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We present an origin-invariant approach to compute the full optical rotation tensor (Buckingham/Dunn
tensor) in the length dipole gauge without recourse to London atomic orbitals, called LG(OI). The LG(OI)
approach is simpler and less computationally demanding than the more common LG-London and modified
velocity gauge (MVG) approaches and it can be used with any approximate wave function or density functional
method. We report an implementation at coupled cluster with single and double excitations level (CCSD), for
which we present the first simulations of the origin-invariant Buckingham/Dunn tensor in the length gauge.
With this method, we attempt to decouple the effects of electron correlation and basis set incompleteness on
the choice of gauge for optical rotation calculations on simple test systems. The simulations show a smooth
convergence of the LG(OI) and MVG results with the basis set size towards the complete basis set limit.
However, these preliminary results indicate that CCSD may not be close to a complete description of the
electron correlation effects on this property even for small molecules, and that basis set incompleteness may
be a less important cause of discrepancy between choices of gauge than electron correlation incompleteness.

I. INTRODUCTION

Optically active compounds are able to rotate the
plane of polarization of impinging light, a phenomenon
called optical rotation (OR).1 For isotropic systems (e.g.,
a gas or solution phase sample), only a spatially aver-
aged OR can be measured, often expressed as a normal-
ized quantity known as specific rotation. However, for
oriented systems such as chiral crystals, one can mea-
sure the OR in a specific direction.2,3 Simulations can in
principle provide a direct comparison with experimental
measurements by evaluating the Buckingham/Dunn op-
tical activity tensor.4 Such comparison can be used to
obtain structure-property relationships, assign the abso-
lute configuration of the compound, and study the effect
of intermolecular interactions on the optical activity.

Accurate quantum mechanical (QM) methods based
on density functional theory (DFT) and coupled cluster
(CC) theory have been developed for the calculation of
chiroptical properties,5–20 using response theory to eval-
uate the appropriate OR tensor.15,19–24 However, given
the steep computational scaling of electronic QM calcu-
lations, all of these methods only provide an approxi-
mate solution to the Schrödinger equation using an in-
complete basis expansion for the electron density. Thus,
the numerical results depend on the choice of gauge for
the electric dipole and quadrupole operators.15,25–27 Two
typical choices are the length gauge (LG), which is more
intuitive but provides an origin-dependent tensor, and
the velocity gauge (VG), with which the OR tensor is
origin-invariant but has an unphysical static limit.17,24
For the LG and variational methods such as Hartree-
Fock (HF) and DFT, the origin-dependence issue is re-
solved using London orbitals, also known as gauge includ-
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ing atomic orbitals (GIAOs).6,19,28,29 However, GIAOs
cannot be utilized with standard CC methods because
orbital relaxation is neglected to avoid unphysical poles
in the linear response (LR) function due to the reference
wave function.21,22 On the other hand, the modified VG
(MVG)17,24 recipe requires the explicit evaluation and
removal of the unphysical static limit, and so far it has
been the preferred approach for OR calculations at CC
level.15,16,30,31

We recently proposed a strategy to overcome the
origin-dependence issue of LG calculations of specific ro-
tation without the complication of London orbitals, an
approach we called LG(OI).32 This is based on a transfor-
mation of the electric dipole-magnetic dipole polarizabil-
ity tensor using the singular value decomposition (SVD)
eigenvectors of the mixed-gauge electric dipole-electric
dipole polarizability tensor. The LG(OI) approach is
simpler than the LG-GIAOs approach and faster than
the MVG approach, but it shares with the latter the ap-
plicability to any approximate method. Therefore, we
were able to present the first origin-invariant LG simula-
tions of specific rotation with standard CC methods.

