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Abstract

Nanoporous materials (NPMs) selectively adsorb and concentrate gases into their pores, and
thus could be used to store, capture, and sense many different gases. Modularly synthesized
classes of NPMs, such as covalent organic frameworks (COFs), offer a large number of candidate
structures for each adsorption task. A complete NPM-property table, containing measurements
of the relevant adsorption properties in the candidate NPMs, would enable the matching of
NPMs with adsorption tasks. However, in practice the NPM-property matrix is only partially
observed (incomplete); (i) many properties of any given NPM have not been measured and (ii)
any given property has not been measured for all NPMs.
The idea in this work is to leverage the observed (NPM, property) values to impute themissing

ones. Similarly, commercial recommendation systems impute missing entries in an incomplete
item-customer ratings matrix to recommend items to customers. We demonstrate a COF rec-
ommendation system to match COFs with adsorption tasks by training a low rank model of an
incomplete COF–adsorption-property matrix. A low rank model, trained on the observed (COF,
adsorption property) values, provides (i) predictions of the missing (COF, adsorption property)
values and (ii) a “map” of COFs, wherein COFs with similar (dissimilar) adsorption properties
congregate (separate). We find the performance of the COF recommendation system varies for
different adsorption tasks and diminishes precipitously when the fraction of missing entries ex-
ceeds 60%. The concepts in our COF recommendation system can be applied broadly to many
different materials and properties.
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1 Introduction
Nanoporous materials (NPMs) [1] often exhibit permanent porosity and possess large-area internal
surfaces [2] decorated with functional groups. This enables them to (selectively) adsorb and concen-
trate gas in their pores [3–5]. As a result, NPMs have applications in storing [5], separating [4,6], and
sensing [7] gases, as well as in catalysis [8].
Advanced families of NPMs, such as metal-organic frameworks (MOFs) [9], covalent organic frame-
works (COFs) [10], porous polymer networks (PPNs) [11], porous organic cages (POCs) [12], and
metal-organic polyhedra (MOPs) [13,14], are constructed modularly frommolecular building blocks.
The copiousness of building blocks, together with post-synthetic modifiability [15], make the number
of possible NPM structures extremely large [16].

Figure 1: A recommendation system for
nanoporous materials (NPMs). A toy NPM–
adsorption-property matrix is illustrated. Entry
(i , j) of the matrix represents the value of ad-
sorption property j of NPM i . Many entries are
unobserved (white) because measurements are
missing. The goal of our NPM recommendation
system is to use the observed entries to impute
the unobserved entries, allowing recommenda-
tion of NPMs for various adsorption tasks (re-
quiring a certain adsorption property). This is
analogous to commercial recommendation sys-
tems that aim to recommend customer-specific
items to customers, with NPM : item :: adsorp-
tion property :: customer.

The vastness of NPM “space” [17] and the many
adsorption-based applications of NPMs give rise
to two important optimization problems. The
first is application-led NPM search [1], where the
goal is to search for an NPM structure with an
optimal adsorption property for a desired appli-
cation. The second is material-led application
search [18], where the goal is to search for the
most suitable application of a given NPM.
Given a list of candidate NPM structures and a list
of adsorption properties relevant to various ap-
plications, the complete NPM-property matrix con-
taining measurements for every (NPM, property)
pair reduces both application-led NPM search
and NPM-led application search to look-up prob-
lems. However, in practice, the NPM-property
matrix, constructed from experimental data col-
lected from the literature [19] and/or databases
of simulated gas adsorption in libraries of NPMs
[18], is likely incomplete, because many (NPM,
property) values have not been observed. I.e., (i)
for any given NPM, only a proportion of its ad-
sorption properties have been measured, and (ii)
for any given adsorption property, it has been
measured in only a proportion of the NPMs. See
Fig. 1.
The idea in this work is to leverage the observed
(NPM, property) values to predict the missing
ones—i.e., to impute the missing values of, or
complete, the NPM-property matrix. This predic-
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tion task, of interest primarily to recommend NPMs for specific adsorption tasks, is analogous to a
commercial recommendation system for items to customers (see Box and Fig. 1), materials : items
:: properties : customers. A machine learning strategy to complete the NPM-property matrix is
much less expensive and time-consuming than experimentally measuring or computationally simu-
lating these missing properties. The machine-completed NPM-property matrix is valuable because
it can be used to direct higher-fidelity but more expensive experimental measurements of prop-
erties towards the most promising materials—allowing a more efficient use of resources in both
application-led material search and material-led application search.
Box: analogy with commercial recommendation systems
In commercial recommendation systems, observed (item, customer) ratings are used to
predict missing ratings for the recommendation of items to customers [20]. For example,
movie ratings by Netflix users can be stored in a movie-user ratings matrix (rows=movies,
columns=users, entries=ratings) [21]. Most entries in the matrix are missing, as (i) each user
has rated only a small proportion of the movies and (ii) each movie is rated by only a small
proportion of the users. A movie recommendation system imputes the missing (movie, user)
ratings using the observed ones (perhaps, using features of the movies and users as well)
in order to make user-specific recommendations of movies. Thus, our (material, property)
values are analogous to (item, customer) ratings in commercial recommendation systems.
Though, two distinctions are (i) typically, there are many more customers than items in com-
mercial recommendation systems, compared to more materials than properties in material
recommendation systems, and (ii) the entries in an item-customer ratings matrix have the
same units and scale, whereas the units and scale could vary across different properties in
the material-property matrix. Distinction (i) is inconsequential for low rank models because
the model is transpose-equivariant.

