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Abstract 

In addition to designing new donor (D) and/or acceptor (A) molecules, the 

optimization of experimental fabrication conditions for the organic solar cells (OSCs) 

is also a complex, multidimensional challenge, which hasn’t been theoretically 

explored. Herein, a new framework for simultaneous optimizing D/A molecule pairs 

and device specifications of OSCs is proposed, through a quantitative structure-

property relationships (QSPR) model built by machine learning. Combining the device 

parameters with structural and electronic variables, the built QSPR model achieved 
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unprecedentedly high accuracy and consistency. Additionally, a huge chemical space 

containing 1,942,785 D/A pairs is explored to find potential synergistic ones. Favorable 

expereimental parameters such as root-mean-square (RMS) and the D/A ratio (DAratio) 

are further screened by grid search methods. Overall, this study suggests the feasibility 

to optimize D/A molecule pairs and device specifications simultaneously by enabling 

better-informed and data-driven techniques and this could facilitate the acceleration of 

improving OSCs efficiencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Organic solar cells (OSCs) based on non-fullerene acceptors attract much attention 

due to their easily tunable physical-chemical properties, significantly reduced open-

circuit voltage losses, and good device stability.1-3 Incremental progresses in materials 

design and device engineering recently led the power conversion efficiency (PCE) of 

OSCs to exceed 18%,4-7 approaching the level necessary for large-scale energy 

production. Donor (D)/acceptor (A) bulk-heterojunction structure as the photoactive 

layer provides an effective approach to separate the bound excitons generated by light 

absorption into free carriers, preventing their recapture behavior that leads to a decrease 

in PCE.8 In that context, reliable quantitative structure-property relationship (QSPR) 

between photoactive materials and device efficiencies is a shortcut for further 

improving PCE of OSCs9, and data-driven machine learning (ML) is one of the 

promising technologies in this scheme.10 

The impact of D and A molecules on PCE of OSCs is non-additive, and in 

particular, synergies have been observed for some D/A pairs.11,12 However, most 

theoretical studies in this field were focused on optimizing either D or A separately.13-

19 In 2019, Troisi et al.20 highlighted the importance of multi-component simultaneous 

optimization. Based on the theoretical calculation of Morgan fingerprints and electronic 

descriptors, a ML model taking D/A pairs as input structures for predicting PCE was 

proposed, with a Pearson’s correlation coefficient (r) of 0.78. Subsequently, Troisi et 

al.21 explored the effect of different descriptor sets on predictive ability of ML models, 

and obtained the best performance with a maximum r of 0.73. In 2020, Min et al.22 

developed a PCE predictive model focusing on non-fullerene OSCs based on simple 



counts of molecular fragments within D and A molecules, avoiding the use of quantum 

chemistry, and obtained a r of 0.71. These studies provide valuable insights for the joint 

optimization of D/A pairs in OSCs. 

Complementary to the molecular structure of the D/A pairs, the macroscopic 

morphology of D/A blends has great influences on the optoelectronic conversion, which 

mainly depends on the device engineering.23-27 However, the experimental optimization 

of device specifications is traditionally a trial-and-error, time-consuming process and 

up to now is unexplored by theoretical ML models of OSCs. Many parameters can 

impact the final blend morphology, such as the introduction of additives, or careful 

post-processing.24 Fortunately, two device specifications are regularly reported in a 

unifiable manner, allowing their easy conversion into descriptors for ML. The first one 

is the D/A ratio (DAratio), and the second one, reflecting the quality of post-processing, 

is the surface roughness of the blends, usually measured as its root-mean-square error 

(RMS) from atomic force microscopy.  

The goal of this work is to establish a reliable QSPR model that combines not only 

molecular descriptors but also device specifications for non-fullerene OSCs, and to 

achieve a more comprehensive theoretical inverse optimization of device specifications 

for unexplored promising D/A pairs. To achieve such simultaneous optimization, five 

steps are included in the workflow of this study (Figure 1): 

a. data collection of D/A pairs for non-fullerene OSCs; 

b. feature engineering of D/A pairs, including structural, electronic, and device 

descriptors; 



c. QSPR model construction, with the comparison of various descriptor 

combinations and ML algorithms on the performance of models by a new two-level 

evaluation criterion; 

d. high throughput screening of D/A pairs using a structural-based QSPR model, 

and D/A pairs with PCE greater than 14% were selected;  

e. inverse optimization of device specifications (RMS and DAratio) for the screened 

D/A pairs, and potentially favorable values will finally feed back to experimentalists.  

 

Figure 1 Workflow of screening and optimization of D/A pairs and device parameters. 

