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Abstract 

Surfactants are amphiphilic molecules that are widely used in consumer products, industrial 

processes, and biological applications. A critical property of a surfactant is the critical micelle 

concentration (CMC), which is the concentration at which surfactant molecules undergo 

cooperative self-assembly in solution. Notably, the primary method to obtain CMCs 

experimentally—tensiometry—is laborious and expensive. In this work, we show that graph 

convolutional neural networks (GCNs) can predict CMCs directly from the surfactant molecular 

structure. Specifically, we developed a GCN architecture that encodes the surfactant structure in 

the form of a molecular graph and trained it using experimental CMC data. We found that the 

GCN can predict CMCs with higher accuracy than previously proposed methods and that it can 

generalize to anionic, cationic, zwitterionic, and nonionic surfactants. Molecular saliency maps 

revealed how atom types and surfactant molecular substructures contribute to CMCs and found 

this to be in agreement with physical rules that correlate constitutional and topological information 

to CMCs. Following such rules, we proposed a small set of new surfactants for which experimental 

CMCs are not available; for these molecules, CMCs predicted with our GCN exhibited similar 

trends to those obtained from molecular simulations. These results provide evidence that GCNs 

can enable high-throughput screening of surfactants with desired self-assembly characteristics. 
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Introduction 

Surface-active agents (surfactants) are amphiphiles that consist of a lyophilic head and a lyophobic 

tail. Depending on the charge carried by the polar head group, surfactants can be categorized as 

nonionic, cationic, anionic, or zwitterionic (Fig. 1, a-d).1 Given their ability to reduce surface 

tension and increase the solubility of insoluble or sparingly soluble substances,2 surfactants are 

widely used for wetting, foaming, cleaning, emulsification, solubilization, lubrication, and 

flotation in industrial applications such as pharmaceuticals, personal care, detergents, coatings, 

food, and agriculture.3,4,5 Surfactants have also been utilized for green chemistry, bioengineering, 

and other chemically relevant research fields; for example, surfactants have been shown to enhance 

oil recovery,6 reduce environmental footprints in pharmaceuticals,7 improve drug delivery 

effectiveness,8 and enable catalysis in aqueous media.9 

 When dissolved in water, surfactant monomers will undergo a cooperative aggregation 

process, called self-assembly, to form spherical micelles or related aggregate structures.10 Self-

assembly is thermodynamically favorable because the micelle structure minimizes the water-

exposed hydrophobic surface area by orienting hydrophilic surfactant head groups towards the 

aqueous phase and positioning hydrophobic surfactant tail groups within the micelle core (Fig. 1, 

e-f).1 The formation of micelles in a solution can induce significant changes in key solution 

properties including the electrical conductivity, surface tension, light scattering, and reactivity.1, 10 

Consequently, predicting conditions under which surfactants self-assemble is important for 

surfactant selection and design.11 A critical parameter that characterizes surfactant self-assembly 

behavior is the critical micelle concentration (CMC), which is the minimum surfactant 

concentration at which self-assembly occurs.1, 10 CMCs are strongly influenced by the molecular 

structure of the surfactant (such as the tail length and the head area);  for instance, it is typically 
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observed that the shorter the hydrophobic tail and the larger the hydrophilic head, the higher the 

CMC.3, 10 However, this type of qualitative analysis cannot easily translate into quantitative 

predictions of CMCs, which limits the screening and rational design of surfactants. Moreover, the 

primary method to obtain CMCs experimentally—tensiometry—is laborious and expensive.12-14 

 As an alternative to experiments, computational methods such as molecular dynamics (MD) 

simulations15-17 and descriptor-based quantitative structure-property relationship (QSPR) models12, 

18-23 have been used to predict CMCs. These approaches have been shown to predict CMCs with 

relatively high accuracy, but they have a number of limitations; for instance, MD simulations 

usually require large system sizes, long simulation times, and assumptions regarding the number 

of surfactants within a micelle,15-17 whereas QSPR models are often applicable to a single class of 

surfactants and may need density functional theory calculations to obtain quantum-chemical 

molecular descriptors.24 Recent advances in machine learning methods for molecular property 

prediction can help overcome some of these obstacles. Goh et al. used 2D molecule “images” as 

input to convolutional neural networks (CNNs) to predict toxicity, activity, and solvation 

properties of different molecules.25 Hirohara et al. used one-hot-encoded simplified molecular-