Our hypothesis, which would permit accurate matrix completion, is that the NPM-property matrix
exhibits a low rank structure [22,23], owing to underlying structural and chemical similarities among
both NPMs and gas species that dictate their interactions. A low rank structure implies both NPMs
and adsorption properties can be represented by low-dimensional vectors that together express
the affinity between a (NPM, property) pair; these latent representations can be machine-learned,
jointly, using the observed (NPM, adsorption property) values and then used to impute the missing
values [21,24].
Herein, we demonstrate the imputation of missing data in an incomplete material-property ma-
trix through learning low rank models [24]. Particularly, we train low rank models of COF–gas-
adsorption-property matrices, pertaining to 560 experimentally-reported COFs [25] and the sim-
ulated uptake of CH4, H2O, H2S, Xe, Kr, CO2, N2, O2 and H2 at various conditions [18] that ap-ply to different gas storage and separation applications of COFs. Advantageously, this COF–gas-
adsorption-property matrix is in reality complete, allowing us to artificially introduce different frac-
tions of missing values and investigate the effect of sparsity on the performance of the recommen-
dation system. From the observed (COF, gas adsorption) values, the low rank model machine-learns
low-dimensional latent vector representations of both the COFs and the adsorption properties, al-
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lowing the (i) imputation of the missing values of the adsorption properties and (ii) drawing of a COF
“map” that clusters together COFs with similar adsorption properties.

2 Review of previous work

2.1 Computational methods for materials discovery

Virtual screenings of NPMs for adsorption-based applications use molecular models and simula-
tions [26, 27] to [cheaply, relative to conducting an experiment in the lab] predict the adsorption
property of each candidate material [16, 28, 29]. As opposed to an exhaustive virtual screening, ge-
netic algorithms [30–32] and Monte Carlo tree search [33] have been used to more efficiently search
for the NPM(s) with the optimal adsorption property. Supervised machine learning models have
been widely used to predict the adsorption properties of the NPMs at a lower cost than but similar
fidelity to the molecular simulations [34–41]. In this approach, (i) molecular simulations are used
to label a small subset of the candidate NPMs with the gas adsorption property, (ii) these examples
are used to train a machine learning model to predict the gas adsorption of an NPM from cheaply
computed structural and chemical features, and then (iii) the supervised machine learning model
is used, as a surrogate model for the molecular simulations, to (cheaply) predict the properties of
the remaining materials. See reviews in Refs. [42–48]. Limitations of such a task-specific supervised
learning approach are (a) knowledge is not transferred between tasks, (b) the correlation between
different targets is not leveraged, and (c) a task-specific, information-rich feature vector represen-
tation of the NPM is required. Though, transfer learning [49] and graph neural networks [50–52]
alleviate limitations (a) and (c), respectively.
Unsupervised machine learning holds promise for materials discovery by clustering together mate-
rials with similar structures and thus properties and learning a low-dimensional (e.g., 2D) embed-
ding of their structures into a “map” of materials [53–55]. Such a map facilitates lead-optimization
approaches to materials discovery and the selection of structurally diverse sets of materials to ade-
quately explore materials space.
Finally, autoencoders enable inverse design [56–58], where one specifies a desired adsorption prop-
erty, and the machine learning model generates a NPM structure with that property.

