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Physics-inspired Artificial Intelligence (AI) is at the forefront of methods development in 

molecular modeling and computational chemistry. In particular, interatomic potentials derived 

with Machine Learning algorithms such as Deep Neural Networks (DNNs), achieve the accuracy 

of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical 

force fields and allow performing massive simulations. The applicability domain of DNN 

potentials is usually limited by the type of training data. As such, transferable models are aimed to 

be extensible in the description of chemical and conformational diversity of organic molecules. 

However, most DNN potentials, such as the AIMNet model we proposed previously, were 

parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this 
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work, we extend our AIMNet framework toward open-shell anions and cations. This model 

explores a new dimension of transferability by adding the charge-spin space. The resulting 

AIMNet model is capable of reproducing reference QM energies for cations, neutrals and anions 

with errors of 4.1, 2.1, 2.8 kcal/mol, respectively, compared to the reference QM simulations. The 

spin-charges have errors 0.01-0.06 electrons for small organic molecules containing nine chemical 

elements {H, C, N, O, F, Si, P, S and Cl}. Thus the proposed AIMNet model allows researchers 

to fully bypass QM calculations and derive the ionization potential, electron affinity, and 

conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed 

Fukui functions. We show that these descriptors, along with learned atomic representations, could 

be used to model chemical reactivity through an example of regionselectivity in electrophilic 

aromatic substitution reactions. 
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Introduction 

A large body of research in the field of chemistry is concerned with the flow and behavior 

of electrons, which gives rise to important phenomena such as making and breaking chemical 

bonds. Quantum chemistry (QC) provides a mathematical framework for describing the behavior 

of atomistic systems thorough solution of Schrödinger equation, allowing for a detailed description 

of charge distribution and molecular energetics. QC provides the tools to accurately construct the 

potential energy surface (PES) of molecules, i.e., energy as a function of molecular geometry. 

Density Functional Theory (DFT) framework often underpins the methods of choice for such 

calculations when working with medium size molecules by providing a good balance between 

accuracy and computational cost. Unfortunately, standard DFT methods for the treatment of the 

N-electron system typically require ~O(N3) numerical cost. This cubic scaling has become a 

critical challenge that limits the applicability of DFT to a few hundred atom systems. This also 

limits the accessibility of longer dynamical simulation time scales, which are critical for simulating 

certain experimental observables. Consequently, a lot of progress has been made in the 

development of interatomic potentials providing a complex sought out PES functional (geometry 

-> energy) using machine learning (ML),1,2 which have been applied to a variety of systems.3–7 

These models tend to provide highly accurate PESs for molecules and materials with a relatively 

low number of degrees of freedom.8–11 

Deep neural networks (DNN)12,13 are a particular class of ML algorithms proven to be 

universal function approximators.14 These DNNs are perfectly suitable to learn a representation of 

the PES for molecules. There are multiple distinct DNN models for ML potentials reported in the 

literature. They could be divided into two groups. The original Behler-Parrinello (BP)15 and its 

modifications ANI16,17 and TensorMol18 rely on 2-body (radial) and 3-body (angular) symmetry 
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functions to construct a unique descriptor of atomic environment for a particular atom, then use a 

DNN to predict atomic properties as a function of that descriptor.  Other models, for example, Hip-

NN,19 DTNN,6 SchNet,20 and PhysNet21 use non-invariant radial symmetry functions or 

interatomic distances and iteratively construct a representation of the atomic environment through 

message-passing techniques.22 

The ANAKIN-ME (ANI) method16,23 is one example of a technique for building 

transferable DNN-based molecular potentials. The key components of ANI models are the diverse 

training dataset24 and BP type descriptors15 with modified symmetry functions.16 The ANI-1ccx 

dataset was built from energies and forces for ~60K small organic molecules containing 5 and 0.5 

million non-equilibrium molecular conformations calculated at DFT and high fidelity Coupled 

Clusters (CCSD(T)) levels, respectively.24 Notably, these conformations were selected with an 

active learning technique.24 Most recent studies agree that ML models obtained with self-adapted 

training using active learning are more accurate and data-efficient than models with a static, fixed 

training set.5,23,25 Test cases showed ANI-1ccx model to be chemically accurate compared to the 

reference Coupled Cluster calculations and exceeding the accuracy of DFT in multiple 

applications.17 Finally, the AIMNet (Atoms-In-Molecules neural Network) architecture, a 

chemically inspired, modular deep neural network molecular potential improves the performance 

of ANI models for long-range interactions and continuum solvent effects.26 

Physical properties of molecular systems are often labeled as intensive or extensive 

properties. This nomenclature relates to the dependency of the property upon the size of the system 

in question.27 The notation has been introduced by Tolman over one hundred years ago.28 Only a 

few recent reports have attempted to use ML for intensive properties, independent of the system 

size, which pose a challenge ML techniques due to spatial non-locality and long-range interactions. 
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These studies were focused on frontier orbital energies, singlet-singlet, or singlet-triplet transition 

energies computed with time-dependent DFT (TDDFT).29–32 

In this work, we examine how DNN models like ANI and AIMNet can be applied to 

predicting intensive properties like electron attachment (electron affinity) and electron detachment 

