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Abstract 

The software macHine leArning booSTed dockiNg (HASTEN) was developed to accelerate 

structure-based virtual screening using machine learning models. It has been validated using 

datasets both from literature (12 datasets, each containing three million molecules docked 

with FRED) and in-house sources (one dataset of four million compounds docked with 

Glide). HASTEN showed reasonable performance by having the mean recall value of 0.78 of 

the top one percent scoring molecules after docking 10 % of the dataset for the literature data, 

whereas excellent recall value of 0.95 was achieved for the in-house data. The program can be 

used with any docking- and machine learning methodology, and is freely available from 

https://github.com/TuomoKalliokoski/HASTEN. 
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Structure-based virtual screening (SBVS) is one of the standard tools used in modern drug 

discovery [1]. In SBVS, from thousands to up to a billion compounds are docked into the 

structure of a drug target, which is usually a protein structure that has been either 

experimentally determined or computationally predicted. Each docked compound is scored 

based on its fit to the target using a scoring function, which enables the ranking of compounds 

based on their docking score in ascending order. Only the lowest scoring compounds are 

taken into further consideration, and these molecules are called virtual hits. Although there 

are some truly impressive reports of large-scale studies using supercomputers [2, 3], all too 

often the throughput of SBVS remains limited, even with the rapid improvements in computer 

hardware, due to several factors. These factors can either be scientific, such as the need to use 

multiple conformations of the target due to its flexibility, or economic, for example the costs 

associated with cloud computing and software license fees. One alternative to speed up SBVS 

is to, instead of running real docking calculations, predict the docking score from the 

structures of molecules alone using a model that has been trained on a dataset of previously 

calculated docking scores. Such predictions are several order of magnitudes faster than 

docking calculations. Thanks to the advances in Deep Learning [4, 5], Machine learning (ML) 

can be used to accelerate SBVS considerably, and enable large screening campaigns without 

the need for vast supercomputing capabilities [6]. For example, a recently published ML-

platform for SBVS called Deep Docking (DD) was shown to be able to speed up the docking 

screens by up to 50 times. 

The general ML for SBVS process is illustrated in Figure 1. In such approach an 

random subset of N molecules is first selected from the database to be docked (N << the 

number of molecules in the database). Often three-dimensional conformers have to be 

generated before the docking step, which adds up to the computational cost of docking. A ML 

model is then trained on this docking data, together with quickly calculable descriptors for the 

molecules. This ML model is then used to rank the large number of molecules in the database 

not yet docked. A new set of N molecules is selected for docking from this ranked list and the 

process is repeated as long as new good scoring compounds are identified, or there is time left 

to run the screen using the computational resources at hand. Finally, all molecules with 

maximum docking score of C are selected as virtual hits. The most time consuming part of the 

workflow is clearly the docking step, which means that N should be kept as low as possible, 

while at the same time being able to produce ML models that have adequate accuracy to 

predict docking scores. 



 

 

Figure 1. Flowchart on how to apply machine learning to structure-based virtual screening 

process. 

 

 

 

In this study, a software tool called macHine leArning booSTEd dockiNg 

(HASTEN) was developed. HASTEN enables the easy execution of ML-boosted SBVS-

virtual screening campaigns and can be used together with any docking- and ML-

methodology. This is the strength of HASTEN when compared to the previously published 

program DD: HASTEN allows the ML method to be easily replaced depending on the needs 

of the user. During the preparation of this manuscript, a somewhat similar tool to HASTEN 

called MolPal was released [7]. One of the differences between HASTEN and MolPal is that 

there is built-in support for the widely used commercial docking program Glide in HASTEN. 