input line-entry system (SMILES) strings combined with molecular descriptors as CNN inputs to 

predict functional substructures.26 Wu et al. employed graph neural networks (GNNs) trained on 

molecular graphs to predict various molecular properties.27 GNNs have similarly been shown to 

outperform other machine learning methods, including logistic regression, support vector machine, 

kernel ridge regression, and random forests in different benchmark datasets such as Tox2128 (for 

toxicity classification) and ESOL29 (for water solubility regression).27, 30, 31 Most studies in this 

area, however, have focused on predicting common molecular properties for which a large number 

of data samples are available (such as solubility and toxicity).27, 30-32 To the best of our knowledge, 
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GNNs have not been used for CMC prediction. The CMC is also distinct from these related 

properties because it describes the cooperative behavior of a collection of molecules in solution, 

rather than the property of a single molecule.  

 In this study, we show that graph convolutional neural networks (GCNs),33 a basic 

architecture in the family of GNNs, can predict CMC values directly from the molecular graph of 

a surfactant monomer. Molecular graphs are intuitive and flexible data representations that encode 

information on component atoms and atom connectivity (e.g., they encode topological information 

of the molecular structure). GCNs extract features from molecular graph representations by using 

convolutional operations that aggregate encoded information from molecular structures. We 

hypothesize that GCNs can capture important structural information that can enable CMC 

predictions; this hypothesis is motivated by the observation that QSPR models use topological and 

constitutional descriptors of a surfactant to predict CMCs.12, 18, 19 Moreover, given that GCNs 

perform convolutions at an atomic level, they provide flexibility to handle surfactants of different 

sizes without the need for artificial data manipulations (e.g., CNN models require zero-padding to 

handle molecules of different sizes).   

 We present a GCN architecture that was first trained and tuned using a dataset that only 

contains nonionic surfactants. This architecture is used to confirm the ability of the model to extract 

hidden molecular features that enable CMC predictions. We then trained the architecture using an 

expanded dataset that contains nonionic, anionic, cationic, and zwitterionic surfactants. We show 

that the GCN model achieves a higher prediction accuracy on a broader spectrum of surfactants 

than previous QSPR models reported in the literature. However, one of the obstacles in 

understanding the predictive limitations of the proposed approach is the lack of available 

experimental data. To address this issue, we created a synthetic dataset that mimics the basic 
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structural features of surfactants; this approach allowed us to construct a large and controlled 

dataset to examine whether the GCN architecture has the ability to capture the intrinsic topological 

and constitutional information of a molecule. We also used gradient information to generate 

molecular saliency maps and with this gain understanding of how a surfactant structure influences 

its CMC. Finally, we illustrate the potential of our approach to enable molecular design and 

screening by deriving new surfactant structures from the existing ones, then validating GCN 

predictions by comparing them to CMC trends obtained from complementary molecular 

simulations.  

 

Figure 1. Overview of surfactant molecular structures and self-assembly process in micelles. (a)-(d) 

Sample structures of four classes of surfactants included in the experimental dataset. Surfactants are 

categorized by the properties of their head groups as nonionic (a), cationic (b), anionic (c), or zwitterionic 

(d). Additional structures not shown here are listed in SI Table S1. (e) Surfactant monomers aggregate into 

spherical micelles in water with hydrophilic head groups facing towards the solvent and hydrophobic tail 

groups sequestered inside the micelle core. (f) Snapshots of a surfactant micelle from a representative 

molecular dynamics simulation with water shown in blue. 
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Results and Discussion 

Preparation of the experimental surfactant CMC dataset 

We gathered experimental CMC data for 202 surfactants, including 122 nonionic surfactants, 35 

cationic surfactants, 34 anionic surfactants, and 11 zwitterionic surfactants (Fig. 1, a-d), from 

multiple literature sources to form our dataset.1,12,17,34 All CMCs were measured at room 

temperature (between 20-25 °C) in water and converted to log CMC values (base 10). The dataset 

was split into training (~90%) and testing (~10%) subsets, and we performed k-fold cross-

validation (CV) for hyperparameter tuning. In k-fold CV, the training subset was randomly divided 

into k groups. The model was then trained k times with a different group held out each time as the 

validation set and the remaining k-1 groups used as a training set. The value of k was determined 

such that the training subset and the validation subset contained approximately 80% and 10% 

samples of the original dataset, respectively.   