2.2 Open data to enable machine-learning accelerated materials discovery

To spur and enable developments of machine learning approaches to materials discovery, open,
structured databases [59–61] of (i) crystal structure models of NPMs [25, 62–66], (ii) simulated [18,
65,67] or experimentallymeasured [68] adsorption properties of NPMs, and (iii) electronic properties
of NPMs [69,70], have been curated.
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2.3 Placing our work in context

Our material recommendation system deviates from previous data-driven approaches to predict
adsorption properties of NPMs by combining observations of many different properties to impute
missing ones without using explicitly hand-crafted [71–73] features of the NPMs. Instead, from the
observed (NPM, adsorption property) values, our recommendation system jointly machine-learns
latent representations of both the NPMs and adsorption properties that express (NPM, adsorption
property) affinities, taking advantage of low rank structure in the material-property matrix. In some
sense, our recommendation system is related to multi-task learning, but it (i) does not require a
hand-crafted or machine-learned vector representation of the NPM and (ii) handles missing values
in the target vectors associated with the NPMs.
Our work is not the first machine-learned recommendation system for use in the chemical sciences.
Yuana et al. [74] imputed missing gas permeability in polymers. Sosnia et al. [75] developed a rec-
ommendation system for antiviral drugs by learning a low rank model of a compound-virus activity
matrix. Seko et al. [76] and Hayashi et al. [77] used matrix/tensor factorization to predict stability
based on composition and optimal processing conditions, respectively, of inorganic materials.

3 The material recommendation system
Here, we formulate the general problem of material-property matrix completion.
A material recommendation system jointly machine-learns, from observed (material, property) val-
ues, low-dimensional latent vector representations of thematerials and properties that express (ma-
terial, property) affinities. These learned representations allow us to (i) impute the missing (material,
property) values and (ii) draw a map of the materials, wherein materials with similar properties con-
gregate.

The data. We have observations of Amp ∈ R, the value of property p in materialm, for (m, p) ∈
Ω ⊂ {1, 2, ...,M}×{1, 2, ..., P}, which definesΩ as the set of ordered pairs describing the entries
inA that are observed. That is, the material-property matrixA ∈ RM×P , whose entry (m, p) isAmp ,is not complete; some entries are missing (|Ω| < MP ).

The objective. The objective is to complete the material-property matrix by predicting the missing
entries, Amp for (m, p) ∈ {1, 2, ...,M} × {1, 2, ..., P} \Ω.

The low-rank model. From an element perspective, the low-rank model assumes that each ele-
ment of the matrix, Amp , decomposes into

Amp ≈ mᵀmpp + µm, (1)
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where mm ∈ Rk and pp ∈ Rk are low-dimensional (k < M,P ), latent vector representations
of material m and property p, respectively, and µm ∈ R is a bias for material m. The material-property interaction term, the dot productmᵀmpp , represents the “affinity” (if positive) or “aversion”(if negative) of material m for property p. Geometrically, the interaction term is positive (negative)
ifmm and pp point in roughly the same (opposite) direction. The magnitude of the interaction termdepends on both the angle between mm and pp and their norms. The material bias µm reflectsvariation of the values of the properties of materialm independent of interactions; some materials
may simply tend to have higher or lower values of the properties. See Koren et al. [21].

Figure 2: The low rankmodel of thematrixA ≈MᵀP+

µ1ᵀ. The columns ofM and P contain the latent rep-
resentations of the M materials and P properties, re-
spectively, which lie in a k -dimensional space. The vec-
tor µ contains theM material biases.

From a matrix perspective, the low rank
model factorizes the material-property
matrix A as:

A ≈MᵀP+ µ1ᵀ (2)
with the columns of matricesM ∈ Rk×M
andP ∈ Rk×P containing the latent repre-
sentations of materials and properties, re-
spectively; the entries of the column vec-
tor µ ∈ RM containing the material bi-
ases; and 1 ∈ RP a column vector of ones.
See Fig. 2. The dimensionality of the latent
space, k < M,P , imposes the constraint
rank(MᵀP) ≤ k , hence eqn. 2 is a low
rank model / approximation of the matrix
A.

The utility of the low rank model. The
low rank model of the materials-property
matrix is useful for two purposes [24].
(1) Imputation of missing entries. The decomposition in eqn. 1 holds for both observed and unob-
served (material, property) values. Thus, once we learnM, P, and µ from the observed entries, we
can predict the unobserved entries, as is clear from eqn. 2.
(2) Construction of a low-dimensional map of the materials and properties. The rows of a fully observed
version of A, which lie in a P -dimensional vector space, can be viewed as feature vectors of the
materials. In this view, each material is represented by a list of its properties. The set of latent vector
representations of the materials, in the rows ofMᵀ, are embeddings/ compressions of the rows ofA
into a lower (k < P ) dimensional vector space. [24] Within this latent space, materials, represented
bymm ’s, that tend to have similar (dissimilar) properties congregate (separate). Thus, with the latentrepresentations of the materials, the mm ’s, we can (i) use clustering algorithms to group togethermaterials with similar properties and (ii) visualize the scatter of the materials in the low-dimensional
space to make a “map” of materials.
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Similarly, the columns of a complete version of A can be viewed as vector representations of the
properties, and the columns of P, the latent vector representations of the properties, are embed-
dings/compressions of them. Within this latent space, properties, represented by pp ’s, that tend totake on similar (dissimilar) values in NPMs congregate (separate).
As a consequence of the dot productmᵀmpp in eqn. 1, themagnitude and directions of a pair of latentmaterial and property vectors (mm,pp), taken together, indicate the affinity/aversion for each other,
sincemᵀmpp = ||mm||2||pp||2 cosφ, with φ the angle betweenmm and pp.