This study also provides novel data on the performance of machine-learning boosted docking 

when it is used together with docking constraints, which are often used in prospective virtual 

screening. HASTEN is freely available without any restrictions at 

https://github.com/TuomoKalliokoski/HASTEN. 
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Upon development, HASTEN was validated using both literature and in-house 

data. The literature data for 12 targets were retrieved from the study by Gentile et al [6] and 

the in-house data of a virtual screen for a histone acetyltransferase (HAT) target were from a 

previously performed prospective screen. The literature data consisted of approximately three 

million compounds for each target from the ZINC database [8] that were docked using the 

docking program FRED [9]. Whereas the in-house data consisted of approximately four 

million compounds from the Enamine REAL database that were docked using the docking 

program Glide [10], with a core constraint enabled that forced a part of the molecule to be 

docked to be in a certain reference space. As the usage of the core constraint indicates, all 

molecules in the in-house dataset therefore shared the same structural feature. The molecules 

in the in-house dataset that failed to dock, and thus had no docking score were assigned with a 

docking score of 10.0. The calculations were performed using three CentOS 7 Linux-

workstations that had NVIDIA GeForce RTX 2080 Ti as GPU and either AMD Ryzen 

Threadripper 2970WX CPU with 125 GB RAM or Intel Xeon Gold 5118 CPU with 186 GB 

of RAM. 

The ML models were built using ChemProp, which is a message passing neural 

network for molecular property prediction. ChemProp is freely available and has been shown 

to be useful within the context of drug discovery [11, 12]. The default ChemProp settings 

were used. The datasets were split randomly into training (80 %), validation (10 %) and test 

sets (10 %) at each iteration step unlike in the previous DD study where compounds were 

added only to the training set [6]. At each iteration step, 1 % of the top predicted compounds 

(approximately 30000 to 40000 molecules) were added to the ML model building process. 

The performance was measured by calculating the recall of the top scoring one percent 

molecules in the whole dataset after each iteration step. The baseline of random recall is then 

the same as the percentage of dataset docked, as can been seen in Table 1, where the recall 

values at first iteration are based on the random selection before the application of the ML 

model. The effect of iterative training was measured by comparing the recall values at each 

iteration step to the recall values of the original starting point model. 

 HASTEN achieved mean recall of 0.78 at 10 percent of the dataset docked for 

the literature datasets whereas the performance for the in-house dataset was considerably 

higher with recall of 0.95 at 10 percent of the dataset docked (Table 1). The iterative model 

training process improved the recall of the top one percent scoring molecules on average 0.15 

compared to the initially trained model, which is clearly an improvement worth the modest 



 

additional computational cost associated with the additional model training calculations. No 

further optimization of the ChemProp settings was done as the performance was deemed 

already to be satisfactory using the default settings. The increase in recall values does not 

converge for literature targets at the 10th iteration, whereas for the in-house dataset there is a 

modest increase in recall from the eighth iteration. This suggests that in a real screening 

situation, the number of virtual hits should be monitored after each iteration step to avoid 

running unnecessary iterations or on the other hand, stopping too early. 

The literature dataset contained targets that were nuclear receptors, kinases, G-

protein coupled receptors and ion channels. Ion channel set 6D6T (gamma-aminobutyric acid 

receptor type A, GABAA) had clearly the lowest recall and this set was also the worst 

performing target in the previous DD study [6]. The authors commented on the poorer 

retrieval rate with GABAA that “These results clearly suggest that, like any other 

computational tool, DD shows performances that are target-dependent” which could also 

partially explain the major difference in performance between the literature targets and the in-

house target observed here. An additional explanation for the difference could be that the 

initial training dataset for the in-house target was 33 % larger than the training datasets used 

for the literature targets. However, this may not to be the case here as the recall remained at 

the same level of 0.95 when repeating the HASTEN procedure on a dataset that was sampled 

down to three million compounds (HAT 3 mil) from the original four million compound 

dataset (HAT 4 mil) (Table 1). 

  



 

Table 1. The recall values of top one percent scoring molecules at different fractions of database docked. 