(ionization potential). The conventional wisdom would be to fit different ML potentials for every 

quantum-mechanical state (neutral, cation, and anion) similar to TDDFT works.31 QM calculations 

for ionized states of the molecule are typically more expensive due to the unrestricted Hamiltonian 

formalism and subsequent spin polarization of orbitals. Therefore, we seek to answer a critical 

question: Can we fuse information from different molecular charge states to make ML models 

more accurate, general and data efficient? With the success of deep learning in many applications 

involving complex multimodal data, this question can be addressed by learning different states of 

the molecules with one common ML model, and the goal is to use the data in a complementary 

manner toward learning a single complex problem. We explore two synergistic strategies for joint 

modeling: multitask learning and data fusion. One of the main advantages of joint learning is that 

a hierarchical representation can be automatically learned for each state, instead of individually 

training independent models. In addition to electron attachment and detachment energies, we also 

choose to learn spin-polarized charges for every state reflecting quantum mechanics of the 

wavefunctions. This choice of properties is deliberate, as it allowed us to compute reactivity 

descriptors such as philicity indices and Fukui functions based on conceptual Density Functional 

Theory (c-DFT) theory.33,34 c-DFT, or Chemical Reactivity Theory, is a powerful tool for the 

prediction, analysis, and interpretation of chemical reactions.35 Here all c-DFT indexes were 

computed directly from the neural network without additional training that permitted us to bypass 

quantum mechanical calculations entirely. 
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Methods 

Machine learning models. High-dimensional neural networks (HDNNs)15 rely on the 

chemical bonding nearsightedness (‘chemistry is local’) principle by decomposition of the total 

energy of a chemical system into atomic contributions. For each atom in the molecule, HDNN 

models encode the local environment (a set of atoms within a pre-defined cutoff radius) as a fixed-

size vector and use it as an input to a feed-forward DNN function to infer individual atomic 

contribution to the total energy. The ANI model (Figure 1a) transforms coordinates R of the atoms 

in the molecule into atomic environment vectors (AEVs): a set of translation, rotation, and 

permutation invariant two-body radial 𝑔𝑔𝑖𝑖𝑖𝑖
(𝑟𝑟) (gaussian expansion of interatomic distances) and 

three-body angular 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖
(𝑎𝑎) (joint gaussian expansion of average distances to a pair of neighbors and 

cosine expansion of angle to those atoms) symmetry functions, where index i corresponds to a 

“central” atom and  j and k refer to the atoms from its environment. Using the information of 

atomic species types Z, the AEV’s are reduced in a permutation-invariant manner into the 

Embedding vectors G, which encode both geometrical and type information of the atomic 

environment. The ANI model uses the concatenation of the sums of 𝑔𝑔𝑖𝑖𝑖𝑖
(𝑟𝑟) and 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖

(𝑎𝑎) which 

correspond to a distinct chemical type of neighbor, or a combination of the types for two neighbors. 

This is equivalent to multiplication of the matrices 𝒈𝒈𝒊𝒊
(𝒓𝒓) and 𝒈𝒈𝒊𝒊

(𝒂𝒂) with rows composed of AEV’s, 

and corresponding matrices A(r) and A(a) composed with one-hot (categorical) encoded atom or 

atom-pair types: 

 𝑮𝑮𝒊𝒊 = �𝒈𝒈𝒊𝒊
(𝒓𝒓)⊤𝑨𝑨(𝒓𝒓),𝒈𝒈(𝒂𝒂)⊤𝑨𝑨(𝒂𝒂)�   (1) 
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By definition, the HDNN models suffer from the “curse of dimensionality” problem. 

