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Abstract 
In recent years, the use of deep learning (neural network) potential energy surface (NNPES) 

in molecular dynamics simulation has experienced explosive growth as it can be as accurate as 

quantum chemistry methods while being as efficient as classical mechanic methods. However, 

the development of NNPES is highly non-trivial. In particular, it has been troubling to construct 

a dataset that is as small as possible yet can cover the target chemical space. In this work, an 

ESOINN-DP method is developed, which has the enhanced self-organizing incremental neural-

network (ESOINN) and a newly proposed error indicator at its core. With ESOINN-DP, One 

can construct the NNPES with little human intervention, and this method ensures that the 

constructed reference dataset covers the target chemical space with minimum redundancy. The 

performance of the ESOINN-DP method has been well validated by developing neural network 

potential energy surfaces for water clusters and by de-redundancy of a sub-data set of the ANI-

1 database. We believe that the ESOINN-DP method provides a novelty idea for the 

construction of NNPES and especially, the reference datasets, and it can be used for MD 

simulations of various gas-phase and condensed-phase chemical systems. 

 

 

 

 

 

 

 

 

 



1. Introduction 

Theoretical modeling has become one of the most important tools in the study of 

biomolecules. Relevant modeling approaches mainly fall into two categories: one based on 

quantum mechanical (QM) algorithms and the other based on classical molecular mechanics 

(MM) or empirical interatomic potentials (force fields). The MM methods have the advantage 

in terms of computational efficiency, but their accuracy is often questioned as they lack 

important quantum effects such as polarization and charge transfer. The QM calculations are 

usually more rigorous than MM methods and can offer the capability to accurately model all 

chemistries and chemical environments in principle. However, its applications are significantly 

limited by its computational cost. To some extent, efficiency and accuracy of theoretical 

methods seem to be contradictory. 

Recently, the development of machine learning potential energy surfaces (ML PES) has 

made it possible to solve this contradiction. In its early stage, ML PESs were only applicable 

to small systems with several atoms1-6. Since Behler and Parrinello proposed the high 

dimensional neural network potentials7, 8, a series of ML approaches which are suitable for large 

systems that contain thousands or even millions of atoms have been proposed.9 For example, 

the Gaussian Approximation Potentials of Csányi and co-workers10, the GDML and DTNN 

methods of Müller et al.11, 12, the kCON model of Hammer et al.13, and the Deep Potential (DP) 

model of E and coworkers14. There are several machine learning methods that can be used to 

build the molecular PES, including the kernel ridge regression (KRR), support vector regression 

(SVR), and multilayer neural networks (NN)15. Among them, the artificial NN is the most 

promising one, which in principle is able to approximate any real-valued function to arbitrary 

accuracy16. And it has been used in many important physical or chemical questions17-29. 

Although neural-network (or deep-learning) based PES (NNPES or deep potential, DP) 

has achieved great success, there are still several key issues that need to be carefully considered 

in its applications.30, 31 (1), The construction of reference dataset that covers the target chemical 

space while being as small as possible. (2), The selection proper molecular descriptors which 

can represent the chemical environment while with minimal complexity. (3), The selection of 

hyper-parameters for NN. (4), the reliability assessment of trained model. A series of 

outstanding works targeting the solution of these questions have been reported recently32-38. For 

the construction of reference dataset, Collins suggested to employ MD simulation to sample the 

molecular configurations39. Raff and coworkers proposed a probabilistic scheme to construct 

reference dataset by selecting new configurations based on the present density of points 

available in the current region of configuration space40. In their previous work, Artrith et al. 

suggested using multiple NN models to identify poorly sampled regions of the configuration 

space.41 In this scheme, a set of different NN PES models will be trained for a given training 

data set. And a large number of trial configurations are evaluated by these models. If a given 



structure differs obviously from all trained data, the predictions of these models should be 

significantly different. Conversely, if the training set already has similar structures of the given 

one, the predicted results of these models should be consistent. This algorithm was also called 

“active learning” and has been used by many works42-45. Recently, a concurrent learning 

algorithm was proposed by E and co-workers46. Compared with active learning, this method 

can construct the reference datasets on the fly without any pre-prepared data.  

There are also several useful discussions about the selection of molecular descriptors.7, 15, 

47, 48 The selection of hyper-parameters is highly non-trivial, since it can only be done through 

trial-and-error or blind guessing. And it has become a major obstacle in the application of high-

dimensional NN PESs. Recently, Behler and coworkers discussed the automatic selection of 

hyper-parameters in molecular descriptors, which solves these two issues to some extent.48, 49 

However, there are still many hyper-parameters such as learning rate and network structure 

parameters which have huge impact on the accuracy and efficiency of neural networks. The 

choice of these parameters is also largely empirically dominated.  