 Since past approaches used for CMC predictions (e.g., QSPR models12, 18, 19) typically 

focus on a single class of surfactant, we first conducted baseline predictions on a subset of the 

original dataset containing only nonionic surfactants to compare to past results. This subset was 

partitioned into 100 training samples, 10 validation samples (11-fold CV), and 12 testing samples. 

To analyze the generalizability of the GCN model to multiple classes of surfactants, we used the 

full dataset containing all nonionic, anionic, cationic, and zwitterionic surfactants. This dataset 

was partitioned into 160 training samples, 20 validation samples (9-fold CV), and 22 testing 

samples. The testing samples were selected using stratified sampling35 to include surfactants that 

cover a wide domain of the input CMCs and were held out during model training and validation. 

SI Table S1 lists all surfactants studied and indicates the surfactants that were selected as test 
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samples. All data and scripts needed to reproduce the results can be found here: 

https://github.com/zavalab/ML/tree/master/CMC_GCN.   

 

Molecular graph representation 

Surfactant structures were converted to molecular graphs and these were provided as input to the 

GCN. In this data representation, atoms were represented as nodes and bonds as edges, as 

illustrated in Figure 2a. Hydrogen atoms were treated implicitly. Each node encoded atomic 

information such as the atom type, degree (number of connected edges to it), and charge in the 

form of a feature matrix (Fig. 2b); for instance, the atom type was one-hot encoded into 43 

categorical features based on the predefined list of chemical elements. Edge features (e.g., bond 

type) were not explicitly included but were captured by atom features such as hybridization and 

aromaticity. This representation resulted in 74 features per atom, with a full list summarized in SI 

Table S2; as a comparison, a previous study12 computed over 300 constitutional, topological, 

geometrical, and quantum-chemical descriptors to develop a QSPR model. Besides atom features, 

the molecular graph encodes topology through an adjacency matrix that captures atom connectivity 

(Fig. 2c). This data representation thus differs from that used in QSPR models, in which 

topological information is only indirectly captured via molecular-level descriptors (e.g., 

topological indices).12, 19, 20 For each cationic or anionic surfactant, the counterion was represented 

as a node disconnected from other nodes in the molecular graph.  

https://github.com/zavalab/ML/tree/master/CMC_GCN


8 

 

 

Figure 2. Data representation of an example surfactant. (a) The molecular graph of an example 

surfactant monomer. Atoms are represented as nodes and bonds are represented as undirected edges. 

Hydrogen atoms are implicit. The atom feature vectors are illustrated as colored bars next to each atom. (b) 

Atom features are encoded as fixed-length atom feature vectors. The presence or absence of each feature is 

labeled as “1” or “0”, respectively, resulting in a feature matrix for each molecule with dimensions given 

by the number of atoms and the number of features per atom. (c) The adjacency matrix shows the 

connectivity between atoms; a value of one is assigned to the matrix entry (𝑖, 𝑗) if there is a bond that 

connects atom 𝑖 and atom 𝑗.  

 

GCN for CMC predictions of nonionic surfactants 

The proposed GCN architecture consists of two graph convolutional layers, one average pooling 

layer, two fully-connected hidden layers, and one final output layer (Fig. 3). A graph convolution 

layer updates each atom by aggregating the features of itself and of its neighbors and maps the 
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updated features into a hidden layer with 256 hidden features. The hidden features are generated 

from nonlinear transformations (linear mapping with trainable parameters followed by ReLU 

activation) of the updated features. The GCN model contains a total of 216,833 parameters, 

corresponding to operators of the graph convolutions as well as bias terms. Because the number 

of parameters is relatively large compared with the size of the dataset, as measures to prevent 

overfitting, we used early-stopping to terminate training when validation performance starts to 

degrade and CV to estimate the predictive power of the model architecture on unseen data. The 

GCN architecture was determined by hyperparameter tuning using the nonionic surfactant subset 

and by performing 11-fold CV (Fig. 4a). The root-mean-squared-errors (RMSEs) between the 

experimental and predicted log CMC values (obtained with 11-fold CV) have a mean value of 0.32. 