In this work, we extend the LG(OI) approach to the
calculation of the full Buckingham/Dunn tensor and
present the first origin-invariant LG-CC simulations of
the full OR tensor. Since we now have two fully origin-
invariant approaches to evaluate the OR of chiral systems
at CC level, LG(OI) and MVG, we also explore the ef-
fect of basis set and electron correlation incompleteness.
We decouple these two sources of approximation using a
model system where CC with single and double excita-
tions (CCSD) is exact and another system where CCSD
is not exact but we can use fairly large basis sets and
extrapolate to the complete basis set limit. The paper is
organized as follows: the theory derivation is presented in
section II, details of the calculations are reported in sec-
tion III, the results of numerical simulations are discussed
in section IV, and concluding remarks are summarized in
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section V.

II. THEORY

In this section, we present the theory for the evalua-
tion of the full OR tensor with the LG(OI) approach.32 In
order to do that, it is useful to briefly review the equa-
tions for the Buckingham/Dunn optical activity tensor
B, which is defined as:4,23,33
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where ε is the Levi-Civita operator, β is the electric
dipole-magnetic dipole polarizability tensor, and A is the
electric dipole-electric quadrupole polarizability tensor:
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We use atomic units throughout the paper, except when
otherwise specified. Since there has been some confu-
sion in the literature for the use of the G′ symbol to
indicate the electric dipole-magnetic dipole polarizabil-
ity with or without the ω−1 factor, we use the notation
β = −ω−1G′.23 The multipole operators in Eqs. 3-4 are
expressed in the length dipole gauge as:

µ = −r

m =
i

2
(r ×∇)

Θβγ = −
1
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(3rβrγ − δβγr

2
)

(5)

which are respectively the electric dipole, the magnetic
dipole, and the traceless electric quadrupole operators,
with the position r and gradient ∇ operators implicitly
summed over all the electrons of the molecule. The Greek
indices denote Cartesian coordinates, ω is the frequency
of the incident electromagnetic radiation while ∣ψj⟩ and
ωj are the jth excited state wave function and excita-
tion frequency, respectively. These definitions are valid
for non-resonant optical activity (ωj /≈ ω) calculations;
resonant optical activity is discussed in greater detail
elsewhere.1,4,34,35

For isotropic media, the observed optical rotation is
commonly reported as a normalized quantity in units of
deg [dm (g/mL)]−1, known as specific rotation:

[α]ω =
(72 × 106)h̵2NAω

2

c2m2
eM

Tr(β) (6)

where β and ω are given in atomic units, h̵ is the reduced
Planck’s constant (J s), NA is Avogadro’s number, c is
the speed of light (m/s), me is the electron rest mass
(kg), and M is the molecular mass (amu). In Eq. 6, we
used the fact that the A contribution to B is traceless so
that Tr(B) = Tr(B) = Tr(β). Therefore, the A tensor is
unnecessary in OR simulations of molecules in isotropic
media.

The tensors β and A in Eqs. 3-4 are both origin de-
pendent according to:
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where a sum over common indices is implied in the last
term on the right-hand side of both equations, O is a
particular choice of origin of the coordinate system and

O′
=O + d (9)

is a displaced origin, δ is the Kronecker delta tensor, and
α is the electric dipole-electric dipole polarizability tensor
expressed with two gauge representations for the dipole
operator: the superscript (R,R) in Eq. 8 indicates the
length gauge representation for both occurrences of the
dipole operator (shown in Eq. 5), while the superscript
(R,P ) in Eq. 7 indicates a mixed representation with the
length gauge for one occurrence of the dipole operator
and the velocity gauge for the other one,

µP = −p. (10)

where p is the momentum operator including an implicit
summation over the number of electrons in the molecule.
In an exact calculation, the individual origin dependent
terms for the two tensors β and A perfectly cancel out
when they are combined inB in Eq. 2 such that the latter
is origin invariant. However, this is no longer the case in
approximate calculations and the individual elements of
B as well as its trace are origin dependent.

