
RedDB, a computational database of electroactive
molecules for aqueous redox flow batteries
Elif Sorkun1,2,*, Qi Zhang1,2,3,*, Abhishek Khetan1,2, Murat Cihan Sorkun1,2,3, and
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ABSTRACT

An increasing number of electroactive compounds have recently been explored for their use in high-performance redox flow
batteries for grid-scale energy storage. Given the vast and highly diverse chemical space of the candidate compounds,
it is alluring to access their physicochemical properties in a speedy way. High-throughput virtual screening approaches,
which use powerful combinatorial techniques for systematic enumerations of large virtual chemical libraries and respective
property evaluations, are indispensable tools for an agile exploration of the designated chemical space. Herein, RedDB: a
computational database that contains 31,677 molecules from two prominent classes of organic electroactive compounds,
quinones and aza-aromatics, has been presented. RedDB incorporates miscellaneous physicochemical property information of
the compounds that can potentially be employed as battery performance descriptors. RedDB’s development steps, including: i)
chemical library generation, ii) molecular property prediction based on quantum chemical calculations, iii) aqueous solubility
prediction using machine learning, and iv ) data processing and database creation, have been described.

Background & Summary
The successful development of next-generation redox flow batteries with high cell voltage, energy density, and cycle life
depends on the discovery of electroactive materials with optimum properties. Organic electroactive compounds have been
attracting increasing attention due to their abundance, low cost, sustainable synthesis as well as recycling possibilities1. Notably,
the compositional variance and structural diversity of electroactive compounds create plentiful opportunities for tuning their
essential battery-relevant properties and thereby for their potential use as active battery materials. Given the nearly intractable
configurational space of organic compounds, high-throughput virtual screening (HTVS) provides an effective way through, the
creation of virtual libraries of diverse candidate electroactive compounds, computing performance-related chemical descriptors,
prediction of molecular properties, and subsequent identification of the most promising candidates for further study2. The
field of HTVS is burgeoning due to advances in automation of workflows and computing power, meanwhile the HTVS studies
concerning the different classes of organic-based energy storage compounds are no exception345. HTVS generated FAIR data6,
chiefly by employing accurate computational methods for the calculation of battery-relevant chemical descriptors, serves as a
valuable reference for the advancement of aqueous redox flow battery (ARFB) technologies. Moreover, for an accelerated
screening of the electroactive compound space for ARFBs, it is imperative to systematize the data in a way to make it accessible
not only for humans and but also for machines.

In this work, we present a computational database, RedDB, that has been populated on a focused chemical space of candidate
electroactive compounds as based on the two promising classes of ARFB molecules, namely, quinones7 and aza-aromatics8910.
RedDB is created by using the calculation data from physics-based simulation tools that employ molecular mechanics and
quantum chemistry methods, in addition to the contemporary machine learning (ML) and cheminformatics generated data of
the compounds. RedDB contains the predicted physicochemical properties of candidate molecules that are relevant to their
function as electroactive components in ARFBs. Thus, it can be employed for material screening and/or empirical method
development purposes.

RedDB contains miscellaneous property data of the molecules, whilst the emphasis here is laid on the preeminent properties
that relate to the redox potential. The thermodynamic basis to predict the redox potentials of electroactive compounds is the
aqueous-phase redox reaction M + 2H+ + 2e−⇐⇒MH2, in which M is the electroactive molecular species. Accordingly for
RedDB, M indicates either the quinone- or the aza-aromatic-derived reactant molecules, while MH2 indicates the corresponding



hydrogenated product molecules that are generated through their respective chemical reactions shown in Fig. 1. The reaction
energy, ∆Erxn, of redox couples has been calculated by using Equation (1),

4Erxn = E(MH2)− [E(M)+E(H2)], (1)

where E(M), E(MH2), and E(H2) are the total energies of reactant and product molecules, and hydrogen molecules,
respectively.

RedDB’s building steps are outlined in Fig. 2. They include, virtual chemical library generation, physics-based calculations
on molecules, ML predictions of solubility of compounds in water, and database creation. The systematic generation of the
virtual library involves the creation of chemically functionalized derivatives of the reactant molecules and their redox reaction
pair products. This step generates two-dimensional (2D) representations of all compounds in the virtual library, which are next
used as inputs for both the first-principles calculations and the surrogate models. Accordingly, data generated from the two
different types of methods is included in RedDB: (i) the electronic structure data that has been obtained from a sequence of
classical and quantum chemical methods, and (ii) the aqueous solubility data that has been obtained by using a consensus ML
model. In the last step of database development, the generated data is extracted, processed, and stored in a relational database
by parsing the output files of the first-principles calculations and ML models.