Although we were able to achieve a lower average CV RMSE of 0.30 when we increased both the 

number of convolutional layers and the number of fully-connected hidden layers, the median and 

the standard error did not improve (SI Table S3). Therefore, we decided to select a simpler 

architecture for less computational time and potentially better model interpretability. For this GCN 

architecture, RMSEs for 9 out of the 11 models trained during CV fall between 0.15 and 0.34, with 

only one major outlier at 0.90 and one minor outlier at 0.47. RMSEs are summarized in SI Figure 

S1.  
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Figure 3. GCN architecture. The proposed GCN takes a molecular graph as input, convolutes across each 

input twice (by updating the atom features and mapping the updated features into hidden features), averages 

the atom-level hidden features into molecule-level hidden features, and calculates the final prediction of 

the log CMC value from fully-connected neural network layers.  

 

We tested the ability of the GCN model to generalize to new data by training the model 

using all training samples then testing on held-out test samples, as illustrated in Figure 4a. For the 

nonionic dataset, 12 test samples were selected to include various nonionic surfactant structures, 

covering samples with structures listed in Figure 1a as well as other surfactant classes such as 

glucamine and lactobioamide. Each test sample prediction was calculated as the average of the 

prediction results from three training runs with different parameter initializations. The test dataset 

has an RMSE of 0.23 (𝑅2 = 0.96) and a best-fit slope of 0.95. Figure 4b shows a parity plot 

between the predicted and experimental log CMC values for the training and testing sets. The 

RMSE of the test data lies in the middle range of the CV RMSEs, indicating that the model is not 

overfitted. Our model performs better than a previous QSPR model developed to predict the CMC 

values of 108 sugar-based nonionic surfactants, for which the best test RMSE reported was 0.32 
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(𝑅2 = 0.93).12 Furthermore, our dataset encompassed a wider variety of nonionic surfactants 

(other than sugar-based ones), such as fluorinated thiol ethoxylates and acyl-homoserine lactones.  

 

Figure 4. GCN model validation and testing for nonionic surfactant dataset. (a) Training, validation, 

and testing procedure for hyperparameter tuning. We first divide the dataset into training and testing sets. 

The training set is then split into training and validation sets for a k-fold cross-validation (CV) procedure. 

After the architecture is determined, we train the GCN on the entire training dataset and test the model on 

the held-out test set to evaluate model performance on the new data. (b) Parity plot between the predicted 

and experimental log CMCs for nonionic surfactants. The best-fit slope is 0.95 (𝑅2 = 0.96) for the GCN 

test set and 0.92 (𝑅2 = 0.39) for the COSMOmic test set. The dashed lines show a 10% error range of log 

CMCs. The error bars of the GCN test data are standard errors computed from three training trials with 

different parameter initializations. The error bars shown for the COSMOmic test data are the standard errors 

computed from three different monomer configurations obtained from molecular dynamics simulations.  

 

Molecular simulations for CMC predictions as a validation method 

We compared the predictive performance of molecular simulations on the same test dataset using 

the COnductor-like Screening Model for Realistic Solvation (COSMO-RS) model and its 

extension, COSMOmic, which can compute aggregation free energies.36 Atomistic MD 

simulations were first conducted to obtain input structures for each surfactant monomer and 

corresponding spherical micelle in the test set (SI Fig. S2). These structures were used as input for 

COSMOmic calculations to compute the free energy of micellization in order to obtain the CMC. 
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This simulation protocol is faster than experiments and can be applied to any surfactant molecule 

(thus providing the flexibility to study the effects of structure on CMC values). However, the 

protocol requires an aggregation number (e.g., the number of surfactants within the micelle), which 

we assumed to be 100 for all surfactants modeled in this study because this value is typical of 

nonionic surfactants.37 The RMSE obtained from the COSMOmic calculations is 0.91 with a best-

fit slope of 0.92, which is less accurate than the GCN predictions. When predicting large log CMC 

values (log CMC > 4), this method deviates more from experimental values, which in part could 

be due to variations in the aggregation number. While COSMOmic tends to overestimate log CMC 

values, in general, it predicts the correct trend. Therefore, this method can be used as an additional 

source of information to validate trends in predicted CMC values for newly designed surfactants 

for which experimental data are not available.   