 

In this work, 351 D/A pairs, including 44 polymer donors and 195 non-fullerene 

acceptors, were collected from 113 experimental papers published between 2016 and 

2020. Their chemical structure, RMS, DAratio, and corresponding PCE are summarized 

in Table S1. Here, a monomeric unit was taken for all polymer donors. For specific 



RMS and DAratio, the highest PCE of each D/A pair was selected as the fitting target 

of ML to learn the maximize potential of materials. In our database, the range of RMS, 

DAratio and PCE are 0.37 nm~50.15 nm, 0.33~2 and 0.04%~17.8%, respectively. The 

black dots in Figure2a show the distribution of three experimental variables, and the 

contour plot of PCE is filled with color. High PCE mainly distributed in the range of 

RMS≤5nm and DAratio≤1 (Figure 2b), indicating that a relatively smooth surface of 

D/A blends and a smaller D/A ratio are beneficial to the improvement of device 

efficiency. More than 90% of the collected RMS and DAratio values are ≤5nm and ≤1, 

respectively (Figures 2c-d). See Table S2 for more details about the database. In order 

to enable ML to learn the features of different PCE from this unbalanced distribution, 

the manual layering method for data was adopted. 351 pieces of data were first divided 

into 8 groups (Table S3), and then 15% of the data from each group were randomly 

selected and combined together to obtain the external test set. The training set was 

composed of the remaining 85% of data from each set, and the hyper-parameters 

optimization and cross-validation of ML model were performed in this set. The external 

test set was not visible to ML model throughout the process, allowing to assess the 

predictive power of the model. 



 

Figure 2 Non-fullerene OSCs database of 351 D/A pairs. (a) Distribution of RMS, 

DAratio and PCE, where PCE is filled with contour colors; (b) An enlarged view of 

0.37 nm≤RMS≤5 nm for (a); (c)-(d) Proportion of RMS and DAratio with five parts, 

respectively. 

 

Note that a given D/A pair can exhibit substantial PCE variability due to different 

device specifications, notably RMS and DAratio. There were 66 and 7 of such data 

clusters in training sets and test sets, respectively. To account for this peculiar data 

structure, a two-level statistical assessment for predictive model was adopted in this 

study. The correlation between experimental and predicted PCE should be evaluated by 

the conventional indices such as r (see Supporting Information for expressions). On the 

other hand, it is necessary to evaluate whether the order of predicted PCE is consistent 

with measured values for the device fabrication parameters-controlled data clusters. 

Here, we define three estimated classes, i.e., fully consistent, partial consistent, and 

inconsistent, as well as a new index to evaluate proportion of fully consistent case, 



Consistency. Examples of how to classify and expressions for Consitency can be found 

in Supporting Information.  

For feature engineering, three types of descriptors, namely molecular fingerprints, 

electronic properties and device specifications were adopted to describe the potential 

of D/A pairs. We compared six fingerprinting approaches with different lengths and 

contents, i.e., E-State (79 bits),28 MACCS (166 bits),29 Substructure (307 bits),30 2D 

atom pairs (780 bits),31 Pubchem (881 bits)32 and CDK (1024 bits).33 Fingerprints of D 

and A were generated using the ChemDes platform,34 and then horizontally 

concatenated to obtain that of D/A pairs. Electronic descriptors (Ele. for short) are 

chemical properties closely associated with photoelectric conversion that require 

quantum chemical calculations. As a trade-off between computational cost and 

accuracy, totally 19 ground-state properties, related to energy levels and polarity were 

calculated by density functional theory (DFT) at the M06-2X/6-31G(d)35,36 level 

implemented in the Gaussian 16 program.37 Their symbols and meanings are shown in 

Table S4 and Supporting informantion. A diagram of energy level descriptors for donor 

and acceptor are presented in Figure S1. The two aforementioned devices specifications 

(Dev. for short), i.e., RMS and DAratio, are strongly and nonlinearly related to the 

surface roughness of D/A blends. A small RMS, equivalent to a high film smoothness, 

implies a high D/A miscibility that favors exciton dissociation due to the increased D/A 

interface, but a too small value is not recommended because charge recombinnation can 

easily occur in highly mixed D/A heterojucntions. Similarly, a well-placed DAratio is 

essential for a specific D/A pair. It should be noted that in principle, RMS could be 



influenced by DAratio. Fortunately, as is shown in Figure S2, no significant linear 

correlation between RMS and DAratio was observed within our dataset. (From Figure 

S2 one can also see Pearson’s correlation between each pair of variables mentioned in 

this study.) 