RedDB has been built with an emphasis on the key properties of molecules relevant to ARFBs. It is an exemplary resource
on quinone and aza-aromatic electroactive compounds as it contains several candidate molecules for batteries that are worthy
of experimental investigation. The database contains comprehensive data that has been systematically collected by using the
state-of-the-art computational procedures1112 and data-driven methods13. Therefore, it’s also useful for other applications
beyond ARFBs for which the intriguing chemistry of these molecules matter. Additionally, due to the immense computing
requirements of quantum chemical simulations, it is not straightforward to scale-up HTVS efforts by orders of magnitude, such
as from thousands to millions of molecules. RedDB, owing to its size, diversity, and quality of data, serves as a good resource
for the development of empirical ML models that can be used for rapid property predictions or, more ambitiously, for the de
novo design of energy compounds with desired features.

Methods
RedDB was built in three stages, and by applying various methods within each stage, as described in below.

1. Molecule library generation
The steps of the library enumeration process are shown in Fig. 2. All the molecules in the virtual library were originally derived
from a group of 24 quinone and 28 aza-aromatic reactant core structures that are deemed to be promising ARFB compounds in
acidic or alkaline solutions (Fig. 3). The core molecule structures were designed manually by using the Maestro modeling
interface of Schrödinger Materials Science Suite v2019-2 (SMSS)14. Next, the Custom R-group Enumeration tool of SMSS
was employed to perform an exhaustive enumeration task in order to uncover all of the possible functionalized derivatives of
the reactant core structures as well as their redox coupled product molecules. Five distinct R-groups (–SO3H, –COOH, –NH2,
–OH, and –F) were used for the chemical functionalization of compounds. These R-groups were decided upon the available
chemical knowledge regarding their ability to tune the redox potential and aqueous solubility of the compounds4. In order to
remove redundant entries of the generated molecules, the virtual library was screened by using the Filter Duplicates tool of
SMSS. Also at this stage, the reactant-product molecule couples were paired by assuming a two-electron two-proton reaction
mechanism15 shown in Fig. 1. We used the Reaction-based Enumeration tool of SMSS in order to match each reactant molecule
to its corresponding product molecule. This way the enumeration process has been completed. It must be noted that both of
the enumeration tools that were used in the current work accept the SMILES16 representations of molecules as their inputs.
Therefore, they do not require explicit three-dimensional (3D) geometry information of the compounds. Similarly, the output
format of these tools is also the SMILES representations. Therefore, when further evaluations on the molecules are aimed for,
as the case of current study, they have to be translated to a 3D geometry data.

2. Molecule structure and property data generation
A. Electronic structure calculations
First-principles electronic structure calculations yield essential information about the compounds that can directly be employed
to estimate their macroscopic performance. Likewise, these calculations provide an effective way for the modelling of redox
active compounds for ARFB applications41112. Fig. 2 shows a simplified workflow of the physics-based calculations that were
applied in the current work.

First, prior to quantum chemical calculations, the SMILES notations of all the candidate molecules found in the library
were converted to 3D geometries. Next, their corresponding minimum energy 3D conformers were predicted by using the
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MacroModel program and OPLS3e17 force field (FF) as implemented in SMSS. Thus, only the lowest energy 3D conformers
were employed as inputs for density functional theory (DFT) calculations that were used for the gas phase optimization (OPT)
of all molecules. Then, the DFT calculations were carried out using the Jaguar ab initio package18 as implemented in SMSS.
All DFT calculations were performed using PBE exchange-correlation functional19 and LACVP∗∗++ basis set with polarization
and diffuse functions20. The LACVP basis set includes the effects of core electrons in a parametrized form known as the
effective core potentials (ECPs). Using ECPs is advantageous, with regard to computing time, particularly when calculating
compounds that contain many heavy elements. Moreover, LACVP and the widely employed 6-31G basis sets are essentially
indistinguishable for the elements from H to Ar. Since the molecules considered in this work contain only H, C, N, O, F, and S,
the use of LACVP∗∗++ is consistent with the use of 6-31G∗∗++. For DFT OPT calculations, medium grid densities have been
used in Jaguar, and the energy and root mean square density matrix change convergence criteria were kept at their default values
of 5.0 × 10−5 and 5.0 × 10−6 Hartree, respectively. As the convergence scheme, the default direct inversion in the iterative
subspace was employed in combination with Jaguar’s mixed pseudospectral approximation at its default cutoffs. Lastly, the
DFT optimized 3D geometries of the compounds were used as inputs for single point energy (SPE) calculations. For the SPE
calculations, fine electronic grid densities, in combination with accurate self-consistent field cutoffs, were used. Additionally,
the effects of aqueous medium were modelled by using the implicit Poisson-Boltzmann Solvation Model (PBF)21.