Machine-learning the low rank model. We learn the latent representations of the materials and
properties and the material biases by balancing (i) the matching of the observed values of the matrix
by the model given in eqn. 1 and (ii) the complexity of the latent vector representations, to avoid
overfitting. Specifically, we aim to choose theM, P, and µ that minimize the loss ` = `(M,P,µ):

`(M,P,µ) =
∑

(m,p)∈Ω

[Amp − (mᵀmpp + µm)]2 + λ

(
1

M

M∑
m=1

||mm||22 +
1

P

P∑
p=1

||pp||22

)
. (3)

The first term is the approximation error, measured over all observed (m, p) pairs. The second
term provides L2 regularization of the latent vector representations of the materials and properties
to prevent overfitting and improve generalization, where λ > 0 is the regularization parameter. The
sums are normalized by the number of elements in the sum to properly weigh regularization of the
latent material and property vectors.
Either stochastic gradient descent or alternatingminimization can be used to find the (M,P,µ) that
minimize `. The latter alternates between fixingM and optimizing P and fixing P and optimizing
M. See Refs. [21,24].
There are two hyperparameters in the low rank model: (1) k ∈ {0, 1, ...,min(M,P )}, the dimen-
sionality of the vector space containing the latent representations of the materials and properties
and (2) λ ∈ [0,∞), the regularization parameter that trades off prediction accuracy on the training
data and the complexity of the latent vector representations.

4 Case study: a COF recommendation system
We now demonstrate a material recommendation system based on a low rank matrix model. Here,
the materials are COFs, and the properties are the equilibrium uptakes of a variety of gases at dif-
ferent conditions, obtained from molecular simulations. The Julia code to reproduce all of our work
is available at github.com/SimonEnsemble/material_recommendation_system.
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4.1 The dataset

We leverage an open data set of simulated gas adsorption properties inM = 560 experimentally
reported, structurally optimized, and porous COF materials [18, 25]. We selected P = 16 simu-
lated adsorption properties of interest, comprised of the uptake [units: mmol/g] and Henry coeffi-
cients [mmol/(g·bar)] of a variety of gases—CH4, H2O, H2S, Xe, Kr, CO2, N2, O2 and H2—at variousconditions that apply to different gas storage and separation applications. We log10-transformedthe Henry coefficients because of the relatively long tail of their distributions. The resulting COF–
adsorption-property matrix, Acomplete ∈ R560×16 is fully observed, allowing us to study the effect of
the fraction of missing entries on the performance of the low rank model.
Fig. 3 displays the distribution of the [standardized] properties and the pairwise relationships be-
tween the adsorption properties (see Fig. S1 for a pairwise correlation matrix). Some properties are
strongly correlated, e.g., CH4 uptake at (298K, 65bar) and H2 uptake at (77K, 100bar), while oth-ers, such as Xe and H2O Henry coefficients, are not. The low rank model exploits these correlationsbetween properties to learn low-dimensional representations of the materials and properties.

4.2 Simulating the process of data collection

We simulate the stochastic process of incomplete data collection to construct an incomplete COF–
adsorption-property matrix A(θ) (still M = 560 × P = 16) with a fraction θ of missing entries.
We construct A(θ) by (uniform) randomly sampling, without replacement, (1 − θ)MP entries to
ablate (change to missing) from theMP entries ofAcomplete. Fig. 4 visualizes a resulting incompleteCOF–adsorption-property matrix A(0.4) with a fraction θ = 0.4missing entries.

4.3 Standardization of adsorption properties

We standardize the adsorption properties (the columns ofA(θ)) to havemean zero and unit variance
using only the observed training examples. Standardization accounts for the different scales of
the different properties and prevents properties with a larger variance from dominating the loss
function in eqn. 3. See Ref. [24] for theoretical arguments for standardization. The entries in Fig. 4
are standardized, hence the diverging colormap.