Various combinations of the three types descriptors, Dev.+Fp, Dev.+Ele., and 

Dev.+Ele.+Fp, were applied to construct QSPR models for predicting PCE, 

respectively. To avoid overflowing the descriptor selection algorithm, we screened the 

fingerprinting approaches first, and then use the best one for subsequent analysis. In the 

process of fingerprint screening, we performed five ML techniques, including ridge 

regression (Ridge), gradient boosting (GB), support vector machines (SVR), artificial 

neural network (ANN), and a voting ensemble approach (Voting) that combines the 

predictions from multiple other regression models. 60 ML models were generated on 

the basis of 12 inputs that formed by the combination of six fingerprinting approaches 

and two descriptor combination types (Dev.+Fp/Dev.+Ele.+Fp). All ML models were 

developed with Python scripts using the scikit-learn package.38 Predictive performance 

of these models on 10-fold cross-validation set and external test set is listed in Tables 

S5-S9. Overall, CDK fingerprints performed slightly better than others, which indicates 

that longer fingerprints are suggested to identify the relevant patterns leading to higher 

PCE. Hence, CDK fingerprints were used in following studies where fingerprints were 

involved. 

In the next step, the optimal predictive model was selected based on the 

combination of r and Consistency criteria. Three types of descriptor combinations 



(Dev.+CDK, Dev.+Ele, and Dev.+Ele.+CDK) and five ML techniques (Ridge, GB, 

SVR, ANN and Voting) can generated 15 ML models. Performance of these predictive 

models is shown in Figure 3a-3b. Red bar graphs represent the r between predicted and 

experimental PCE, and blue points show the Consistency as defined above. Most 

predictive models on both cross-validation set and external test set can obtain an 

unprecedentedly high r of greater than 0.8, but Consistency of these models varies 

considerably. Encouragingly, the Voting model with Dev.+Ele.+CDK as inputs 

performed well in both r and Consistency. The predicted values of this model was voted 

by the results of GB, SVR and Ridge models with an optimized voting ratio of 5:2:4 

(GB:SVR:Ridge=5:2:4). Details of correlation and consistency between experimental 

and predicted PCE of the Voting model are presented in Figure 3c-d. The good 

correlation both on the cross-validation set (r=0.88) and external test set (r=0.84) 

demonstrates the robustness and excellent generalization, which is superior to previous 

QSPR models to the best of my knowledge. For the 66 training groups and 7 test groups 

with same D/A pairs but different DAratio and RMS, Consistency of 0.79 (52 groups) 

and 0.71 (5 groups) for training set and external test set, respectively, can be achieved 

(Figure 3d), i.e. our ML model can well identify the optimal DAratio and RMS 

parameters from various candidate conditions for a given D/A pair (fully consistent in 

more than 70% training and test cases). Compared with the ML models that did not take 

device specifications into account (Consistency=0), the predictive consistency of PCE 

by our Voting model (GB:SVR:Ridge=5:2:4)) was significantly improved both in 



training set (Consistency=0.79) and test set (Consistency=0.71). Predictive consistency 

details of other models are summarized in Table S10. 

 

 

Figure 3 Performance of QSPR models. (a)~(b) r and Consistency of QSPR models 

based on different descriptor combinations on cross-validation set and external test set. 

The results of Voting models are obtained by the optimized weights of GB, SVR and 

Ridge models; (c) Comparison of the predicted PCE using the Voting model 

(GB:SVR:Ridge=5:2:4) based on Dev.+Ele.+CDK descriptors and experimental PCE. 

(d) Consistency between predicted PCE using the Voting model 

(GB:SVR:Ridge=5:2:4) based on Dev.+Ele.+CDK descriptors and experimental PCE, 

only for 66 training groups and 7 test groups with same D/A pairs but different DAratio 

and RMS values. 

 



An effective approach for discovering potential D/A pairs is the combination of 

QSPR model and high-throughput screening. To explore good-performing D/A pairs, a 

huge search space of 1,942,785 D/A pairs was obtained by pairing 9963 designed 

donors17 with 194 reported non-fullerene acceptors in our database. To deal with the 

large number of candidates, a simplified QSPR Voting model (GB:SVR:Ridge=2:5:3) 

based on structural CDK fingerprints (Figure S3) was used for the preliminary 

screening. Figure 4 shows the distribution of predicted PCE for 1,942,785 D/A pairs 

using this Voting model. PCE in the range of <10%, 10%~14%, and >14% are 

represented by blue, red, and green color, respectively. As can be seen, a very small 

D/A space (0.1%) exhibited excellent PCEs of higher than 14%, which is comparable 

to the currently cutting-edge D/A pairs.39-41 

 

Figure 4 Histogram of PCE predicted by Voting model (GB:SVR:Ridge=2:5:3) based 

on CDK fingerprints for 194,2785 combined D/A pairs. PCE in the range of <10%, 



10%~14%, and >14% are represented by blue, red, and green color, respectively. Inset: 

An enlarged view of the PCE>14% range.  