There are typically two ways to overcome the origin-
dependence issue in approximate calculations. For the
length gauge and variational methods (like HF and
DFT), one can use London orbitals6,28 (also known as
GIAOs), but such strategy is not feasible with conven-
tional CC methods because the response of the molecu-
lar orbitals is neglected to avoid unphysical poles in the
response function.21 An approach that works with any
approximate method is to express the electric multipoles
in the velocity gauge, see Eq. 10, and calculate β and A
tensors accordingly.17,24 The downside of this approach
is that it has an unphysical static limit that needs to
be evaluated explicitly and subtracted out, a procedure
known as modified velocity gauge (MVG).17,24 Note that
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the LG-GIAOs and MVG approaches provide different
numerical values of the B tensor and specific rotation for
approximate methods, and that MVG is computationally
more expensive than the LG-GIAOs approach.

However, it is possible to obtain an origin-invariant
version of the B tensor in the length gauge for any ap-
proximate method without using GIAOs. The approach
is based on the same transformation we suggested for
the specific rotation in Ref. 32, which we called LG(OI).
First, we need a form of the A tensor that has a qualita-
tively similar origin dependence as the β vector in Eq. 7,
i.e. dependent on the mixed-gauge electric dipole-electric
dipole polarizability α(R,P ). This is accomplished by us-
ing the following form of the quadrupole operator:
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βγ +Θpr
βγ

Θrp
βγ = −

1
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which is also used in the MVG approach to form the A
tensor (albeit in conjunction with the velocity electric
dipole).24 With this choice of quadrupole operator:
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such that the A tensor uses a mixed-gauge representa-
tion: length for the dipole operator and velocity for the
quadrupole operator. This form of theA tensor preserves
the expression of the B tensor in Eq. 2 but leads to the
following expression of its origin dependence:
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which is now compatible with that of the β tensor in
Eq. 7. However, the use of the mixed-gauge form of the
A tensor is not sufficient to lead to an origin-invariant
B tensor because the α(R,P ) tensor is not symmetric.
Therefore, the contributions of the β and A(R,P ) tensors
to the B tensor do not perfectly cancel out. To achieve
that, we diagonalize α(R,P ) tensor with a singular value
decomposition (SVD):

α(R,P ) = Uα
(R,P )
D V † (14)

where α
(R,P )
D is diagonal, and U and V † are unitary

transformations. We then apply the inverse transforma-
tion to the β and A(R,P ) tensors:

β̃αβ = βα′β′Uα′αVβ′β (15)

Ã
(R,P )
α,βγ = A

(R,P )
α′,β′γ′Uα′αVβ′βVγ′γ (16)

Using the β̃ and Ã(R,P ) tensors in Eqs. 1-2 makes the B
tensor fully origin invariant without recourse to GIAOs.
The transformations in Eqs. 15-16 are sensitive to the
phase of the eigenvectors and their order in the unitary
matrices. Therefore, it is important to avoid inadver-
tently changing the handedness of the coordinate system
with the transformation.

We know that the LG and VG approaches are only
equivalent for an exact calculation and that approxima-
tions coming from electron correlation and basis set in-
completeness in practical simulations lead to different nu-
merical results with the two gauge choices. However, the
effects of the two types of incompleteness are difficult to
disentangle. Nevertheless, it would be desirable to have
a criterion to compare the quality of two different cal-
culations on the same system, at least within the same
choice of gauge. For the velocity gauge, a criterion could
be the relative magnitude of the unphysical static limit
compared to that of the MVG result. For the LG ap-
proach, a criterion could be based on the lack of ori-
gin invariance of the specific rotation, which is related
to the degree of asymmetry of the mixed-gauge polariz-
ability tensor α(R,P ). This degree of asymmetry can be
expressed as:

∆as = 1 −
∥α
(R,P )
A ∥F

∥α(R,P )∥F
(17)

where ∥⋅∥F represents the Frobenius norm of a matrix and
the subscript A indicates the anti-symmetric part of the
α(R,P ) tensor. The systematic improvement of a chosen
model chemistry should correspond to an increase of ∆as

towards 1.
A legitimate question about the LG(OI) B tensor is

what orientation of the molecule corresponds to this ten-
sor values. In an exact calculation, α(R,P ) is symmetric
and U ≡ V in Eq. 14. Therefore, the transformed B ten-
sor corresponds to an orientation where the α(R,P ) ten-
sor is diagonal. For approximate calculations, the clos-
est we can get to this orientation is to use the eigenvec-
tors that diagonalize the symmetric part of the α(R,P )
tensor, which we collect in the unitary matrix W . As
we approach the exact solution U ,V → W . Once the
molecule is reoriented according to the rotation defined
by theW matrix, we can analytically calculate the origin
displacement vector that makes the diagonal elements of
the LG β tensor equal to the corresponding elements of
the LG(OI) β̃ tensor, so that they provide the same value
of specific rotation. Using Eq. 7, the components of this
particular displacement vector d are the solution of the
following linear system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βSxx(O
′
) ≡ β̃Sxx =β

S
xx(O) +

1

2
(dzαxy − dyαxz)

βSyy(O
′
) ≡ β̃Syy =β

S
yy(O) +

1

2
(dxαyz − dzαyx)

βSzz(O
′
) ≡ β̃Szz =β

S
zz(O) +

1

2
(dyαzx − dxαzy)

(18)
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The superscript S serves as a reminder that the molecule
is oriented according to the W rotation matrix and we
neglected the (R,P ) superscript on the polarizability ten-
sor elements for clarity. The LG B tensor obtained with
this choice of molecular coordinates is the closest to the
LG(OI) result and can be considered the best LG result
obtainable for a particular approximate model chemistry.

In terms of computational cost, the LG(OI) approach
is more efficient than both the LG-GIAOs and MVG ap-
proaches because no extra terms due to GIAOs are nec-
essary and there is no static limit to evaluate explicitly.
All tensors can be computed using standard linear re-
sponse theory, where a perturbed density is evaluated
due to length gauge electric dipole perturbation and then
contracted with the appropriate multipole integrals to
obtain β, A(R,P ), and α(R,P ).15,19–23 After these ten-
sors are available, the LG(OI) transformations in Eqs.
14-16 are trivial. For the implementation at CC level,
one would need to use the non-symmetric form of the
LR function, which requires the evaluation of the per-
turbed T and Λ amplitudes for one perturbation.22,36 In
that case, the LG(OI) method is completely equivalent
in cost to a standard LG calculation and less demand-
ing than an MVG calculation. However, in our current
implementation in GAUSSIAN37 at CCSD level only the
symmetric form of the LR function is available, which re-
quires the evaluation of the perturbed T amplitudes for
all perturbations.22,36 This route makes the LG(OI) and
MVG approaches equivalent in cost. Nevertheless, this
is an issue of the implementation and not of the method
per se, and it will be resolved in future versions of the
software.

III. COMPUTATIONAL DETAILS

All calculations were performed with a development
version of the GAUSSIAN suite of programs.37 The ten-
sors were computed using standard LR theory at CCSD
level with frozen core orbitals for the correlation en-
ergy evaluation and frozen orbitals for the LR function.
The aug-cc-pVDZ38,39 basis set was used for the three
largest systems, where geometries were taken from Ref.
32 but reoriented as described in section II. For the two-
electron model system, the aug-cc-pVXZ38–40 and aug-
mcc-pVY Z41,42 basis sets were used, with X = 2 − 6 and
Y = 7,8 (basis sets with X = 7,8 were not available on
the basis set exchange for H).43–45 For (–)-hydrogen per-
oxide, a series of Dunning and Pople46–50 basis sets are
used as detailed in the next section. Results are pre-
sented with the LG, LG(OI), and MVG approaches at
the sodium D line, i.e. 589.3 nm, because it is far from
resonance for all systems.