4.4 Training, hyperparameter tuning, and testing

We use LowRankModels.jl [24] in the Julia programming language [78] to train our low rank mod-
els of the form in eqn. 2. LowRankModels.jl implements an alternating proximal gradient de-
scent [24] to minimize the loss in eqn. 3.
For training and hyperparameter (k, λ) tuning, we randomly partitioned the [simulated] observed
entries of A(θ) into an 80/20% training/validation set. The loss ` in eqn. 3 is minimized over the
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Figure 3: The distribution of (diagonal) and pairwise relationships between (off-diagonal) the simu-
lated gas adsorption properties of the COFs (data from Ref. [18]). Each point represents a COF. Each
property was standardized to have zero mean and unit variance.

training set, while the validation set is used to select optimal hyperparameters. The remaining,
[simulated] unobserved entries serve as test data to estimate the generalization error of the low
rank model for matrix completion.
To determine the optimal hyperparameter tuple (k

(θ)
opt , λ

(θ)
opt) for a givenA(θ), we perform a hyperpa-

rameter sweep over a (k, λ) grid, training one low rankmodel for each (k, λ). We select (k (θ)
opt , λ

(θ)
opt)as the hyperparameter tuple whose low rank model produces the lowest approximation error over
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the validation set. The grid is the Cartesian product of (1) k ∈ {1, 2, ..., 15} and (2) 25 values of λ
ranging from 10 to 1000 and evenly spaced on a log-scale.
The deployment low rankmodel is then a new low rankmodel (a) with hyperparameter tuple (k

(θ)
opt , λ

(θ)
opt)and (b) trained on all [simulated] observed entries (train+ validation data) of A(θ). We evaluate the

performance of the deployment model by comparing its predictions of the missing entries to the
actual values of the missing entries that comprise the test data. N.b., the loss and performance
evaluation is done on the standardized and, in the case of Henry coefficients, log10-transformedvalues.

4.5 Results for observed fraction θ = 0.4

We now demonstrate the utility of a low rankmodel, using a particular instance of a COF–adsorption-
property matrix with a fraction θ = 0.4 observed entries (shown in Figs. 4), for (i) imputing missing
entries and (ii) drawing of a map of COFs and adsorption properties. Figs. 5-8 all correspond to the
same deployment low rank model trained using the instance of A(0.4) shown in Fig. 4, where the
hyperparameter sweep found k (0.4)

opt = 3, λ(0.4)
opt = 215.44.

4.5.1 Imputing missing entries

We judge the performance of the low rank model for imputing the missing entries of the COF–
adsorption-property matrix A(0.4) by comparing the predictions of the missing entries to the actual
values in the test data set, composed of the simulated unobserved entries.
The parity plot in Fig. 5 shows the joint distribution of predicted and actual values of the (standard-
ized and, in the case of Henry coefficients, log10-transformed) adsorption properties in the test dataset—the simulated unobserved entries of A(0.4). The density is greatest along the diagonal line of
equality, indicating that the recommendation system is providing predictive value. The RMSE and
Spearman’s rank correlation coefficient on the test data is 0.6 and 0.77, respectively.
The ultimate utility of the recommendation system is to rank COFs according to specific properties
(for specific applications). Spearman’s rank (here, a ranking of COFs) correlation coefficient, ρ, be-
tween the prediction of a missing adsorption property by the deployment low rank model and its
actual value (from the test set) is shown for each adsorption property in Fig. 6. With the exception
of H2O Henry coefficients, the recommendation system ranks the COFs according to their proper-ties reasonably well, with ρ > 0.6. The relatively poor ranking of COFs by H2O Henry coefficient isexplained by its very weak correlation with the other properties (see Fig. S1).
As a baseline to judge the performance of our recommendation system, we also train and test (on
the same data) a benchmark model that excludes the interaction termmᵀmpp in eqn. 1. This materialbias model, equivalent to the low rank model in eqn. 2 when k = 0, gives Amp ≈ µm and only con-siders whether the COF in question tends to exhibit high or low values of the properties (reflected
in µm) when predicting Amp. By comparing the imputation performance of this material bias model
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Figure 5: A parity plot showing the joint distribution, over the test data set (simulated unobserved
entries in A(0.4)), of (y-axis) the predictions of the missing adsorption properties by the deployment
low rank model and (x-axis) the actual value of the missing entries. The diagonal line represents
perfect prediction.

with the k > 0 low rank model, we quantify the extent to which the interactions between the COFs
and the gas adsorption properties—encoded in mᵀmpp terms for k > 0—are useful in the recom-
mendation system for imputing the missing values. For each adsorption property, the stars in Fig. 6
show Spearman’s rank correlation coefficients between the value of the missing property (from the
test set) and the prediction of the missing property by the benchmark material bias model. Indeed,
the interaction term enhances the ability of the recommendation system to rank COFs according to
their adsorption properties, though by different margins depending on the property. O2 adsorptionat (298K, 5 bar) and N2 adsorption at (300K, 0.001bar) are the two properties where the interactionterm is playing only a marginal role. Overall, this indicates that our recommendation system is (i)
learning interactions between COFs and the adsorption properties and (ii) more likely to suggest
high-performing COFs for an application than a simpler strategy that selects COFs purely based on
how they perform on average (as in the material bias model).