In this work, to address the above-mentioned four issues, we proposed an automated 

NNPES training framework named enhanced self-organizing incremental neural-network deep 

potential (ESOINN-DP). This method has three important features: (1), the automated 

construction of the reference dataset that requires little human intervention and with low 

redundancy. (2), the automated optimization of neural network structures. (3), the self-

verification of trained models. The ESOINN-DP method has proven to be effective in 

simplifying the training process of NNPES and saving computational resources. This paper is 

organizing as follows. In sections 2, we present the basic methodology of algorithms employed 

by ESOINN-DP. Then we evaluate its performance by several examples in section 3. Finally, 

conclusions and outlooks are given in the last section. 

 

2. Theory and method 

To achieve the automated construction of the reference dataset, the ESOINN-DP method 

employs an enhanced self-organizing incremental neural-network (ESOINN) layer to enable 

the on-the-fly collection of data. Inspired by the structure of the cerebral cortex, the ESOINN 

was proposed to accomplish online unsupervised learning tasks. In the cerebral cortex, different 

areas are responsible for different stimuli, such as sight, hearing, and smell. In ESOINN-DP, 

ESOINN is responsible for sensing the input patterns (For simplicity, we use "pattern" denotes 

molecules and their configurations.) and classifying them based on structural similarity. These 

patterns will then be passed to the neural networks which are called meta-NNs in the DP layer 

according to the similarity between them and nodes in the ESOINN layer. For each pattern, its 

potential energy, atomic forces, atomic charges, and dipole will be predicted by user-defined 

number of different meta-NNs (usually 3~4). A decision layer will collect the predictions of 



these different meta-NNs, analyze their consistency, and give the final results (include the final 

prediction and an error-indicator which reflects its reliability).  

The architecture of the ESOINN-DP method is shown in Figure 1. Details of these 

algorithms were discussed as follows.  

 

 
Figure 1. The architecture of the ESOINN-DP model.  

 

2.1 Molecular descriptors 

In ESOINN-DP, each pattern in the reference dataset is represented by two set of 

descriptors: the sorted eigenvalue spectrum of the Coulomb matrix50 and symmetry functions51. 

The employment of Coulomb matrix can easily convert 3D structures to 1D vectors while 

keeping the translation, rotation, and permutational symmetry.  

To make eigenvalues of all molecules equal in length, virtual atoms are introduced. The 

definition of Coulomb matrix is  

𝐶!" = #

0.5𝑍!#.%																																																									∀𝑖 = 𝑗
&!&"

|(!)("|
														∀𝑖 ≠ 𝑗	𝑎𝑛𝑑	𝑖 ∉ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑎𝑡𝑜𝑚𝑠

0																						∀𝑖 ≠ 𝑗	𝑎𝑛𝑑	𝑖 ∈ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑎𝑡𝑜𝑚𝑠

																																																																		(1)                                       

 

In addition to the Coulomb matrix, the symmetry functions (S) developed by Isayev and 

co-workers were used as the molecular descriptor in the DP layer. S consists the radial and 

angular parts as shown in Eq (2) and Eq (3).  
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    z, qs, and h are hyper-parameters that controls the diversity of symmetry functions. By 

adjust them one can improve the predictive power of sub-NNs in the DP layer. 

It should be noted that the symmetry functions can replace the Coulomb matrix in principle. 

However, the relatively simple Coulomb matrix can already reflect the structural difference of 

molecules in the dataset, which means that its employment can improve the efficiency of the 

ESOINN obviously while doesn't reduce the fidelity significantly. Because the training of 



molecular properties such as potential energy and atomic forces needs higher requirements on 

accuracy, so the more complex symmetric functions were chosen in the DP layer.  

 

2.2 The ESOINN Layer 

The ESOINN layer contains an enhanced self-organizing incremental neural network 

(ESOINN) which had been proposed to accomplish on-the-fly unsupervised learning tasks.52, 53 

It is suitable for learning the representation of the topology structure of high dimensional data 

with a manner of incremental learning which addresses the ability of repeatedly training a 

network using new data without destroying the learned knowledge.  