Namely, the size of G depends on the number of unique combinations of atomic species included 

in parametrization (size of vectors in A(a)). Also, since the information about the type of the 

“central” atom is not included in G, it uses multiple independent DNNs defined for each atom type 

(ℱ(𝒵𝒵𝒾𝒾)) to model Interactions of the atom with its environment and outputs atomic energy  𝐸𝐸𝑖𝑖: 

 𝐸𝐸𝑖𝑖 = ℱ(𝒵𝒵𝒾𝒾)(𝑮𝑮𝒊𝒊)  (2) 

 

 

Figure 1. Neural network architectures explored in this work. Models from literature: a) ANI16, b) 
AIMNet26; Here each model is separately trained for neutral species, cations and ions. Models introduced 
in this work: c) AIMNet-MT: a multitask model jointly trained on all data which concurrently predicts 
energies and charges for neutral species such as cations and ions; and d) AIMNet-ME, a multi-embedding 
model conditioned on a total molecular charge to predict the energy of a particular state. The yellow blocks 
show input data (coordinates R, atomic numbers Z and total molecular charge Q) and output quantities 
(energies E and spin-polarized charges q). The green blocks denote trainable modules and the blue blocks 
are fixed encodings.  
 
 

The AIMNet model (Figure 1b) was developed to address the aforementioned issues with 

the ANI model. Instead of one-hot encoding of atomic species, it uses learnable atomic feature 

vectors (AVFs) A in Eq. 1. The AFV vectors encode similarities between chemical elements. This 

approach eliminates dependence of the size of Embedding layer on the number of parametrized 
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chemical species. The AIMNet model utilizes the idea of multimodal learning, making a 

simultaneous prediction of different atomic properties from several output heads attached to the 

common layer of multi-layer neural nets. This layer is enforced to capture the relationships across 

multiple learned modalities and serves as a joint latent representation of atoms in the molecule. 

Therefore we call this layer an AIM vector. Finally, the architecture of AIMNet has a specific 

implementation of message passing through updating the AFV based on neighbor atoms atomic 

environments. This way, the model operates iteratively, at each iteration t predicting atomic 

properties P and updated features A, using the same (shared across iterations) neural network 

function ℱ: 

 {𝑃𝑃𝑖𝑖𝑡𝑡,𝑨𝑨𝑖𝑖𝑡𝑡+1} = ℱ(𝑮𝑮𝒊𝒊𝑡𝑡,𝑨𝑨𝒊𝒊𝑡𝑡)   (3) 

The approach has an analogy with a solution of one-electron Schrodinger equation with self-

consistent field (SCF) iterations, where one-electron orbitals (AFV in case of AIMNet) adapt to 

the potential introduced by other orbitals in the molecule (embedding vectors G in case of 

AIMNet). Though there is no convergence guarantee for AIMNet due to the absence of the 

variational principle, in practice statistical errors decrease and converge at t = 3 being an empirical 

observation. 

We use the ANI and AIMnet models as baselines to compare the results of new AIMNet-

MT and AIMNet-ME models developed in this work. AIMNet-MT (Figure 1c) or multitask is a 

straightforward extension of the AIMNet model by joint training one model that simultaneously 

predicts energies and spin-polarized charges for neutral species, cations, and anions with multiple 

output heads from same AIM layer. In AIMNet-MT, all three states share the same AFV 

representation, Interaction, and Update blocks. This setting allows us to evaluate if the common 

feature representations can capture correlations across different states and, if possible, take 
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advantage of that. In contrast, AIMNet-ME (Figure 1d), the multi-embedding model, shares the 

same Interaction, Update blocks, and output heads, but different initial AFV for anions, cations, 

and neutral molecules. An essential feature of AIMNet-ME is its ability to learn different 

representations inside one model. This feature can be exploited to have a fine-grained control over 

how learned representations are fused in the Embedding layer. 

Dataset construction. For the training dataset, we randomly selected about 200k neutral 

molecules from the UNICHEM database36 with molecule size up to 16 ‘heavy’ (i.e., non-

hydrogen) atoms and set of elements {H, C, N, O, F, Si, P, S and Cl}. We choose molecular 

dynamics (MD) as a fast and simple method to explore molecular PESs around their minima. We 

expect that thermally. Notably, all traditional molecular force fields are designed to describe 

closed-shell molecules only. Therefore, to overcome this limitation, we choose quantum 

mechanically derived force field (QMDFF37) as an efficient method to construct system-specific 

and charge-specific mechanistic potential for a molecule. We relied on the GFN2-xTB38 tight-

binding model to obtain minimum conformation, force constants, charges, and bond orders that 

are needed for the QMDFF model. 

 

Figure 2. The overall workflow targeting dataset generation for the energetics of neutral and 
charged molecular species. 
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The workflow to generate molecular conformations is summarized in Figure 2. Starting 

from SMILES representations, we generated a single 3D conformation for each molecule using 

the RDKit39 library. The molecule in each of three charge states (i.e., neutral, cation and anion) 

was optimized using the GFN2-xTB method, followed by a calculation of force constants, charges 

and bonds orders to fit molecule-specific QMDFF parameters. This custom force field was used 

to perform 500ps NVT MD run, with snapshots collected every 50 ps for the subsequent DFT 

calculations. For each snapshot, we performed several single-point DFT calculations at 

PBE0/def2-ma-SVP level, with a charge for the molecule set to the value at which the MD was 

performed, as well as its neighboring charge state, i.e., -1, 0 for anions, -1, 0, +1 for neutral, and 

0, +1 for cations (Figure 2). This results in up to 70 single-point DFT calculations per molecule. 