 

GCN  for CMC predictions for all surfactants 

We trained the same GCN architecture on the full dataset containing all four classes of surfactants 

and performed 9-fold CV. Instead of tuning hyperparameters, CV was used to compare the model 

performance to that of the previous dataset with only nonionic surfactants. The resulting CV 

RMSE on all types of surfactants has a mean value of 0.39 with no significant outliers. The 

majority of the CV RMSEs lie in the range of 0.28-0.45, as summarized in SI Figure S1. We again 

tested model performance on a test dataset, which contains the same 12 nonionic test samples as 

well as 4 additional cationic, 4 anionic, and 2 zwitterionic samples. Figure 5 shows a parity plot 

between the experimental and predicted log CMC values for the training and testing sets. We found 

that the average CV RMSE is 0.30 with a best-fit slope of 0.91. The RMSE is higher than that of 

the model trained on nonionic surfactants (as expected). Cationic surfactants have the lowest test 
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RMSE (0.07), followed by nonionic (0.18) and anionic (0.32), and the model performs worst for 

zwitterionic surfactants (0.76). The most significant outlier is the zwitterionic surfactant shown in 

Figure 5, which may be due to the presence of long alkyl groups (with a backbone of 22 atoms). 

Another potential reason for the high test RMSE obtained in zwitterionic surfactants may be the 

small number of test samples. The parity plot also suggested a slightly lower accuracy for 

surfactants with relatively large log CMC values (> 4.5), as also observed in the COSMOmic 

calculations. Despite the major outlier found for a zwitterionic surfactant, the overall predictability 

of the GCN model still outperforms that of a prior QSPR model12 developed for only sugar-based 

nonionic surfactants. The differences in the molecular structures found in our dataset further 

highlight the wide variety of surfactants that the GCN model can capture. To the best of our 

knowledge, none of the previously reported QSPR models12, 18-22 have tried to predict CMCs for 

all classes of surfactants using a single model; as such, the proposed GCN provides a significant 

development in surfactant CMC prediction.  
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Figure 5. GCN predictability in all classes of surfactants. Parity plot between the predicted and 

experimental log CMC values (training data in blue and test data in red). The best-fit slope of the test data 

is 0.91 (𝑅2 = 0.92), and the test RMSE is 0.30. Molecular structures are shown for the selected extreme 

points. Structure (a) is an anionic surfactant (minor outlier) with a high log CMC value. Structure (b) is a 

cationic surfactant (minor outlier) with a high log CMC value. Structure (c) is a zwitterionic surfactant 

(major outlier). Structure (d) is a nonionic surfactant with a low log CMC value.  

 

Systematic analysis using synthetic molecular structures 

Although the proposed GCN shows promising results, the model might suffer from overfitting 

given the limited size of the experimental dataset. Therefore, to further validate the assumption 

that the GCN can capture structural information of surfactants when trained on more data samples, 

we studied the model performance on a synthetic dataset that encompasses 1,820 human-generated 

molecules. With control over the length of alkyl backbones as well as the quantity and location of 
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functional groups such as alkyl branches and rings, we developed three types of synthetic 

molecules and assigned three types of synthetic labels to each of the synthetic molecules based on 

its atom constitution and structure (details are provided in the Supplemental Information). The 

methodology used for generating the synthetic molecules captures three types of surfactant-like 

structures (Fig. 6a): (1) head-tail linear structure, (2) head-tail linear structure with single- or 

double-branching, and (3) head-tail linear structure (with and without branches) combined with a 

cyclohexane group. “Head” represents a surfactant head group that is constituted by linearly 

connected ethoxy groups. “Tail” represents a surfactant tail group that is constituted by a linear 

alkyl chain. “Branch” represents a randomly positioned side chain which is either a methyl or ethyl 

group. After the synthetic molecule structures were generated, three types of synthetic properties 

were calculated and used as prediction labels; here, we used three linear equations that capture 

constitutional, topological, and combined information of a synthetic molecule, respectively. The 

linear equations are dependent on molecular descriptors that have been used in QSPR models12, 19, 

38, 39; the constitutional descriptors are number of C, number of O, and number of rings while the 

topological descriptors are Balaban index40 (a measure of average distance-based connectivity) 

and Bertz CT index41 (a measure of molecular complexity). Each descriptor was rescaled to obtain 

values between 0 and 1 and random weights were assigned to construct the linear equations, as 

summarized in SI Table S4.  