B. Solubility predictions
The water solubility data of the compounds was built by using the Aqueous Solubility Prediction Model (AqSolPred v1.0)13.
AqSolPred is a supervised and consensus ML model that was empowered by training on a large, curated, and reference aqueous
solubility database, AqSolDB22. The SMILES representations of the molecules were used as input for the AqSolPred and their
ML-predicted solubility data has been incorporated to RedDB (Fig. 2).

3. Database creation
Five different data sources were used as input for building the database: (1) Identifier files containing the SMILES representations
of reactant and product molecules, (2) Supplementary files containing naming conventions for reactant molecules and SMILES
notations of product molecules, (3) Output files as obtained from OPT calculations using the Jaguar package, (4) Output files as
obtained from SPE calculations using the Jaguar package, and (5) Aqueous solubility data of compounds as obtained using the
AqSolPred code.

The database creation process consists of data processing and database generation steps (Fig. 2). The former includes three
steps, namely, data synchronization, data extraction, and chemical reaction pair matching. In the data synchronization step,
the calculation output folder hierarchy and file naming conventions were created. By using them and the SMILES notations,
the molecules from the virtual library were matched with the output files of the quantum chemical calculations. In the data
extraction step, all output files were parsed by using an in-house developed code that employs regular expression sequences to
extract relevant physicochemical data. In the chemical reaction pair matching step, the reactant molecules were matched with
their respective products from the chemical library through the guidance of supplementary files that were generated by using
the Reaction-based Enumeration tool14. In the database generation step, the database has been created on a MySQL server and
implemented through a code first approach by using the Django object-relational mapper. Lastly, the parsed data, also including
the ML-predicted solubility data of the compounds, has been added to RedDB.

Data Records
The generated full data is stored in a MySQL database, and its reduced forms in CSV and XLSX formats, all of which are
downloadable from the Harvard Dataverse Repository23. The data is stored in a relational database that consists of 15 data
tables. These tables were created in accordance with the type of data they contain. Their names and brief descriptions as well
as the original sources that have been used for their formulation are shown in Table 1.

RedDB contains data on 31,677 unique molecules that have been derived through the structural functionalization of 52
different core molecules shown in Fig. 3. For every compound, structural, thermodynamic, and electronic properties have been
included. RedDB includes 23 atom-, 315 molecule-, four reaction-, and 19 simulation-related meta-information fields. Table 2
shows RedDB’s most essential data tables that contain the most relevant information for application of molecules in ARFBs.
For each data table shown in Table 2, in addition to the names of data columns, their brief descriptions and the corresponding
units, whenever applicable, have been included. Additionally, in Fig. 4, a simplified scheme of the database is shown that
includes the most essential RedDB tables, their data fields and the interconnections. Finally, the contents of all the remaining
RedDB data tables have been provided in Supplementary Information Table S1.

In RedDB, the total number of possible redox reactions, or similarly the reactant-product pairs, is 15,932. Among them
are 3,526 quinone and 12,406 aza-aromatic molecule reactions. A mismatch between the total number of molecules and
the total number of redox reactions occurs due to the molecules that take part in multiple redox reactions or the dismissed
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molecules because of failed DFT calculations. Additionally, an interactive visualization of RedDB’s chemical data is reachable
at https://www.amdlab.nl/reddb.

Technical Validation
The data in RedDB is generated from either first-principles or regression models, both of which are entirely parameterized.
The data generated from such models is not stochastic and it is possible to reproduce it to numerical precision by using the
parameters discussed above. In addition, reliability of the modelling data can also be interpreted in terms of its accuracy with
respect to measurements from experiments. Thus, the sources of uncertainties are tied to the applied modelling parameters and
the quality of underlying data. In the current work, to ensure the veracity of data that’s included in RedDB, several measures
have been taken into account during the library generation process, DFT calculations, ML predictions, and database creation.