The described scheme affords the calculation of both vertical and adiabatic electronic energy 

differences. The former corresponds to the vertical transition from the initial (ground) state of the 

neutral system at its instantaneous non-equilibrium geometry to the lowest-energy state of the 

cation, and vertical electron attachment energy of a cation at its instantaneous non-equilibrium 

geometry to the lowest-energy ground state. The same is applicable to anions. All DFT calculations 

were performed using ORCA 4.0 package.40 Atomic spin-polarized charges were calculates using 

minimal basis iterative stockholder (MBIS) scheme41 as implemented in HORTON package.42 

We split all data into two subsets: Ions-12 dataset contains 6.44M structures with up to 12 

heavy atoms of which 45%, 25% and 30% are neutral, cations and anions, respectively. Ions-16 

dataset has 295k structures of 13-16 non-hydrogen atoms size with 48%, 24% and 26% of neutral, 

anionic and cationic species, respectively. We used Ions-12 dataset for training and validation, 

whereas Ions-16 was utilized for testing. Ions-16 dataset has larger, more complex structures and 

thus probes the model transferability. 
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Training protocol. The ANI model and AIMNet variants were trained using minibatch 

gradient descent powered by the Adam optimizer.43 For training performance considerations, all 

minibatches were composed of molecules with the same number of atoms, to avoid padding. 

Proper feed data shuffling data was achieved by accumulating gradients on model parameters from 

4 random minibatches. The effective batch size was 1000 molecules of different sizes. The training 

objective was minimization of weighted multi-target mean squared error (MSE) loss function with 

the general formula: 

 ℒ = 1
𝑁𝑁
∑ 𝑤𝑤𝑡𝑡 ∑ ��𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑖𝑖�

2
+ 𝑘𝑘2

2𝑀𝑀
∑ ∑ �𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞�𝑖𝑖𝑖𝑖�

2
s∈{α,β}

𝑀𝑀
𝑗𝑗=1  �𝑁𝑁

𝑖𝑖=1
3
𝑡𝑡=1   (4) 

In this formula, 𝐸𝐸 and 𝐸𝐸� are the target and predicted molecular energies, 𝑞𝑞 and 𝑞𝑞� – target 

and predicted atomic charges, respectively, s denotes spin component of atomic charge, N and M 

are corresponding numbers of molecules in minibatch and number of atoms in the molecules, and 

k is an empirical scaling factor equal to 15 kcal mol-1 e-1. The total loss function contains error 

contributions from all three SCF-like iterations t with weights w = [0.15, 0.25, 0.60]. Although all 

final predictions of the AIMNet models were obtained with t=3, we found it beneficial to restrain 

a network to give reasonably accurate results on earlier iterative passes, as it provides 

regularization to the model.  

The baseline ANI and AIMNet models were trained independently for each of the three 

charge states of the molecules. For AIMNet-ME and AIMNet-MT, joint training for all charge 

states was performed, and errors for each charge state were averaged in the loss function. The 

training was done against 5-fold cross-validation data splits. These five independent models were 

used to build an ensemble for more accurate predictions, denoted as “ens5” later in the text. All 

AIMNet model variants, as well as the ANI model, were implemented with PyTorch framework44 

and is available in a public code repository at https://github.com/aiqm/aimnet. 

https://github.com/aiqm/aimnet
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Results and Discussions 

A summary of the performance for all four models is presented in Table 1. Vertical 

ionization potentials (IP) and electron affinities (EA) were computed directly from the 

corresponding differences of energies of neutral and charged states: 

 𝐼𝐼𝐼𝐼 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛; 𝐸𝐸𝐸𝐸 =  𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    (5) 

Root mean square errors (RMSE) of the Ions-12 set provide a measure of the performance 

of the model with respect to the data points similar to those used for training. On the other hand, 

errors on Ions-16 can be seen as a more appropriate testbed that is probing generalization 

capabilities of the model across the unknown chemical and conformational degrees of freedom 

(i.e., unseen molecules). 

 
Table 1. Root mean square errors (RMSEs) in kcal/mol for individual models and ensemble of 5 models 
(ens5) on Ions-12 test set and Ions-16 external set. The resulting RMSEs for vertical ionization potentials 
(IP) and electron affinities (EA) are computed from the respective total energies. The smallest errors (within 
~0.1 kcal/mol) for a given quantity across the model set are highlighted in bold.  
 