 Because the synthetic labels were computed from different equations, the magnitude of the 

labels may vary from subset to subset. As such, we used the slope of the parity plot between the 

synthetic labels and the predicted values to compare model performance instead of the RMSE. We 

used the proposed architecture to train the GCN with 10-fold CV, leading to 1,638 training samples 

and 182 validation samples in each CV fold. Overall, we found that the GCN predictions were 
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most accurate if the prediction label was a function of both constitutional and topological 

descriptors when all the synthetic molecules were used for training (Fig. 6b). These results indicate 

that a GCN architecture can effectively capture the topology of a molecule, regardless of the 

molecule size and structure (unlike QSPR models, which are usually structure-specific). In 

particular, for the synthetic molecules with linear structure, the trained GCN can make near-perfect 

predictions if the labels are dependent on topological or combined descriptors. The model also 

showed significant improvement for the synthetic molecules with rings when topological 

information plays a role in the molecular property of interest. In the case of CMC, we can infer 

that GCN serves as a more effective approach to make predictions than QSPR models given its 

ability to extract the same type of descriptors (constitutional and topological) that would be 

recognized well by a QSPR model without the need of explicit descriptor calculations.  

 

Figure 6. GCN prediction performance on synthetic data. (a) Example structures of three types of 

synthetic molecules. (b) The GCN architecture was trained on all the synthetic molecules for each of the 

three synthetical labels. For each CV fold, the slope of the best-fit line of the validation data was recorded, 

and the averaged CV slope was then calculated. 
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Molecular saliency maps 

We computed molecular saliency maps to further understand information that the GCN identifies 

in molecular structures to make predictions. The gradients of input atom features were first 

calculated and summed for each node, followed by normalization between -1 and 1. Figure 7 shows 

saliency maps computed for example surfactants that represent each of the four classes of 

surfactants. Atoms (nodes in the graph representation) are colored based on their normalized 

gradients, with red indicating more positive contributions and blue indicating more negative 

contributions to the CMC. The saliency maps confirm that polar atoms (such as O and N) 

contribute to higher CMC values whereas nonpolar atoms (such as C) contribute to lower CMC 

values, in agreement with qualitative expectations. From the saliency maps, we also confirm that 

topological information is being exploited by the GCN. For example, the branched tail nodes in 

sample d exhibits lighter blue colors compared with the unbranched tail nodes in samples a, b, and 

c. These patterns match the physical intuition that a surfactant tends to have a lower CMC value if 

it has a long and unbranched tail group or a small head group area.10  
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Figure 7. Molecular saliency maps. Selected examples from nonionic (a-d), cationic (e), anionic (f), and 

zwitterionic (g) surfactants. The gradient values are calculated for each node, followed by normalization 

between -1 and 1 where the sign is kept. The node is then colored based on the normalized gradients. The 

higher the value (darker red), the more a node contributes to a higher log CMC, and vice versa. 

 

 

Screening of new surfactants 

To further validate the generalizability of the trained GCN model, we designed new surfactants 

based on features found in the surfactants studied. Two series of surfactant designs are shown in 

Figure 8. In series 1, we started with a known structure of alcohol ethoxylate. By adding three ethoxy 
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groups to the polar head, we created a new surfactant that is not in the existing dataset and which 

is expected to have a higher CMC due to the addition of polar groups. We then tried to further 

increase the CMC by converting the linear alkyl chain into a branched one, as suggested by the 

saliency map analysis (Figure 7). Our intuition that these modifications in the surfactant design 

would increase CMCs was confirmed by GCN predictions. To further validate this result, we 

calculated CMCs using COSMOmic because this framework predicts similar trends as GCNs and 

experiments (Figure 4). As expected, the COSMOmic calculations lead to similar variations in the 

CMC, with slightly larger values predicted as also observed in Figure 4. For the second series, we 

selected a more complex surfactant structure from our dataset as the baseline design. The first 

design was obtained by removing side chains from the surfactant tail and by reducing the length 

of the polar head chain. These modifications simultaneously will tend to increase and decrease the 

CMC; as such, it is difficult to predict from intuition alone whether the new structure would have 

a higher or lower CMC. The GCN prediction shows the removal of side chains dominates the 

behavior, leading to a higher CMC. For the second design, we broke the π bonds in the benzene 

ring and reduced it to a cyclohexane group; because benzene has a higher polarity than 

cyclohexane, we expected that this design would have a lower CMC, as also shown by the GCN. 

For both designs, COSMOmic calculations again led to identical trends. These results validate that 

the GCN provides predictions that are physically intuitive. Overall, the proposed GCN architecture 

demonstrates the potential to be used as a tool that can help accelerate surfactant screening and 

design.  
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Figure 8. CMC predictions using GCN and COSMOmic calculations. Predicted log CMC values for 

new surfactants from trained GCN model and COSMOmic calculations. (a) Surfactant design series 1 where 

we start with a simple alcohol ethoxylate structure. Design 1 has additional ethoxy groups in the polar head 

and Design 2 further converts the linear chain into a branched one. (b) Surfactant design series 2 where we 

start with a complex alcohol phenol ethoxylate structure. Design 1 removes the branches from the nonpolar 

tail, and Design 2 reduces the benzene ring to a cyclohexane group.  