Once the ESOINN layer is trained, we can get a network model that contains a set of 

classified nodes and the connection relationships between them. Each node represents some of 

the input patterns and has three important features: the weight vector W, mean accumulated 

points h, and edges between it and its neighboring nodes. The weight vector Ws of node s is a 

1D vector of equal length to the sorted Coulomb matrix eigenvalue spectrum in the reference 

dataset. In fact, it can also be converted to a pattern. The mean accumulated points hs reflect 

the density information of node s (the occurrences of similar structures of node s in learning 

process). The edges represent the similarity between different nodes. The actual training 

process is the addition and deletion of nodes in the network, and the adjustment of the weight 

vectors and edges. Through the ESOINN layer, we can easily locate the structural subset with 

higher redundancy and expand the subset with low redundancy in a targeted manner, and 

explore new subsets. The training process of the ESOINN layer is shown in Figure 2. A brief 

description of the training process is as following.  

 
Figure 2. The learning process of the ESOINN Layer. 

 

Here, it is assumed that the complete training process includes LT learning times (LT is the 

total number of patterns input into ESOINN) totally. Each time ESOINN accepts an input 



pattern and completes an adjustment, it is regarded as one time of learning. Every l (l = 500 

in this work) times of learning is regarded as a learning cycle. The learning process of ESOINN 

can be divided into 3 steps: 

(1), initialize the ESOINN. Before the training process, the ESOINN layer needs to be 

initialized. In the beginning, the network contains only two connected nodes. The weight vector 

of each node is randomly selected from the initial dataset. While the initial dataset is constructed 

by the user, which may contain dozens of patterns. As the content and size of the initial dataset 

will not influent the final results, it can be obtained easily.  

(2), input new patterns and adjust nodes and their connections (edges) accordingly. When 

we input a new pattern (denotes by e) to ESOINN, we need to determine whether to insert a 

new node to represent it by finding its first-nearest node s1 and second-nearest node s2: 
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where N is the set of all nodes in the current ESOINN layer. 

    A new node will be added to represent pattern e if the distance between it and s1 or s2 is 

greater than a similarity threshold T	(which will be trained in the training process). And then 

the connection relationship of node s1 and s2 will be adjusted.  

    The mean accumulated points (node density) of s1 will also be updated. In ESOINN, the 

node density of node s can be expressed as 
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where n represents the number of learning cycles experienced, Nwin represents the number 

of wins of node s. qs is the accumulation of points ps in the whole learning process and ps is 

related to the average distance (𝑑2UUU) between node s and the its surrounding nodes which can be 

expressed by 
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Then, the weight vector of winner node s1 and its neighboring node (j)will be updated: 
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(3), delete noise nodes and classify node to different classes.  

In ESOINN, all nodes that can be connected by edges are considered belong to a subclass. 

If the number of patterns input so far is an integer multiple of l, the subclass label of every 

node will be updated and noise nodes which has few connections will be deleted. If the learning 



process is finished, all nodes will be classified to different subclasses and ESOINN will report 

the number of subclasses and their prototype vectors.  

Following above algorithms, the network will gradually grow and adjust to learn new 

information. In each learning round, only some of the nodes' weights and the connection 

relations (edges) between them are updated, which ensures the efficiency. More details of these 

algorithms can be found in Ref. 50 and Ref. 51. 

 

2.3 Self-verification of ESOINN-DP  

In MD simulations driven by NNPES, it is crucial to judge the reliability of the potential 

on-the-fly to ensure the accuracy of the simulation results. In ESOINN-DP, an uncertainty 

evaluation algorithm was proposed to achieve this purpose. After training, we can get N 

disconnected subclasses and their similarity relationships in the ESOINN layer. At the DP layer, 

N neural networks called meta-NNs are placed. For a given structure, we first describe it with 

symmetry functions and get the corresponding pattern (denoted by Rt). Then, m different meta-

NNs that correspond to the m closest subclasses to its sorted eigen spectrum of Coulomb matrix 

et are trained to predict its properties (Fig. 3). In this way, each structure will be learned by 

multiple NNs, and the training set of each NN is different, which eliminates the possibility of 

consistency errors in multiple networks. 

 
Figure 3. For a given structure Rt with eigen spectrum et, 2 meta-NNs corresponding to the 2 nearest 

subclass i, j, k to Rt labeled by ESOINN will be trained to predict its properties.  
 

In addition, if there are already structures in the current dataset that are very similar to Rt, 

then these meta-NNs should give consistent predictions. If, on the other hand, Rt is a completely 

new structure or one that occurs very infrequently in the current dataset, the meta-NNs should 

give very different predictions. Inspired from this uncertainty principle, we design an error 

indicator which can report the error between labeled and predicted properties quantitatively.  