Model Test Dataset 
Total energy RMSE IP 

RMSE 
EA 

RMSE Cation Neutral Anion 

ANI 
Ions-12 8.4 5.1 5.0 9.4 6.9 
Ions-16 10.8 4.4 4.9 11.0 5.9 

Ions-16 (ens5) 10.0 4.0 4.6 10.2 5.3 

AIMNet 
Ions-12 3.8 3.8 3.5 4.7 4.7 
Ions-16 4.6 2.7 3.3 4.8 3.8 

Ions-16 (ens5) 4.1 2.3 2.8 4.2 3.0 

AIMNet-MT 
Ions-12 3.6 3.3 2.9 4.1 3.8 
Ions-16 5.0 2.9 3.1 5.2 3.4 

Ions-16 (ens5) 4.6 2.5 2.7 4.7 2.9 

AIMNet-ME 
Ions-12 3.9 3.7 3.2 4.6 4.2 
Ions-16 5.6 2.8 3.1 5.7 3.4 

Ions-16 (ens5) 5.2 2.4 2.7 5.2 2.9 
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While ANI models are known to achieve state-of-the-art performance17,45 on 

conformational energies and reaction thermochemistry in drug-like molecules, the problem 

addressed here is challenging due to the presence of charged species. Similarly to our previous 

results for neutral molecules,26 all AIMNet flavors substantially improve upon ANI, especially for 

the total energy of cations and vertical IPs. The original ANI model does not include explicit long-

range interactions. All interactions are described implicitly by the neural network; therefore, the 

interactions described by the model do not extend beyond the AEV cutoff distance (Rcut = 5.2 Å 

in this work). Since the ANI model performs well on neutral molecules and is completely short 

sighted, we use it as a baseline for comparison. For this data set, because both extra electrons (in 

case of anions) and holes (in case of cations) are spatially delocalized, the non-local electrostatics 

extends beyond the cutoff distance and spatially spans over the full molecule. 
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Figure 3. Correlation between DFT PBE0/ma-def2-SVP and AIMNet predictions for total 
molecular energies (top row), non-equilibrium vertical ionization potentials and electron affinities 
(middle row) and atomic charges (bottom row) calculated for three charge states for Ions-16 
dataset. 
 
 
 The AIMNet model achieves an overall accuracy about 3 kcal/mol for anions and EA and 

about 4 kcal/mol for cations and IP. Figure 3 provides overall correlation plots for the respective 

energies and charges. Please see supplementary information for plots for all other models. Note, 

since regression plots are colored by the density of points on the Log scale, the vast majority of 

points are on the diagonal line. AIMNet, AIMNet-MT, and AIMNet-ME models consistently 
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provide the same level of performance across the energy range of 400 kcal/mol (~17 eV) without 

noticeable outliers. All models were able to learn spin-polarized atomic charges up to a "chemical 

accuracy" of 0.01e (electron, elementary charge) as shown in Figure 3 for neutral molecules and 

cations.  The outliers are observed for anions in a realm of negative charges, where the overall 

RMSD for AIMNet is 0.059 e. Table 1 also compares the performance of individual models to the 

performance of their ensemble prediction (marked as "ens5"). In principle, model ensembling is 

always desirable and, on average, provide the performance boost by 0.5 kcal/mol for all energy 

based quantities.  

Jointly trained AIMNet-MT and AIMNet-ME data-fusion models only slightly improve 

the performance for anions and EA by 0.1 kcal/mol. Even though data-fusion did not provide 

obvious accuracy benefits, such models have significant advantages in practical applications. 

Namely, only one model needs to be trained and used to predict all properties of interest. AIMNet-

ME brings ML and physics-based models one step closer by offering a discrete, physically correct 

dependence of system energy with respect to a total molecular charge.  

To elucidate the importance of iterative "SCF-like" updates, the AIMNet model was 

evaluated with a different number of passes t. AIMNet with t = 1 is very similar to the ANI model. 

The receptive field of the model is roughly equal to the size of the AEV descriptor in ANI; and no 

updates were made to the AFV vector and atomic embeddings. Figure 4a shows that the aggregated 

performance of prediction for energies improves with an increasing number of passes t. This trend 

is especially profound for cations. As expected, the accuracy of AIMNet with t = 1 is very similar 

or better compared to the ANI network. The second iteration (t = 2) provides the largest 

improvement in performance for all three states. After t = 3, the results are virtually converged. 
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Therefore, we used t = 3 to train all models in this work. These observations for charged molecules 

are remarkably consistent with results for neutral species.26 

 

 

Figure 4. A) Comparison of AIMNet and ANI model performance (RMSE, kcal/mol) for Ions-16 
dataset with different t values. All models were trained on exactly the same datasets of total 
energies of neutral molecules, cations, and anions. B) Automatic redistribution of α and β spin-
charges by the AIMNet on 4-amino-4'-nitrobiphenyl molecule with a different number of iterative 
passes t. For comparison, DFT (PBE0/ma-def2-SVP) spin-density is depicted on the bottom of the 
panel. 
 