 

Conclusions 

We developed a GCN architecture to predict CMCs of surfactants directly from their molecular 

structure. We have found that the GCN predicts surfactant CMCs more accurately than previously 

developed QSPR models and generalizes to nonionic, cationic, anionic, and zwitterionic 

surfactants. Saliency analysis reveals that the GCN has the ability to capture important atomic 

types and molecular substructures that influence the CMC (such as polarity and head/tail lengths) 

even though the corresponding descriptors are not explicitly taken into account. Using the GCN, 

we demonstrated the ability to utilize the saliency map analysis to guide the design of new 
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surfactants for which experimental data are not available, then predict new CMCs with the GCN. 

These CMCs were then validated by calculations using COSMOmic to confirm that the predicted 

CMCs are reasonable. 

 A few notable advantages of the GCN over existing methods include its minimal input 

requirement, fast prediction speed, and good generalizability to surfactant types. Compared to MD 

simulations which can take hours or even days, the GCN only requires 0.01 seconds to make a 

prediction. This increased computational efficiency allows for surfactant screening and, when used 

in combination with product design models, can potentially enable the design of novel surfactants. 

Given the limited amount of experimental CMC data, high-throughput screening may still require 

additional training, although the study of the synthetic dataset has revealed the ability of the GCN 

to extract surfactant information. Moreover, the bond features are only implicitly captured in the 

atom feature vectors in our current GCN architecture, and each graph convolution only propagates 

the neighboring atom features. Therefore, we anticipate that alternative architectures of GNNs may 

be able to achieve higher prediction accuracies (e.g., by incorporating higher-order neighboring 

features to graph convolutions).42 Future work will also explore the use of GCN with graph-based 

inverse molecular design techniques43 that introduce an encoder-decoder framework for automated 

surfactant design.  

 

Methods 

GCN architectures 

The GCN proposed in this work is comprised of three major components: graph convolution, 

average pooling, and readout layers. Convolutional layers serve as a feature extraction step that 

incorporates both constitutional and topological information of a molecular graph. The graph 
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convolutions we used here are based on the original GCN implementation33 where the hidden state 

of each node is updated using the information from its neighboring nodes. The node updating 

procedure is summarized in Equation 1. 

ℎ𝑖
(𝑡)

= 𝑅𝑒𝐿𝑈 [𝑏(𝑡) + 𝑊(𝑡)𝑇
∑

1

𝑐𝑖𝑗
ℎ𝑗

(𝑡−1)

𝑗∈{𝒩(𝑖)∪𝑖}

] 
(1) 

where ℎ𝑖
(𝑡)

 represents the hidden state of node 𝑖  at timestep 𝑡 , 𝑏  represents bias, 𝑊  represents 

weight matrix, 𝒩(𝑖) represents the set of neighboring nodes of node 𝑖 , and 𝑐𝑖𝑗 = √𝑑𝑖𝑑𝑗  is a 

normalization term which denotes the square root of the product of node 𝑖’s degree 𝑑𝑖 and node 

𝑗’s degree 𝑑𝑗. The initial ℎ𝑖
(0)

 state of a node is the atom feature vector 𝑥 described earlier in the 

text. After graph convolutional operations, average pooling is performed across all nodes in a 

graph to produce a fixed-size graph-level feature vector. This feature vector is then passed to fully 

connected layers. Finally, a linear transformation is performed to predict the log CMC. The model 

was constructed using Pytorch (version 1.2.0), and the molecular graphs and atom features were 

generated using the Deep Graph Library44 (version 0.4.3post2) together with RDKit (version 

2019.03.2). 

 

GCN hyperparameter tuning 

The major hyperparameters we varied are the number of graph convolutional layers (1 to 3), the 

number of fully connected hidden layers (1 to 3), and the number of hidden neurons (128, 256, 

512). The model was trained with a mean-squared-error loss function, the Adam optimizer, a 

learning rate of 0.005, and a batch size of 5. The maximum epoch was set to 200 and, when early-

stopping was enabled, the training process was terminated if the model performance on the 
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validation set did not improve for 20 epochs to help avoid overfitting. CV was also conducted to 

prevent overfitting and select the GCN architecture as described in the text. Mean CV RMSE, 

median CV RMSE, and model complexity were all taken into consideration for the final 

architecture of the GCN.  