 

In addition to design outstanding D/A pairs, we further tried to suggest reasonable 

ratio and blends morphology for experimentalists. Grid search method is adopted here 

to inversely optimize the DAratio and RMS for good-performing D/A pairs. Similar to 

the hyper-parameter optimization of ML model, we first set the range of 0.2 nm-5nm 

and 0.25-2, with the interval of 0.2 nm and 0.05 for RMS and DAratio, respectively, 

and then search globally for the optimal values that correspond to the highest PCE from 

900 grid points generated by 25 and 36 values of RMS and DAratio, respectively. For 

1501 D/A pairs with PCEs over 14% (predicted by the simplified QSPR Voting model), 

the grid search was performed based on the Voting model (GB:SVR:Ridge=5:2:4). As 

an example, Figure 5a shows the contour color fill plot of PCE for C2-A5-S4-D4-S4-

A5-C2/BTP-eC9 pair (Figure S4). With different RMS and DAratio values, PCE 

fluctuated in the range of 13.75%-16.25%, and the favorable range of DAratio and RMS 

were <0.8 and 0.8 nm-1.7 nm, respectively. Distribution of the difference between the 

highest and lowest PCE of 1501 D/A pairs is shown in Figure 5b, which verifies that 

upper limit of materials performance can be increased by proper device fabrication 

methods. Theoretical results provide potentially favorable device specifications to 

reduce trial-and-error testing and provides a new strategy for the development of OSCs. 

Notably, only three acceptors, BTP-eC9,7 BTP-S2,40 and BTP-4F,41 (Figure S4) were 

found in D/A pairs with PCE greater than 14%, indicating their great potential in 



developing new non-fullerene OSCs. Structurally, they shared the same skeleton and 

were variants of the excellent Y642 acceptor (Figure S4). With the appropriate energy 

level and good light absorption, this family of acceptors is compatible with many 

donors.  

 

Figure 5 (a) Contour color fill plot of PCE with different RMS and DAratio for C2-A5-

S4-D4-A5-C2/BTP-eC9 pair; (b) Difference of highest and lowest PCE for 1501 D/A 

pairs using voting model (GB:SVR:Ridge=5:2:4); (c) Effect of 15 different donors on 

PCE based on the same acceptor BTP-EC9; (d) Effect of 15 different acceptors on PCE 

based on the same donor C2-A5-S3-D4-S3-A5-C2. 

 

It is interesting to observe that the sensitivity of D and A in D/A pair to PCE is 

quite different. Figure 5c-d shows the tunability on PCE of donors and acceptors, 

respectively. Paired with the same acceptor BTP-eC9, 15 different donors generated 

similar PCEs, with differences fluctuating ranging within 1%. By contrast, PCEs of 



D/A pairs based on the same donor (C2-A5-S3-D4-S3-A5-C2) and 15 different 

acceptors varied greatly. The highest (>12%) and the lowest (<1%) efficiency were 

obtained from C2-A5-S3-D4-S3-A5-C2/6TIC-4F and C2-A5-S3-D4-S3-A5-C2/2 pairs 

(Figure S4), respectively. These results suggest that acceptors have greater influence 

on PCE than donors, which may be a useful consideration to keep in mind for material 

design of OSCs. Figure 5c-d also shows how different the highest (red dots) and lowest 

PCE (blue dots) of these D/A pairs can be when RMS and DAratio change, indicating 

the relevance the device specifications within our QSPR model. 

In conclusion, we achieved the simultaneous optimization of photoactive materials 

and device specifications for OSCs using an upgraded QSPR model. In addition to 

structural and electronic descriptors, two critical device specifications, RMS and 

DAratio were also utilized as input features for ML modeling. The weighted Voting 

model (GB:SVR:Ridge=5:2:4) based on Dev.+Ele.+Fp input features exhibiting 

unprecedentedly high stability and generalization ability, with r of 0.88 and 0.84, as 

well as Consistency of 0.79 and 0.71 on the cross-validation set and test set, respectively. 

Additionally, a huge searching space with up to 1,942,785 D/A pairs was constructed 

to screen out potential D/A pairs with PCE>14%. RMS and DAratio were also 

optimized for these pairs using a grid search method. The predicted efficiencies of D/A 

pairs were significantly improved by optimizing the device specifications, which can 

potentially expand the upper limit of material performance. Overall, we showed that 

ML can be used for not only molecular screening but also experimental parameters 



optimization for OSCs, which takes an important step further into the practical 

theoretical guidance in materials engineering. 

 

Supporting Information 

Database details, descriptors description, OSPR models performance, definition of 

evaluation indicators, and chemical structures of mentioned molecules. 
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