 

Let us consider 4-amino-4'-nitrobiphenyl molecule as an illustrative example (Figure 4b). 

This is a prototypical optoelectronic system, where a π-conjugated system separates the electron-

donating (NH2) and accepting (NO2) groups. These polar moieties underpin an increase in the 

transition dipole moment upon electronic excitation leading to two-photon absorption. The effect 

of donor-acceptor substitution is apparent from the ground state calculations of the charge species 

where electron and hole in cation and anion, respectively, are centered on the substituent groups 

with strong delocalization across π orbitals of the aromatic rings as illustrated by the DFT 

calculations (Figure 4b).  Capturing such charge delocalization constitutes an extreme challenge 

to all ML with local geometric descriptors, including AIMNet with t = 1. The latter predicts all 

spin-charges for both cation and anion to be practically the same. The correct behavior could be 
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recovered with either an increase of the cutoff radius for the local environment or some kind of 

"message-passing". AIMNet with t = 2 starts to redistribute charges and predicts alternation of an 

excess of alpha and beta spins. At t = 3, the charge redistribution in the AIMNet model correctly 

reproduces spin-density wave-like behavior with opposite phases for cation and anion as predicted 

by DFT (Figure 4b). Notably, 4-amino-4'-nitrobiphenyl molecule was neither part of the training 

nor test data, exemplifying convergence and reproduction of quantum-mechanical properties 

through iterative updates. 

The previously described neural charge equilibration could be an attractive alternative to 

popular charge equilibration schemes like EEM,46 QEq,47 and QTPIE48 that use simple physical 

relationships. They often suffer from transferability issues and might produce unphysical results. 

To our knowledge, this is a primary example where the ML model provides a consistent and 

qualitatively correct physical behavior between molecular geometry, energy, integral molecular 

charge, and partial atomic charges. Other schemes like BP,15 TensorMol,18 HIP-NN,49,50 and  

PhysNet21 typically employ auxiliary neural network that predicts atomic charges from a local 

geometrical descriptor. Electrostatic interactions are computed with Coulomb's law based on those 

charges. In principle, many effects can be captured by a geometrical descriptor, but it does not 

depend on the total charge and spin multiplicity of the molecule. Following the basic principles of 

quantum mechanics to incorporate such information successfully, the model should adapt 

according to changes in the electronic structure, preferably in a self-consistent way. This is 

exemplified here through the case of the AIMNet family of models. 

 

Case study for chemical reactivity and reaction prediction. 
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As a practical application of AIMNet models, we demonstrate a case study on chemical 

reactivity and prediction of reaction outcomes. The robust prediction of the products of chemical 

reactions is of central importance to the chemical sciences. In principle, chemical reactions can be 

described by the stepwise rearrangement of electrons in molecules, which is also known as a 

reaction mechanism.51 Understanding this reaction mechanism is crucial because it provides an 

atomistic insight into how and why the specific products are formed. 

DFT has shown to be a powerful interpretative and computational tool for mechanism 

elucidation.52–55 In particular, conceptual DFT (c-DFT) popularized many intuitive chemical 

concepts like electronegativity (𝜒𝜒) and chemical hardness.56 In c-DFT, reactive indexes measure 

the energy (E) change of a system when it is a subject to a perturbation in its number of electrons 

(N). The foundations of c-DFT were laid by Parr et al.57 with the identification of the electronic 

chemical potential µ and hardness η as the Lagrangian multipliers in the Euler equation. In the 

finite-difference formulation, the these quantities could be derived from EA and IP values as 

𝜇𝜇 =  −𝜒𝜒 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� ≈ − 1

2
(𝐼𝐼𝐼𝐼 + 𝐸𝐸𝐸𝐸)     (7) 

𝜂𝜂 = �𝜕𝜕
2𝐸𝐸

𝜕𝜕𝑁𝑁2
� ≈ − 1

2
(𝐼𝐼𝐼𝐼 − 𝐸𝐸𝐸𝐸)     (8) 