4.5.2 The COF biases

The learned material bias of COF m, µm ∈ R, in eqn. 1 roughly describes the typical value of the(standardized) gas adsorption properties of COF m. Visualization of µ can give us an idea of which
COFs tend to exhibit the largest and smallest values of the gas adsorption properties. Fig. 7 visual-
izes the extremes of µ from the deployment low rank model trained on A(0.4) and displays the COF
structures with the lowest and highest material biases. CCOF-2 (COF-LZU8) has the largest (smallest)
µm, indicating that CCOF-2 (COF-LZU8) tends to exhibit the highest (lowest) values of the (standard-ized) gas adsorption properties among the COFs.
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Figure 6: For each adsorption property, the height of the bar shows Spearman’s rank correlation
coefficient ρ between the prediction of a missing adsorption property in A(0.4) (in the test set) by
the deployment low rank model and its actual value. For comparison, the stars show ρ for the
benchmark, material offset model where Amp ≈ µm and the interaction term is excluded.

4.5.3 The learned map of COFs and gas adsorption properties

The learned latent representation of COF m, mm ∈ Rk , encodes its adsorption properties into acompressed, low-dimensional vector. The locations of the COF representations in the latent space
of COFs provide a “map” of the COFs. Within this map, COFs with similar (dissimilar) adsorption
properties congregate (separate). Similarly, pp ∈ Rk is a latent representation of gas adsorptionproperty p. Because the interaction term in eqn. 1 ismᵀmpp , the latent property vectors pp indicatewhich regions of latent space tend to contain COFs with high values of those adsorption properties.
To visualize themap of COFs and adsorption properties, we resort to a dimension reductionmethod,
Uniform Manifold Approximation and Projection (UMAP) [79], which embeds the latent representa-
tions of the COFs and properties, contained in the columns of M and columns of P respectively,
into a 2D space. N.b. we apply UMAP on the horizontally concatenated matrixM ‖ P, as opposed
toM and P separately, so that the latent representations of the material and property vectors are
comparable. Fig. 8 shows the map of COFs and adsorption properties from the deployment low rank
model for A(0.4).
In the map of COFs in Figs. 8a and 8b, each point represents a COF, colored by (a) CH4 adsorption at(298K, 65bar) and (b) H2S Henry coefficient at 300K. Indeed, nearby COFs in this map tend to exhibitsimilar values of the adsorption property: COFs with the highest CH4 uptake at (298K, 65bar) arelocated in the top right corner, while COFs with the highest H2S Henry coefficients are located in thetop left corner. Fig. S4 shows the COF map colored by the other adsorption properties.
The map of adsorption properties is displayed in Fig. 8c. Comparing Figs. 8a and 8b with the location
of the latent property vector of (a) CH4 adsorption at (298K, 65bar) and (b) H2S Henry coefficient at300K reveals that the latent vectors of COFs with large (small) values of these properties tend to
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Figure 7: The ranked COF biases, {µm}, for the θ = 0.4 deployment low rank model. The COFs with
the lowest and highest µm are shown, with the corresponding top and bottom three COF structuresvisualized below.

be oriented in the same (opposite) direction as the latent property vectors—consistent with the
interaction term in eqn. 1 as the dot productmᵀmpp. [As a cautionary note, UMAP does not preserveangles.]
In summary, Fig. 8 illustrates that the recommendation system machine-learns, from incomplete
data, a meaningful map of COFs, wherein COFs with similar adsorption properties congregate.

4.6 The effect of observed fraction θ on performance

Because the COF–adsorption-property Acomplete from Ref. [18] is in reality complete, we have theluxury of studying the impact of the fraction of observed entries, θ, on the performance of the
recommendation system. This investigation is important to address the practical question: how
complete must the COF–adsorption-property matrix be for the recommendation system to reliably
rank COFs according to their adsorption properties?
For a fraction of observed values θ ∈ {0.1, 0.2, ..., 0.9}, we sampled an ensemble of COF–adsorption
property matrices A(θ) (50 simulations of data collection for each θ). For each instance of A(θ), we

14



4 2 0 2 4 6
UMAP dimension 1

2

0

2

UM
AP

 d
im

en
sio

n 
2  = 0.4

k = 3
 = 215.44

3

2

1

0

1

2

3

CH
4

(2
98

 K
, 6

5 
ba

r)

(a)

4 2 0 2 4 6
UMAP dimension 1

2

0

2

UM
AP

 d
im

en
sio

n 
2  = 0.4

k = 3
 = 215.44

3

2

1

0

1

2

3

H 2
S 

He
nr

y
(3

00
 K

)

(b)