Literature datasets docked with FRED 

% Docked 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 % 

Model Random Iter 1 Iter 2 Iter 1  Iter 3 Iter 1 Iter 4 Iter 1 Iter 5 Iter 1 Iter 6 Iter 1 Iter 7 Iter 1 Iter 8 Iter 1 Iter 9 Iter 1 

1ERR 0.01 0.224 0.393 0.334 0.516 0.414 0.600 0.476 0.665 0.529 0.718 0.573 0.758 0.609 0.789 0.641 0.817 0.670 

1T7R 0.01 0.244 0.451 0.367 0.569 0.451 0.649 0.517 0.712 0.570 0.760 0.616 0.799 0.656 0.829 0.688 0.851 0.716 

2ZV2 0.009 0.162 0.308 0.253 0.414 0.319 0.504 0.376 0.574 0.425 0.630 0.467 0.672 0.505 0.708 0.538 0.740 0.569 

4AG8 0.01 0.231 0.416 0.351 0.545 0.437 0.629 0.505 0.692 0.559 0.739 0.605 0.780 0.644 0.811 0.678 0.836 0.705 

4F8H 0.01 0.203 0.415 0.308 0.553 0.383 0.644 0.446 0.707 0.498 0.754 0.541 0.792 0.579 0.825 0.613 0.849 0.641 

4R06 0.01 0.209 0.361 0.310 0.471 0.380 0.548 0.437 0.606 0.486 0.652 0.525 0.692 0.561 0.726 0.591 0.758 0.620 

4YAY 0.01 0.167 0.341 0.258 0.463 0.331 0.544 0.388 0.608 0.438 0.658 0.480 0.700 0.519 0.733 0.553 0.760 0.583 

5EK0 0.009 0.242 0.420 0.350 0.541 0.429 0.621 0.491 0.683 0.542 0.730 0.583 0.766 0.620 0.797 0.650 0.825 0.676 

5L2S 0.01 0.173 0.321 0.267 0.429 0.338 0.519 0.396 0.579 0.446 0.633 0.488 0.676 0.525 0.711 0.559 0.743 0.591 

5MZJ 0.01 0.170 0.325 0.265 0.435 0.335 0.528 0.393 0.594 0.443 0.649 0.486 0.691 0.523 0.731 0.554 0.761 0.583 

6D6T 0.01 0.108 0.223 0.173 0.322 0.227 0.402 0.274 0.468 0.314 0.523 0.349 0.572 0.380 0.607 0.413 0.640 0.440 

6IIU 0.01 0.152 0.291 0.237 0.395 0.303 0.481 0.358 0.553 0.403 0.610 0.444 0.652 0,480 0.688 0.513 0.720 0.542 

Mean 0.01 0.190 0.355 0.289 0.471 0.362 0.556 0.421 0.620 0.471 0.671 0.513 0.713 0.550 0.746 0.583 0.775 0.611 

Median 0.01 0.188 0.351 0.287 0.467 0.359 0.546 0.416 0.607 0.466 0.655 0.507 0.696 0.543 0.732 0.575 0.760 0.605 

In-house dataset docked with core-constrained Glide 

% Docked  1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 % 

Model Random Iter 1 Iter 2 Iter 1  Iter 3 Iter 1 Iter 4 Iter 1 Iter 5 Iter 1 Iter 6 Iter 1 Iter 7 Iter 1 Iter 8 Iter 1 Iter 9 Iter 1 

HAT 4 mil 0.009 0.337 0.668 0.494 0.795 0.594 0.847 0.659 0.879 0.708 0.903 0.743 0.930 0.771 0.945 0.795 0.952 0.813 

HAT 3 mil 0.01 0.336 0.649 0.506 0.794 0.606 0.855 0.672 0.884 0.720 0.911 0.754 0.923 0.781 0.937 0.801 0.947 0.818 



 

The current version of HASTEN is ready to use with the Glide docking software 

and ChemProp machine learning tool, but it is trivial to write wrappers to add support for 

other methods as well. In addition to its use in large virtual screening campaigns, HASTEN 

could also be used in the further development of machine learning methods for docking, as 

the software contains a simulation mode allowing the input of pre-docked data that was used 

to produce the results reported here. 
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