 The Fukui function f(r) is defined as a derivative of the electron density on the total number 

of electrons in the system. These global and condensed-to-atom local indexes were successfully 

applied to a variety of problems in chemical reactivity.58,59 Using finite difference approximation 

and condensed to atoms representation, Fukui functions for electrophilic (𝑓𝑓𝑎𝑎−), nucleophilic (𝑓𝑓𝑎𝑎+), 

and radical (𝑓𝑓𝑎𝑎0) reactions are defined as: 

 𝑓𝑓𝑎𝑎− = 𝑞𝑞𝑁𝑁 − 𝑞𝑞𝐴𝐴;  𝑓𝑓𝑎𝑎+ = 𝑞𝑞𝐶𝐶 − 𝑞𝑞𝑁𝑁 ;  𝑓𝑓𝑎𝑎0 = 1
2

(𝑞𝑞𝐶𝐶 + 𝑞𝑞𝐴𝐴) (9) 

Another useful c-DFT reactivity descriptor is electrophilicity index given by 
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𝜔𝜔 =  𝜇𝜇
2

2𝜂𝜂�  (10) 

as well as it's condensed to atoms variants for electrophilic (𝜔𝜔𝑎𝑎𝑒𝑒), nucleophilic (𝜔𝜔𝑎𝑎𝑛𝑛) and radical 

(𝜔𝜔𝑎𝑎𝑟𝑟) attacks:60  

𝜔𝜔𝑎𝑎𝑒𝑒 = 𝜔𝜔𝑓𝑓𝑎𝑎−;      𝜔𝜔𝑎𝑎𝑛𝑛 = 𝜔𝜔𝑓𝑓𝑎𝑎+ ;      𝜔𝜔𝑎𝑎𝑟𝑟 = 𝜔𝜔𝑓𝑓𝑎𝑎0   (11) 

On the basis of the predicted with AIMNet-MT vertical IPs, EAs, and charges, we could 

directly compute all listed c-DFT indexes. Figure 5 displays the correlation plots for all nine 

quantities. The AIMNet-ME model achieves an excellent quality of prediction of three global 

indexes with R2 ranging from 0.93 to 0.97. Condensed indexes are more challenging to predict, 

with electrophilic ones being the hardest (R2 is 0.53 and 0.62). This is related to the overall more 

substantial errors in the cation energy predictions. Here we would like to emphasize again that 

none of these properties were part of the cost function or training data. The values were derived 

from the pre-trained neural network and therefore this opens a possibility to a direct modeling fully 

bypassing c-DFT calculations and wavefunction analysis. 

We observe relatively poor prediction for the electrophilic and radical Fukui functions and 

philicity indexes. This is a consequence of larger prediction errors in atomic charges for anions. 

The most probable reason is the high polarizability of anions and thus more delocalized charge 

distribution. However, the accuracy of nucleophilic indexes appears to be suitable to make a 

reliable prediction of reaction outcomes.  
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Figure 5. Correlation between DFT PBE0/ma-def2-SVP and AIMNet-MT predictions for 
electronegativity (𝜒𝜒), chemical hardness (𝜂𝜂) and electrophilicity index (𝜔𝜔), Fukui coefficients for 
nucleophilic (𝑓𝑓𝑎𝑎+), for electrophilic (𝑓𝑓𝑎𝑎−) and radical (𝑓𝑓𝑎𝑎0) attacks and three corresponding 
condensed philicity indexes (𝜔𝜔𝑎𝑎 ). 
 

Let us exemplify prediction of site selectivity for aromatic C–H bonds using electrophilic 

aromatic substitution (EAS) reaction. The EAS reaction is a standard organic transformation. Its 

mechanism involves the addition of an electrophile to the aromatic ring to form a σ-complex 

(Wheland intermediate) followed by deprotonation to yield the observed substitution product 

DFT calculated 

M
L 

 

𝑓𝑓𝑎𝑎   
−                                            𝑓𝑓𝑎𝑎+                                         𝑓𝑓𝑎𝑎0   

𝜔𝜔𝑎𝑎𝑒𝑒                                              𝜔𝜔𝑎𝑎𝑛𝑛                                        𝜔𝜔𝑎𝑎𝑟𝑟   
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(Figure 6). The reactivity and regioselectivity of EAS would generally depend on the ability of the 

substituents to stabilize or destabilize a σ-complex. 

 

 

Figure 6. General mechanism of electrophilic aromatic substitution reaction. 