Validation of library enumeration and convergence in DFT calculations
The molecule library generation included steps for filtering the duplicate molecules and removing the redundancies. To ensure
that the molecular geometries employed for DFT OPT calculations are the lowest energy conformers, a sampling of the 3D
conformational space of the molecules was performed. High accuracy for the two types of DFT calculations, OPT and SPE, was
ensured by choosing tight convergence criteria for the various sub-routines in the Jaguar software package, as was described
above. Further details on the systematic effect of these parameters can be found in the Jaguar documentation. Nevertheless,
critical failures in convergence can result in spurious data that is unfit for further usage. To address this issue, Jaguar performs a
simple analysis of the convergence during OPT, and yields a convenient verdict on the dynamics of the convergence process
(i.e. whether the convergence was monotonic or erratic), and the quality of the converged structure (i.e. whether the final
geometry corresponds to the lowest energy or not) on a scale of 0 to 4, where 0 denotes the best convergence. RedDB contains
the convergence criteria for each molecule as obtained from OPT calculations employing the Jaguar package. This way, RedDB
users are recommended to exercise caution when using data from molecules with convergence criteria value of 4, which simply
indicates that the OPT resulted in a non-optimal structure of the molecule. In addition to this, DFT calculations on several
molecules did not result in full convergence of the SCF routines, and thus, they did not produce any sensible results. Therefore,
these molecules were also excluded from RedDB.

Validation of solubility predictions
The AqSolPred model, which was used for solubility predictions in the current work, had previously been validated on a
benchmark solubility dataset24. The model has a Mean Absolute Error of 0.348 LogS, which is lower than the conventional
cheminformatics and ML methods that are ordinarily used for the prediction of aqueous solubility of chemical species13.

Validation of data processing
The consistency of the data included in RedDB was further validated by comparing the values from randomly selected
calculation output files to the data found in RedDB. For each of the 52 core molecule-derived groups of molecules, four
randomly selected molecules’ DFT calculation output files have been used for comparisons. No consistency errors were
detected on the cross-checked data.

Usage Notes
Table 1 shows the names, descriptions, and data sources for each of the database tables. Additionally, the content descriptions
and units of RedDB fields that are relevant to ARFBs are shown in Table 2. The descriptions for the remaining tables are
provided in Supplementary Information Table S1.

The ’job’ table contains the parsed meta data of DFT OPT and DFT SPE calculation outputs. Thus, the results from both
the OPT and SPE calculations are reachable simply by using ’Optimization’ or ’SinglePoint’ tags in the ’jobType’ field in the

’job’ table.
The ’job’ and ’functionalGroup’ tables are linked to each other with ’functionalGroup_id’. Each identifier in the ’function-

alGroup_id’ field represents a chemical functional group from the ’functionalGroup’ table. A blank stoichiometry field in the
’functionalGroup’ table indicates that no chemical functional group has been incorporated to the molecule, in other words, the
molecule is a core molecule.

RedDB contains atomic, molecular, and reaction data of the candidate compounds for energy storage chiefly in ARFBs.
To facilitate accessibility and reuse in future studies, RedDB has been exported to five different data formats that have been
described in below.

RedDB.sql
The file format is SQL. The relationships of database tables are shown in Fig. 4. The database tables are linked together by IDs.
The content information of the tables has been provided in Table 2 and Supplementary Information Table S1.
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RedDB.xlsx
The file format is XLSX. This file is a copy of the reddb.sql file. Each table of the database has been exported to a different
sheet inside the XLSX file.

RedDB_atomic.csv
The file format is CSV. This file contains all important atom properties of the molecules. Each row contains information on the
atoms of a molecule. Using this file, the user can access all atom-relevant properties of the individual molecules, for instance by
grouping the data according to the broadly accepted molecule identifiers of SMILES or InChIKey.

RedDB_molecule.csv
The file format is CSV. This file contains all important molecule properties. Each row contains information on a single molecule.