IV. RESULTS

As discussed in section II, the difference between the
LG and VG results is due to approximations in the level
of theory used to compute the electron density (i.e., elec-
tron correlation incompleteness) and to the incomplete-
ness of practical basis sets. These two factors are diffi-
cult to disentangle in calculations on typical molecules.
Therefore, we start our discussion with a toy 2-electron
model, H2+

4 , for which CCSD provides the exact answer
for a non-relativistic molecular Hamiltonian within the
Born-Oppenheimer approximation (we also neglect vi-
brational contributions). With this model, we can di-
rectly study the effect of the basis set on the specific rota-
tion ([α]D is a more convenient quantity than the whole
OR tensor for this analysis). We built the model by us-
ing the H2O2 geometry32 and replacing the Os with Hs,
and by making two somewhat random choices of origin:
O1 is the origin where the LG and LG(OI) approaches
provide the same result for the specific rotation of H2O2
with the aug-cc-pVDZ basis set and it is located some-
where inside the molecule, while O2 is displaced by −5
Å in every Cartesian direction from O1. Obviously, only
the LG results are affected by the choice of origin and
O1/O2 represent two points with no special meaning for
this system. In Figure 1, we report the change in [α]D for
H2+

4 with increasing size of the basis set for all choices of
gauge; the figure also reports the total CCSD energy and
the ∆as factor defined in Eq. 17. All numerical values
are reported in Tables S1-S2 of the supporting informa-
tion (SI). The figure shows a smooth convergence of the
specific rotation with the basis set size for all choices of
gauge, except for VG. For the latter, there is an oscil-
latory behavior that starts from a value with the wrong
sign for ζ = 2 (-290 deg dm−1 (g/mL)−1); the unphysical
static limit is still > 1 deg with the ζ = 5 basis set. The
LG(OI) and MVG values are always within 1 deg from
each other and are essentially converged with the ζ = 5
basis set. This indicates that basis set incompleteness
is not a major cause of discrepancy between choices of
gauge if the origin-dependence issue of the LG approach
and the unphysical static limit issue of the VG approach
are properly addressed. The LG approach converges to
the LG(OI) value for the ζ = 5 basis set even with a sig-
nificantly displaced geometry (O2). The convergence of
the specific rotation follows the convergence of the en-
ergy, compare panels a) and b) of the figure, which sup-
ports that similar extrapolation formulas can be used to
estimate the complete basis set (CBS) limit.31 The ∆as

factor also increases until reaching a plateau with the
ζ = 5 basis set consistently with the convergence of [α]D.

A more realistic but still small system to investigate
the effect of electron correlation incompleteness on the
specific rotation is (–)-hydrogen peroxide, whose geom-
etry is taken from Ref. 32. Figure 2 reports the [α]D
values computed with the LG(OI) and MVG approaches
with Dunning basis sets of increasing angular momentum
functions up to ζ = 5 and estimates of the CBS limit; the
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FIG. 1. Data computed for H2+
4 with all choices of gauge and the aug-cc-pVXZ (X = 2− 6) and aug-mcc-pVY Z (Y = 7,8) basis

sets at CCSD level; for LG, data are presented at two choices of the origin, O1 and O2. Panel a) specific rotation at the sodium
D line in deg dm−1 (g/mL)−1; Panel b) combined plot of the CCSD energy (ECC in a.u.) and ∆as factor (Eq. 17).

FIG. 2. Specific rotation (deg dm−1 (g/mL)−1) at the sodium
D line for H2O2 computed with the LG(OI) and MVG ap-
proaches at the CCSD/aug-cc-pVζZ level. The CBS values
are obtained with a two-point extrapolation from the ζ = 4
and ζ = 5 values (see text for details).

latter are computed with a two-point inverse-power ex-
trapolation formula from the ζ = 4 and ζ = 5 values with
exponent n = 5 as suggested in Ref. 31. Table I reports
the values in Figure 2 together with [α]D and ∆as com-
puted with the VG, MVG, and LG(OI) approaches for
the same Dunning basis sets38–42 and a series of Pople
basis sets46–50 of increasing size. From a comparison of
the data in Figure 2 and Table I, the specific rotation
smoothly decreases in magnitude for both the MVG and
LG(OI) approaches as the size of the Dunning basis sets

TABLE I. Values of [α]D (deg dm−1 (g/mL)−1) and ∆as for
H2O2 computed with the VG, MVG, and LG(OI) approaches
at CCSD level and a series of Dunning and Pople basis sets.