4 2 0 2 4
UMAP dimension 1

3

2

1

0

1

2

UM
AP

 d
im

en
sio

n 
2

O2
(298 K, 5 bar)

O2
(298 K, 140 bar)

CO2
(300 K, 0.001 bar)

CO2
(300 K, 30 bar)

N2
(300 K, 0.001 bar)

N2
(300 K, 30 bar)

H2
(77 K, 5 bar)

H2
(77 K, 100 bar) H2

(298 K, 5 bar)

H2
(298 K, 100 bar)

H2O Henry
(300 K)

H2S Henry
(300 K)

Xe Henry
 (300 K)

Kr Henry
 (300 K)

CH4
(298 K, 65 bar)

CH4
(298 K, 5.8 bar)  = 0.4

k = 3
 = 215.44

(c)
Figure 8: Learned map of COFs and gas adsorption properties: UMAP [79] embeddings of the la-
tent representations of the (a, b) COFs, {mm} and (b) adsorption properties, {pp} into a 2D plane.(a, b) Each point represents a COF, colored by (a) CH4 adsorption at (298K, 65bar), (b) H2S Henrycoefficients at 300K. (c) Each point represents an adsorption property.

conducted a hyperparameter sweep using a training/validation split of the observed entries, re-
trained a deployment model on all observed entries, then tested the deployment model on the
unobserved (missing) entries serving as test data. Fig. S2 shows the distribution (among the simu-
lations of data collection) of optimal hyperparameters (k

(θ)
opt , λ

(θ)
opt) for each θ. Fig. 9 shows Spear-
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Figure 9: The effect of the fraction of observed values θ on the performance of the recommendation
system formissing adsorption property imputation. Blue circles show themean (over 50 simulations
of data collection) Spearman’s rank correlation coefficient between the prediction of the missing
adsorption property (from test data) and its true value, as a function of θ, and for each adsorption
property. Yellow stars shows the mean Spearman’s rank correlation coefficient for the benchmark
material bias model. Shaded bands signify the standard deviation.

man’s rank correlation coefficient, ρ, between the prediction of the missing adsorption property by
the deployment low rank model and its actual value, for each adsorption property, as θ varies. The
bands show the standard deviation over the 50 simulations of data collection. As in Fig. 6, ρ for
the H2O Henry coefficient is much lower than for other properties ∀θ owing to its poor correlationwith the other properties. For the majority of the gas adsorption properties, the recommendation
system ranks COFs according to the property reasonably well (i.e., a reasonably high ρ), until θ is
reduced below θ = 0.4, where the fraction of missing values is too large to provide accurate pre-
dictions owing to a paucity of training examples. In conclusion, at least 40% of the values of the
COF–adsorption-property matrix must be observed for the recommendation system to reliably rank
COFs according to their adsorption properties. For comparison, ρ for the baseline material offset
model is also shown in Fig. 6 as the dashed line; the interaction term provides significant predictive
value, with the exception of N2 adsorption at (300K, 0.001 bar) and O2 adsorption at (298K, 5 bar).