RedDB_reaction.csv
The file format is CSV. This file contains tabulated information about the likely redox reactions. Each row contains the reaction
information and the DFT calculated reaction energies. For the calculation of the reaction energies, the total energy of a H2
molecule was calculated by using the same methods that have been used for all other molecules. In addition to reaction
energies11, other chemical descriptors, such as the lowest unoccupied molecular orbital (LUMO) of reactant and the highest
occupied molecular orbital (HOMO) of product molecules, can independently be used to predict the experimental redox
potentials12. For that reason, the numerical data of different chemical descriptors as well as useful compound features have also
been included in this file.

Code availability

All classical and quantum chemical calculations have been performed by using the SMSS14, which is a proprietary software
package. The solubility predictions have been made by using the AqSolPred13, which is a freely accessible tool. In addition,
the in-house developed Python scripts that have been used to parse the calculation outputs and to convert them into relational
database formats, are openly accessible at https://github.com/ergroup/RedDB.
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Tables

Table Name Table Description Data Source

atomicProperties
Atomic properties from DFT SPE calculations (e.g. NMR
shielding constants, Fukui indices for HOMO and LUMO, etc.)

Jaguar DFT SPE
output file

chCalc
Moments from quantum mechanical wavefunction, electrostatic
potential charges, and Mulliken charges (gas and solution phase)

Jaguar DFT SPE
output file

cpolarCalc
Polarizability and hyperpolarizability results from coupled
perturbed HF (cpolar) method

Jaguar DFT SPE
output file

functionalGroup Stoichiometric information on chemical functional groups
User-defined
folder name

job Meta-information of calculation outputs
Jaguar DFT OPT
and SPE output files

jobSetting Information on software version and calculation settings and parameters
Jaguar DFT OPT and
SPE output files

molecule Identifiers of molecules (SMILES and InChIKey) SMILES output file

moleculeInfo Stoichiometric information of the molecules
Jaguar DFT SPE
output file

optimizationGeometry Initial and final 3D geometries of molecules from DFT OPT
Jaguar DFT OPT
output file

optimization Convergence level and results from DFT OPT calculations
Jaguar DFT OPT
output file

otherInfo
Additional information (e.g. nuclear repulsion energy,
point group used for calculations, and molecular point group)

Jaguar DFT SPE
output file

pbfCalc
Results from DFT SPE calculations with the PBF solvation model
included

Jaguar DFT SPE
output file

reaction Redox reaction related information
Reaction-based
Enumeration
tool output file

solubility ML-predicted solubility data of compounds AqSolPred output file

scfCalc Self-consistent field results from SPE calculations (gas and solution)
Jaguar DFT SPE
output file

Table 1. An overview of RedDB data tables. For each data table, the table name, a brief description of the contents, and the
original data source from where the data has been extracted, are shown.
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Table Name Column Name Column Description Unit

atomicproperties

id Unique ID for atomicproperties table
atom Chemical element symbol
atomId The ID of atom in the job
input_X Numerical coordinate of atom position with reference to X axis Å
input_Y Numerical coordinate of atom position with reference to Y axis Å
input_Z Numerical coordinate of atom position with reference to Z axis Å
nmrIsotropicshielding Isotropic NMR chemical shielding of the atom ppm
nmrAnisotropy Anisotropic NMR chemical shielding of the atom ppm
homo_f_NN f-NN-HOMO Fukui indice of the atom Hartree
homo_f_NS f-NS-HOMO Fukui indice of the atom Hartree
homo_f_SN f-SN-HOMO Fukui indice of the atom Hartree
homo_f_SS f-SS-HOMO Fukui indice of the atom Hartree
lumo_f_NN f-NN-LUMO Fukui indice of the atom Hartree
lumo_f_NS f-NS-LUMO Fukui indice of the atom Hartree
lumo_f_SN f-SN-LUMO Fukui indice of the atom Hartree
lumo_f_SS f-SS-LUMO Fukui indice of the atom Hartree
job_id Job ID of the calculation that the data was taken from

cpolarcalc

id Unique ID for cpolarcalc table
alpha Polarizability quantity of α from cpolar calculation au
dalpha Polarizability quantity of ∆α from cpolar calculation au
beta Average hyperpolarizability β from cpolar calculation au
job_id Job ID of the calculation that the data was taken from

functionalgroup id Unique ID for functionalgroup table
stoichiometry Stoichiometry of functional groups