[α]D ∆as

MVG VG LG(OI) LG(OI)
CBS(5Z-4Z) -56 -5 -19 –
aug-cc-pV5Z -61 -32 -22 0.9989
aug-cc-pVQZ -70 -86 -30 0.9988
aug-cc-pVTZ -92 -272 -45 0.9986
aug-cc-pVDZ -140 -899 -80 0.9983

6-311++G(3df,3pd) -127 -756 -57 0.9995
6-311++G(2d,2p) -169 -2677 -98 0.9992
6-311++G(d,p) -141 -3756 -65 0.9996
6-31++G(d,p) -138 -2942 -39 0.9988

increases. Simultaneously, the VG unphysical static limit
decreases in magnitude while the ∆as factor increases, as
one would expect. However, the two choices of gauge
do not converge to the same CBS limit, and the differ-
ence (∼ 40 deg) is twice as large as the magnitude of the
LG(OI) [α]D and two thirds the magnitude of the MVG
[α]D. The MVG-VG difference for the CBS estimate is
even larger (∼ 50 deg). These results indicate that CCSD
is not quite converged in terms of electron correlation for
this molecule.

On the other hand, the Pople basis sets provide the
wrong trend of [α]D with the basis set size, as the prop-
erty increases in magnitude until the largest basis set is
used. This poor performance is accompanied by very
large values of the static limit for the VG approach, es-
pecially for the smaller sets in the series. In contrast, the
∆as factors are as large or larger than those for the more
accurate Dunning basis sets. In other words, the calcula-
tions with the Pople basis sets suffer from a smaller origin
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dependence of the LG results compared to those with the
Dunning basis sets even if the latter provide overall more
reliable results based on the trend with basis set size.

We now report the full B tensor for the same three sys-
tems already used in Ref. 32 when we first introduced the
LG(OI) approach: (–)-hydrogen peroxide (1), (S)-(+)-
2,3-pentadiene (2), and (S)-(–)-norbornenone (3). The
B tensor values at the same geometries of Ref. 32, i.e.,
with the origin in the center of mass and displaced by
-1000 Å in every Cartesian direction, are shown in Ta-
bles S3-S5 of the SI, to demonstrate that the LG(OI) β̃
and Ã(R,P ) tensors combine to make a B tensor that is
indeed origin invariant. Here, we report the data using
the same geometries but rotated and translated as dis-
cussed in section II in order to maximize the agreement
between the LG and LG(OI) approaches (the geometries
at these orientations are reported in Tables S6-S8 of the
SI). We also report the B tensor computed with the MVG
approach for the molecules in the same orientation.

TABLE II. Values of [α]D (deg dm−1 (g/mL)−1) and of the B
tensor elements (a.u.) computed with the LG, LG(OI), and
MVG approaches for molecule 1 at CCSD/aug-cc-pVDZ level.
The last column (% Diff) reports the % difference between the
LG(OI) and MVG results.

LG LG(OI) MVG % Diff
[α]D -80 -80 -140 74.3
xx -0.4202 -0.4232 -0.5348 26.4
yy 0.1096 0.1070 -0.0184 -117.2
zz 0.0993 0.1049 0.1849 76.2
xy 0.8200 0.8213 0.8813 7.3
xz 0.0000 0.0000 0.0000 0.0
yz 0.0000 0.0000 0.0000 0.0

TABLE III. Values of [α]D (deg dm−1 (g/mL)−1) and of the
B tensor elements (a.u.) computed with the LG, LG(OI), and
MVG approaches for molecule 2 at CCSD/aug-cc-pVDZ level.
The last column (% Diff) reports the % difference between the
LG(OI) and MVG results.