 

Synthetic dataset generation  

A molecule backbone was first created by incorporating two components: a head part and a tail 

part, each comprised of repeated units (ethoxy groups for head and carbons for tail) to resemble a 

simple surfactant structure. We varied the backbone length and corresponding head-tail ratio. To 

add variety to the synthetic data, we introduced branches including one or two methyl or ethyl 

groups to the linear backbones; cyclohexane rings were also included at random positions in the 

linear backbones for more data complexity. The above structural design was translated into 

SMILES strings for which the feasibility and duplicity were checked. Additional details on this 

procedure are included in the Supplemental Information. 

 

Saliency map generation 

Saliency maps were created to gain insight into features of the molecular structure that best explain 

CMC values. To obtain a saliency map, gradients of the input atom features 
𝜕𝑦

𝜕𝑥
 for each node were 

first calculated using backpropagation. Here 𝑦 represents the predicted log CMC and 𝑥 represents 

the atom feature vector. Element-wise multiplication was then performed between the input and 

the gradient through 𝑥⨀
𝜕𝑦

𝜕𝑥
 where ⨀  denotes the element-wise multiplication operation.45 To 

generate a node-level gradient value and study how atom type affects CMC predictions, we took 
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the sum of the gradients which are related to atom types using Equation 2 and normalized the value 

between -1 and 1 (the sign of a gradient value was kept during normalization). 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = ∑ 𝑥⨀
𝜕𝑦

𝜕𝑥
𝑥∈𝑎𝑡𝑜𝑚 𝑡𝑦𝑝𝑒

 
(2) 

  

CMC calculations using COSMOmic 

COSMOmic was used to compute the free energy of micellization to obtain CMCs from a 

molecular-scale simulation.46 The workflow behind the COSMOmic CMC calculation is 

summarized in SI Figure S2a.46 As input, COSMOmic requires structures of the surfactant 

monomer and micelle of interest (obtained from an atomistic molecular dynamics simulation) and 

screening charge densities for each of the different types of molecules in the system (obtained from 

quantum chemistry calculations). MD simulations were performed at a constant pressure of 1 bar 

and constant temperature of 298.15 K using Gromacs 2016.47 Surfactants were modeled using the 

CHARMM36 force field with the TIP3P water model. Molecular structures and force field 

parameters were generated using the CHARMM-GUI Input Generator.48, 49 For simulations of 

micelles, 100 monomers were assembled and solvated in water using PACKMOL50 and 

equilibrated for 10-40ns. The simulation time was checked for each sample to confirm that the 

systems were equilibrated. Monomer and micelle configurations were selected based on structural 

metrics as detailed in the Supplemental Information. Monomer configurations were used as input 

to Gaussian 16 to compute the screening charge densities (COSMO files). Geometry optimization 

in implicit water (Conductor-like Polarizable Continuum Model, CPCM) was performed using 

density functional theory at the BVP86/TZVP/DGA1 level of theory. A single point calculation 
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was then performed to generate the ideal screening charges (at the infinite dielectric constant limit) 

on the molecular surface using the same level of theory.51  

Given the input structure of a micelle and screening charge densities for a surfactant 

monomer, COSMOmic (implemented in COSMOtherm, version 19.0.05) divides the micelle into 

a series of concentric spherical shells and computes the water-micelle partition coefficient (𝐾𝑚) of 

the surfactant in each shell using COSMO-RS calculations.52 The partition coefficient can be 

related to the free energy as a function of the radial distance from the micelle center, r, by Equation 

4.46  

∆𝐺(𝑟) = − 𝑅𝑇 ln 𝐾𝑚(𝑟) 
(4) 

∆𝐺(𝑟) is the free energy for moving a molecule from a position in bulk water to the specific value 

of r. The lowest value of ∆𝐺(𝑟) is defined as the free energy of micellization (∆𝐺𝑚𝑖𝑐) and for 

nonionic surfactants is related to the CMC by Equation 5. 

∆𝐺𝑚𝑖𝑐 = 𝑅𝑇 ln CMC (5) 

In this expression, the CMC is expressed in mole fraction units by dividing concentrations by the 

molarity of water.  
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