job

id Unique ID for job table
jobType Type of calculation (SPE or OPT)
calcNumber Calculation Number
jobId Unique ID of the job as given by Jaguar
name Name of the job file
path Directory path of the job file
reactionStep Reaction Step Number
dataPackage_id ID of the data package with respective values shown in Fig. 3
functionalGroup_id Chemical functional group ID
jobSetting_id Job settings ID
molecule_id Molecule ID
moleculeInfo_id Molecule info ID
user_id User ID

jobsetting

id Unique ID for jobsetting table
basisSet Basis set
netMoleculerCharge Net molecular charge e
multiplicity Multiplicity
solvent Solvent information
scfCalculation SCF calculation information
dft DFT calculation information
solvationEnergy Solvation method calculation information
hyperPolEqu (Hyper) polarizabilities equation name
maxScfIterations Maximum number of SCF iterations
internalDielectric Internal dielectric constant
continuumDielectric Continuum dielectric constant
solventProbe Solvent probe molecule radius Å2

pbfVersion PBF model version information

molecule

id Unique ID for molecule table
smiles SMILES representation of the molecule
inchiKey InChIKey representation of the molecule
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parentMolecule_id Molecule ID of the parent (core) molecule

moleculeinfo
id Unique ID for moleculeinfo table
moleculerWeight Total weight of the molecule amu
stoichiometry Composition stoichiometry of the molecule

optimization

id Unique ID for reaction table
convergence The quality of the converged structure (i.e. 0,1,2,3,4)
optGasEnergy Total energy of the molecule in gas phase from OPT Hartree
optGasHomo HOMO energy of the molecule in gas phase from OPT Hartree
optGasLumo LUMO energy of the molecule in gas phase from OPT Hartree
optGasIterationNumber Number of SCF iterations for gas phase calculation from OPT
job_id Job ID of the calculation that the data was taken from

pbfcalc

id Unique ID for pbfcalc table
job_id Job ID of the calculation that the data was taken from
cavityEnergy Cavity energy of the molecule kT
molecularSurface Molecule surface area Å2

reactionFieldEnergy Reaction field energy kT
solventAccessSurface Solvent accessible surface Å2

reaction

id Unique ID for reaction table
bondType Type of redox reaction
pairPackage_id ID of the data package containing reaction information
product_id Product molecule ID of the redox reaction
reactant_id Reactant molecule ID of the redox reaction
reactionEnergy Reaction energy of the redox reaction Hartree
productEnergy Total energy of the product molecule Hartree
reactantEnergy Total energy of the reactant molecule Hartree

solubility
id Unique ID for solubility table
molecule_id Molecule ID
solubilityAqSolPred Predicted solubility value logS

scfcalc

id Unique ID for scfcalc table
gasEnergy Total energy of the molecule in gas phase from SPE Hartree
gasIterationNumber Number of SCF iterations for gas phase calculation from SPE
gasHomo HOMO energy of the molecule in gas phase from SPE Hartree
gasLumo LUMO energy of the molecule in gas phase from SPE Hartree
solutionEnergy Total energy of the molecule in solution phase from SPE Hartree
solutionIterationNumber Number of SCF iterations for solution phase calculation from SPE
solutionHomo HOMO energy of the molecule in solution phase from SPE Hartree
solutionLumo LUMO energy of the molecule in solution phase from SPE Hartree
job_id Job ID of the calculation that the data was taken from

Table 2. RedDB’s most essential data tables. The names and brief descriptions of the data columns, which are specific to each
data table, have been provided. In addition, for every data column, the applicable units for the stored data have been shown.
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Figure 1. The reversible two-electron two-proton redox reactions that are shown for the two representative molecules of (a)
quinone and (b) aza-aromatic. On the molecules, the positions that are employed for the systematic chemical functionalizations
are shown with the R groups.
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Figure 2. A schematic overview of the various tasks that have been undertaken for the development of RedDB. The three
horizontal layers contain the main actions including, library generation (red shaded boxes), data generation, and database
creation (yellow shaded boxes). The data generation includes both the electronic structure calculations (green shaded boxes)
and the solubility predictions (blue shaded boxes). The boxes and arrows describe specific actions and flow of information,
respectively.
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Figure 3. 2D representations of the 52 core molecules that have been used for the chemical library generation. The numbering
of the core molecules is in accordance with the data package IDs found in RedDB.
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Figure 4. A Crow’s foot representation of RedDB’s most essential database tables.
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