5 Conclusion and Discussion
In materials science, we are often interested in many different properties of many different materi-
als. The corresponding material-property matrix often, in practice, has many missing values, since
every property of every material has not been measured. The idea of a material recommendation
system is to leverage the observed (material, property) values to impute the missing ones. The
(material, property) values are mathematically analogous to (item, customer) ratings in commercial
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recommendation systems.
We demonstrated a COF recommendation system for different gas adsorption applications. Our
COF–adsorption-property matrix was composed of the simulated uptake of several gases at dif-
ferent conditions in 560 COF structures by Ongari et al. [18]. We simulated the process of data
observation by artificially introducing missing values into the matrix. The (simulated) unobserved
entries served as test data to assess the performance of the data imputation by the recommenda-
tion system. To both (i) impute the missing adsorption properties and (ii) machine-learn a “map”
of COFs, wherein COFs with similar adsorption properties congregate, we trained a low rank matrix
model [24] of the COF–adsorption-property matrix that had missing entries. The recommendation
system was able to rank COFs according to their adsorption properties reasonably well (Spearman’s
rank correlation coefficient > 0.6), with the exception of water Henry coefficients. Moreover, col-
oring of the learned map of COFs by the adsorption properties indicated that, indeed, COFs with
similar (dissimilar) adsorption properties clustered together (separated) in the map. The imputa-
tion performance of the recommendation system precipitously drops once the fraction of missing
entries exceeds 60%, though this figure does not necessarily generalize to other data sets.
We conclude that material recommendation systems, if sufficient training data is available, could be
widely useful for leveraging measured properties of materials to fill in missing measurements. In
turn, this could accelerate the matching of materials for specific applications.
The success of a recommendation system for NPMs is, however, predicated on structured, open
databases of NPMs and their adsorption properties. One such database is the NIST/ARPA–E Database
of Novel and Emerging Adsorbent Materials [68] (NIST-ISODB) that has collected and compiled gas
adsorptionmeasurements in NPMs from the literature, for both experimental and simulation sources,
for a variety of gases at a wide range of conditions. We originally set out to develop a recommen-
dation system using Henry coefficients extracted from this experimental data, but we found the
resultant recommendation system was unable to reliably rank NPMs according to their adsorption
properties. Particularly, we found the recommendation system with an interaction term included
could not outperform the baseline material offset model. We propose four explanations for the
poor performance of our recommendation system based on an NPM–adsorption-property matrix
from NIST-ISODB; the explanations include both data-centric and model-centric concerns. First, the
Henry coefficient matrix we constructed based on NIST-ISODB was only ∼20% complete (i.e., too
many missing values), which may have limited the success of recommendations for the remainder
of the matrix. (Recall that the COF–adsorption-property matrix needed to be at least 40% com-
plete to satisfactorily make recommendations for the remainder of the matrix. This benchmark
for the COF recommender system may not generalize to a broad set of NPMs and properties, but
is nonetheless informative.) Second, the NPM–adsorption-property matrix may have included too
much noise for a successful recommendation. It is known from meta-analyses of isotherms cat-
alogued in NIST-ISODB [80, 81] that experimentally measured gas adsorption isotherms in NPMs
exhibit high variance; this variance is ultimately manifested as noise that limits the success of the
recommendation system. Third, the accuracy and reliability of Henry coefficients obtained from
isotherms in NIST-ISODB are naturally limited by the source of data in the database itself. NIST-
ISODB is primarily constructed from manual extraction of isotherm data from graphical figures in
literature articles, since it is not common practice in the adsorption community to provide gas ad-
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sorption measurements as raw tabular data in publications. (As of the time of writing this work,
only 1.3% of isotherms in NIST-ISODB were from tabular data sources.) Consequently, the adsorp-
tion isotherm data loses precision first when the data is plotted graphically and second by human
error when the graphical figure is digitized back to numerical data. This loss of precision particu-
larly affects the generation of Henry coefficients from figures, as those coefficients are especially
dependent on low-pressure data, which is often difficult to extract from isotherms plotted on a lin-
ear pressure scale. Fourth, our low rank model in eqn. 1 is linear; a non-linear model may be able to
capture relationships between the adsorption properties and achieve better performance. The third
issue can be addressed by community adoption of the practice of releasing raw adsorption isotherm
data in standardized, structured formats (cf. the CIF standard for crystallography [82]), which has
been discussed previously [28,83,84].
We introduced missing entries in the (in reality, fully observed) COF–adsorption-property matrix by
(uniform) randomly selecting entries to ablate. In practice, however, (i) some properties are more
commonly measured than others, (ii) some materials are more commonly studied than others ow-
ing to e.g. ease of synthesis, and (iii) there are likely correlations between and temporal trends with
the binary random variables that represent whether the (material, property) values are observed.
To expand on (iii), for example, a material with a superior (inferior) value of a desired property may
become popular (unpopular) for measurements of other properties. Future work entails (a) cre-
ating a model for the selection bias in selecting materials for measurements of properties and (b)
accounting for the selection bias in the recommendation system [85].
Another interesting direction for future work is to determine what (material, property) measure-
ments should be made next to most improve the recommendation system, in an active learning
strategy [86].
As a remark, recommendation systems suffer from the cold start [20] problem: if a new material is
reported, but none of its properties have been observed, the recommendation system is unable to
make a prediction about any of its properties. To learn the latent material vector of this material,
mM+1, using the loss in eqn. 3, we must have an observation of at least one property of the newmaterial.
To (i) improve the performance of the recommendation system and (ii) alleviate the cold start prob-
lem, we propose to include structural and chemical properties of the materials that contribute to the
prediction, in addition to the observed adsorption properties. For example, we could include in the
model other information about the NPM structures, such as the void fraction, surface area, percent
carbon atoms, etc. In the analogy with movie recommendation systems, this is analogous to includ-
ing features about the movies, such as the genre, directors, year of production, and actors. These
features could be added as additional (fully observed) columns in the material-property matrix,A.
The material recommendation system is practically useful for recommending (i, application-led ma-
terial search [1]) a material that optimizes a specific property or (ii, material-led application search
[18]) an application for a given material. To motivate an experimental measurement in the lab, it
may be necessary to quantify the uncertainty associated with a property imputed by the recom-
mendation system. We remark that one could achieve this through bootstrapping and training an
ensemble of recommendation systems on the bootstrap samples of observed (material, property)
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