 

Recently EAS attracted significant attention from computational studies due to its 

importance in late-stage functionalization (LSF) for the drug development process.61 A direct and 

numerically very expensive approach to EAS selectivity predictions is to calculate all transition 

states on the complete path from reactants to products. A popular approach called RegioSQM 

achieves high site prediction accuracy based on enumeration and calculation of σ-complex with 

semi-empirical quantum mechanical calculations.62 

Table 2 lists the accuracy of regioselectivity prediction with recently published methods 

using data from ref 61. A random forest (RF) model with DFT TPSSh/Def2-SVP derived 

descriptors like charges (q), bond orders (BO), Fukui indexes, and solvent accessible surface 

(SAS) achieves 90% accuracy on the validation data (note different DFT methodology used for 

this study and for training our DNNs). This model relies on QM calculations of reagents but does 

not require searching σ-complexes. When QM descriptors are combined with RegioSQM, the RF 

classifier exhibits an excellent performance of 93%. While the RegioSQM model is accurate, it is 

slow for high throughput screening. A modest dataset of a few hundred molecules takes about two 

days to complete on a multicore compute node. Very recently, Weisfeiler-Lehman Neural Network 

(WLNN) was suggested to predict site selectivity in aromatic C-H functionalization reactions.63 
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This model was trained on 58,000 reactions from the Reaxys database and used RDKit molecular 

descriptors. WLNN achieves an accuracy approaching 90% for the prediction of EAS 

regioselectivity.  

 

Table 2. Compilation of results for EAS regioselectivity prediction with different approaches. 

Descriptors ML Model Validation  
accuracy Test accuracy 

q, BO, SAS, f-  RF1 0.899 
 

q, BO, SAS, f-, RegioSQM  RF1 0.931 0.876 
Reaxis data, molecular  descriptors Weisfeiler-Lehman 

Neural Net 2 
0.895 0.836 

𝜔𝜔,𝜔𝜔𝑎𝑎−, AIM vector  RF (present work) 0.905 0.849 
 

1 Results from ref. 61 
2 Results from ref. 63 
 
  

We used AIMNet-MT to calculate Fukui coefficients and atomic philicity indexes. We also 

added the AIM layer as an additional set of descriptors. As we argued before26 a multimodal 

knowledge residing inside the AIM layer could be exploited as an information-rich feature 

representation. The RF classifier trained with AIMNet-MT descriptors displays an excellent 

performance of 90% on the validation set and 85% on the test set. Therefore, AIMNet models 

could provide a competitive universal alternative to QM targeting not only geometry minimization 

but also a prediction of reaction outcomes with several orders of magnitude speedup.  

 

Conclusions 

We recently witnessed that machine learning models trained to quantum-mechanical data 

achieve formidable success in quantitative predictions of ground-state energies and interatomic 

potentials for common, typically charge-neutral organic molecules. Nevertheless, a quantitative 
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description of complex chemical processes involving reactions, bond breaking, charged species, 

and radicals remains an outstanding problem for data science. The conceptual challenge is a proper 

description of spatially delocalized electronic density (which strongly depends on molecular 

conformation) and accounting for long-range Coulombic interactions stemming from the 

inhomogeneously distributed charges. These phenomena appear as a consequence of the quantum-

mechanical description of delocalized electronic wavefunctions. Consequently, representation of 

spatially non-local, frequently intensive molecular properties is problematic for common neural 

nets adapting local geometric descriptors. The recently developed AIMNet neural network 

architecture addresses this challenge via an iterative message passing-based process, which 

ultimately captures complex latent relationships across atoms in the molecule. 

In the present work, we extended the AIMNet architecture to learn a transferrable potential 

for organic molecules in three different charge states (neutral, cation-radical and anion-radical 

species). AIMNet achieves consistent 3-4 kcal/mol accuracy in predicting energies of larger 

molecules (Ions-16 dataset), even though it was only trained to non-equilibrium DFT data for small 

molecular species (Ions-12 dataset). In addition to energy, the AIMNet models achieve a state of 

the art performance in prediction of intensive properties. It demonstrates accuracy ~3 kcal/mol for 

vertical electron affinities and about 4 kcal/mol for vertical ionization potentials across a broad 

chemical and conformational space.  

The key ingredients that allow the AIMNet family of models to achieve such high level of 

accuracy are i) multimodal learning, ii) joint information-rich representation of atom in a molecule 

that is shared across multiple modalities, and iii) iterative “SCF-like” passes for an accounting of 

long-range interactions.  In contrast to the standard geometric descriptors, we have highlighted an 

importance of incorporating adaptable electronic information into ML models. Essentially the 
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AIMNet method could serve as a neural charge equilibration scheme. As a side benefit, it can be 

used for a high-quality estimate of reactive indexes based on conceptual DFT and reliable 

prediction of reaction outcomes. Overall, demonstrated flexible incorporation of quantum 

mechanical information into AIMNet structure and data fusion (underpinning jointly trained 

AIMNet-MT and AIMNet-ME models) exemplify a step toward developing a universal single 

neural net architecture capable of quantitative prediction of multiple properties of interest. 
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