LG LG(OI) MVG % Diff
[α]D 91 91 133 46.4
xx -2.7852 -2.7599 -2.6363 -4.5
yy -0.4039 -0.3616 -0.1883 -47.9
zz 3.6692 3.6015 3.5272 -2.1
xy 5.3826 5.3767 5.1156 -4.9
xz -0.0007 0.0000 0.0000 0.0
yz -0.0076 0.0000 0.0000 0.0

The data for system 1 are shown in Table II. The table
compares the individual B tensor elements and the spe-
cific rotation for various gauges and it reports the % dif-
ference between the LG(OI) and MVG approaches. The
LG and LG(OI) values are very similar (they differ by
at most 5%), confirming that this orientation and origin
location is the best obtainable for this choice of gauge
at this level of theory (∆as = 0.9983). The comparison

TABLE IV. Values of [α]D (deg dm−1 (g/mL)−1) and of the
B tensor elements (a.u.) computed with the LG, LG(OI), and
MVG approaches for molecule 3 at CCSD/aug-cc-pVDZ level.
The last column (% Diff) reports the % difference between the
LG(OI) and MVG results.

LG LG(OI) MVG % Diff
[α]D -724 -724 -549 -24.1
xx 3.1338 3.1392 2.4325 -22.5
yy -5.6727 -5.6737 -4.5313 -20.1
zz -3.5344 -3.5388 -2.5111 -29.0
xy -0.0496 -0.0491 0.0574 -216.9
xz -0.8620 -0.8546 -0.4874 -43.0
yz 1.0431 1.0483 0.4843 -53.8

between the LG(OI) and MVG results is probably more
interesting. In both cases, the largest element is xy, which
is also the one for which the approaches agree best (7%
difference). The diagonal elements are different by dif-
ferent amounts so that the difference in specific rotation
is due to cancellation effects. Although the xx and zz
values are qualitatively in agreement, the yy values are
not as they are computed with opposite signs. The data
for system 2 is reported in Table III. For this molecule,
all methods are in qualitative agreement for all tensor
elements. The largest % difference between LG(OI) and
MVG is found for the smallest element in magnitude (yy
with a difference of 48%), which determines also the dif-
ference in [α]D as the effects for the other two diagonal
elements tend to cancel each other out. The asymmetry
factor for this molecules is ∆as = 0.9965, which indicates
a larger origin dependence of the LG approach compared
to molecule 1. Finally, the data for system 3 are shown
in Table IV. For this orientation, the specific rotation
is dominated by the yy element, while the contributions
from xx and zz cancel out. The relative differences in the
diagonal elements between LG(OI) and MVG are pretty
similar, and so it is for the specific rotation. On the other
hand, the off-diagonal elements differ by about of factor
of two for the xz and yz elements, although they have
consistent signs. In contrast, the results for the xy ele-
ment have opposite signs, but this element is one order
of magnitude smaller than the others. For this system,
∆as = 0.9994 corresponding to a small origin dependence
of the LG method (compare to the 0.9989 value of H2O2
with the aug-cc-pV5Z basis set in Table I).

V. DISCUSSION AND CONCLUSIONS

In this work, we present the theory for the origin-
invariant formulation of the full OR tensor using the
length-dipole gauge without recourse to London atomic
orbitals (also known as GIAOs). This approach,
LG(OI), is based on the use of the mixed-gauge electric
quadrupole operator (see Eq. 11) to evaluate the electric
dipole-electric quadrupole tensor A(R,P ), and the subse-
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quent transformation of this tensor using the SVD eigen-
vectors of the mixed-gauge electric dipole-electric dipole
polarizability tensor α(R,P ), see Eq. 13. The LG(OI)
approach is considerably less complex to implement than
the common LG-GIAOs approach used in HF and DFT
and it is currently the only option for origin-invariant
calculations with standard LR-CC methods in the length
gauge. Simultaneously, the LG(OI) approach is in prin-
ciple computationally more efficient than the MVG ap-
proach because there is no unphysical static limit.

