cheng, A. C. On the Nature of Intermolecular Interactions in
 Nucleic Acid Base-Amino Acid Side-Chain Complexes. *J. Phys. Chem. B* 2009, *113* (33), 11511–11520.
- Alshareedah, I.; Kaur, T.; Ngo, J.; Seppala, H.; Kounatse, L.-A.
 D.; Wang, W.; Moosa, M. M.; Banerjee, P. R. Interplay between
 Short-Range Attraction and Long-Range Repulsion Controls
 Reentrant Liquid Condensation of Ribonucleoprotein–RNA
 Complexes. J. Am. Chem. Soc. 2019, 141 (37), 14593–14602.
- ⁷¹⁸ (47) Lin, Y.-H.; Forman-Kay, J. D.; Chan, H. S. Sequence-Specific
 ⁷¹⁹ Polyampholyte Phase Separation in Membraneless
 ⁷²⁰ Organelles. *Phys. Rev. Lett.* **2016**, *117* (17), 178101.
- Versky, V. N. Intrinsically Disordered Proteins in
 Overcrowded Milieu: Membrane-Less Organelles, Phase
 Separation, and Intrinsic Disorder. *Curr. Opin. Struct. Biol.* **2017**, *44*, 18–30.
- ⁷²⁵ (49) Shakya, A.; King, J. T. DNA Local-Flexibility-Dependent
 ⁷²⁶ Assembly of Phase-Separated Liquid Droplets. *Biophys. J.*⁷²⁷ 2018, *115* (10), 1840–1847.
- Vieregg, J. R.; Lueckheide, M.; Marciel, A. B.; Leon, L.; Bologna,
 A. J.; Rivera, J. R.; Tirrell, M. V. Oligonucleotide–Peptide
 Complexes: Phase Control by Hybridization. J. Am. Chem. Soc.
 2018, 140 (5), 1632–1638.
- Nott, T. J.; Craggs, T. D.; Baldwin, A. J. Membraneless
 Organelles Can Melt Nucleic Acid Duplexes and Act as
 Biomolecular Filters. *Nat. Chem.* 2016, *8* (6), 569–575.
- Chen, Z.; Chen, L.; Ma, H.; Zhou, T.; Li, X. Aptamer Biosensor
 for Label-Free Impedance Spectroscopy Detection of
 Potassium Ion Based on DNA G-Quadruplex Conformation.
 Biosens. Bioelectron. 2013, 48, 108–112.
- 739 (53) George, E. M.; Brown, D. T. Prothymosin Alpha Is a
 740 Component of a Linker Histone Chaperone. *FEBS Lett.* 2010,
 741 584 (13), 2833–2836.
- ⁷⁴² (54) Conicella, A. E.; Dignon, G. L.; Zerze, G. H.; Schmidt, H. B.;
 D'Ordine, A. M.; Kim, Y. C.; Rohatgi, R.; Ayala, Y. M.; Mittal, J.;
 Fawzi, N. L. TDP-43 α-Helical Structure Tunes Liquid–Liquid
 Phase Separation and Function. *Proc. Natl. Acad. Sci. U. S. A.* **2020**, *117* (11), 5883–5894.
- Fraccia, T. P.; Jia, T. Z. Liquid Crystal Coacervates Composed of Short Double-Stranded DNA and Cationic Peptides. *ACS Nano* 2020, *14* (11), 15071–15082.
- Guittet, E.; Renciuk, D.; Leroy, J.-L. Junctions between I-Motif
 Tetramers in Supramolecular Structures. *Nucleic Acids Res.* **2012**, *40* (11), 5162–5170.
- Vorlíčková, M.; Kejnovská, I.; Sagi, J.; Renčiuk, D.; Bednářová,
 K.; Motlová, J.; Kypr, J. Circular Dichroism and Guanine
 Quadruplexes. *Methods* 2012, 57 (1), 64–75.
- Alberti, P.; Mergny, J.-L. DNA Duplex–Quadruplex Exchange
 as the Basis for a Nanomolecular Machine. *Proc. Natl. Acad. Sci. U. S. A.* 2003, *100* (4), 1569–1573.
- Zhang, Q.-S.; Manche, L.; Xu, R.-M.; Krainer, A. R. HnRNP A1
 Associates with Telomere Ends and Stimulates Telomerase
 Activity. *RNA* 2006, *12* (6), 1116–1128.
- Takahama, K.; Takada, A.; Tada, S.; Shimizu, M.; Sayama, K.;
 Kurokawa, R.; Oyoshi, T. Regulation of Telomere Length by
 G-Quadruplex Telomere DNA- and TERRA-Binding Protein
 TLS/FUS. *Chem. Biol.* 2013, 20 (3), 341–350.