In the numerical results section (section IV), we decou-
ple the effect of electron correlation and basis set incom-
pleteness in the evaluation of molecular OR. Using a two-
electron model system for which CCSD is exact, we show
that the LG(OI) and MVG approaches are equivalent
even for incomplete basis sets and they smoothly con-
verge to the CBS limit. The standard (origin-dependent)
LG method also converges smoothly to the CBS limit in-
dependently of the choice of origin, but this is not the
case for the VG approach where the unphysical static
limit shows an erratic behavior with different basis sets,
see Figure 1. The H2O2 example in Figure 2 shows that
the LG(OI) and MVG approaches smoothly converge to-
wards the CBS limit when using an approximate elec-
tronic structure method (CCSD). However, the two ap-
proaches converge to a significantly different CBS limit
and the VG unphysical static limit is also comparatively
large, see Table I, indicating that CCSD is surprisingly
far from convergence in the description of electron corre-
lation even for such a small molecule. A comparison with
the results for the two-electron model system suggests
that electron correlation incompleteness may be a more
important cause of discrepancy between choices of gauge
than basis set incompleteness. We are currently perform-
ing a thorough basis set study on multiple test molecules
to explore this behavior further. Furthermore, a compar-
ison between results obtained with Dunning and Pople
basis sets in Table I indicates that while the asymmetry
factor ∆as (see Eq. 17) systematically increases towards
one with well-balanced basis sets (e.g., Dunning’s), its
value cannot be easily used as a metric for the numeri-
cal convergence of the calculations between basis sets of
different type. In fact, ∆as is larger when using Pople
basis sets than with Dunning basis sets even if the latter
provide more reliable results.

The results for the full OR tensor B computed with
LG(OI) and MVG in Tables II-IV indicate that the two
approaches tend to provide qualitatively similar results,
but the difference between the various tensor elements is
not systematic. In some cases, like the yy element for
molecule 1 in Table II and the xy element for molecule 3
in Table IV, the LG(OI) and MVG values have opposite
signs. It is unclear at this point whether such differences
are only due to the small basis set used for these calcu-
lations (aug-cc-pVDZ) or the level of theory plays a role.
Also in this case, we will investigate the basis set effect
in a follow-up study.

In summary, the LG(OI) approach expresses the Buck-

ingham/Dunn tensor in an origin-invariant formulation
that is uniform across any level of theory, and it can be
used for the evaluation of the optical rotation in oriented
systems such as chiral crystals, providing a direct com-
parison with experimental measurements.

SUPPLEMENTARY MATERIAL

See the supplementary material for the numerical val-
ues of the quantities plotted in Figure 1 of the main text
(Tables S1-S2), the values of the β, A, and B tensors
computed with the LG(OI) approach for molecules 1-3
at the CCSD/aug-cc-pVDZ level with two choices of ori-
gin to demonstrate origin invariance (Tables S3-S5), and
the Cartesian coordinates of molecules 1-3 correspond-
ing to the tensor values in Tables II-IV of the main text
(Tables S6-S8).

DATA AVAILABILITY

The data that support the findings of this study are
available within the supplementary material, which con-
tains the numerical values of the quantities plotted in
Figure 1 of the main text (Tables S1-S2), the values of
the β, A, and B tensors computed with the LG(OI) ap-
proach for molecules 1-3 at the CCSD/aug-cc-pVDZ level
with two choices of origin to demonstrate origin invari-
ance (Tables S3-S5), and the Cartesian coordinates of
molecules 1-3 corresponding to the tensor values in Ta-
bles II-IV of the main text (Tables S6-S8).
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