 For a meta-NN neti, the deviation 𝐷<?@!  between its predictions and the labeled data 

should obey the gaussian distribution: 

𝐷<?@!~𝑁A𝜇<?@! , 𝜎<?@!
# C																																																																																																																										(10) 



µ and s are the mathematical expectation and standard deviation of the normal distribution. For 

well-trained models, µ should be zero.  

The average prediction of the potential energy of Rt from an ensemble of meta-NNs are 

𝐸(𝑅@) = 〈𝐸<?@!(𝑅@)〉<?@! , 𝑖 = 1,2, …𝑚																																																																																												(11) 

While the average prediction of the atomic forces of atom j in Rt are 
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    Due to the training processes of meta-NNs are independent to each other, the deviation 

between the average prediction and the reference value should also obey the gaussian 

distribution:	
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In the case of force prediction, the unsigned error of the final predictions DForce of Rt by an 

ensemble of meta-NNs is always greater or equal to 0, it should obey the folded normal 

distribution and can be expressed as follows: 
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Based on Eq (10) and Eq (14), an error indicator ct is defined and used to quantitatively estimate 

the prediction power of meta-NNs.  
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     The distribution of 𝐷DEF-?,<?@" − 𝐷DEF-? should obey the gaussian distribution of 
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as shown in Eq (14). In ESOINN-DP, we use χ@ as a criterion to determine whether a pattern 

Rt can be recognized by existing models. 
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where 𝛿DEF-? is a user-defined value which represents the expected precision of the NNPES.  

In summary, when ESOINN-DP get a new pattern, the ESOINN layer will send this pattern 

to meta-NNs in the DP layer according to the similarity between the input and existing reference 



datasets. Then the decision layer will evaluate the predicts from the DP layer and give the final 

results. By combining this self-validation algorithm with ESOINN, one can locate new data, 

ensure that the reference dataset has very low redundancy, and then automatically construct 

NNPES. More importantly, one can purposefully expand the reference dataset to cover the 

target chemical space in the concurrent learning manner.  

 

2.4 Optimization of hyper-parameters  

In the development of NNPES, the selection and optimization of hyperparameters is very 

important and difficult. In ESOINN-DP, the DP layer contains many meta-NNs which are 

trained many times in the concurrent learning process and the reference dataset is gradually 

expanded at the same time. To further accelerate the training process, we employ the genetic 

algorithms to optimize the structural parameters (number of neurons) of meta-NNs in each 

round of ESOINN training.  

(1) First, an initialized set of structural parameters 𝐴/ = [𝐻//, 𝐻/#, …𝐻/9]	is selected as the 
best candidate structure Ac,j where 𝐻/9 represents the number of neurons in the Nth 
hidden layer of the first round.  

(2) Based on the candidate structural parameter Ac from the previous round, generate 

structural parameters for meta-NNs. The structure parameter of meta-network i in 

round j is expressed as follows: 

𝐴!,# = 𝐴$,# + γ! ∙ 𝑒$,# 																																																																																																																				(17) 

g is a vector of random integers between -5 and 5 with the same dimension as Ai,j. And 

ec,j is a base vector made up of 10 percent of each dimension of Ac,j. 

(3) Train the meta-NNs. Each meta-NN in the ESOINN-DP model is independently trained 

until the RMSE of atomic forces between predictions of meta-networks and reference 

values is less than predefined training accuracy.  

The parameter number Ci of meta-network in the jth round is calculated by the following 

formula: 
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Among them, I represents the input dimension of meta-network, and O represents the 

output dimension. Then the training of the jth round selects the smallest network 

structural parameter as the best candidate parameter Ac of the (j+1)th round. 

(4) The optimization is completed until the difference between each dimension of Ac,j and 

Ac,j+1is less than 10%.  

We need to emphasize that since the ESOINN-DP training set may be built faster than the 

optimization of hyper-parameter. In these cases, it is controlled by user whether stop the hyper-

parameter optimization. 



 

2.5 Automated construction of ESOINN-DP potential models 

The workflow of the ESOINN-DP is shown in Figure 4. 

 
Figure 4. The workflow of auto construction of ESOINN-DP.  

      Detailed steps are listed as follows: 

(1) Construct an initial dataset.  

(2) Train an initial ESOINN-DP model. The ESOINN layer will recognize main patterns 

in the reference dataset and provide the density information of each node. 

(3) Perform enhanced sampling with the ESOINN-DP model to expand the reference 

dataset.  

There are two basic enhanced sampling strategies in the ESOINN-DP method. One 

strategy is to select multiple structures from low-density regions to perform temperature 

parallel MD simulations in each round of concurrent learning. Another is to select the main 

difference between the main patterns in the ESOINN layer as collective variables (CVs) 

and perform meta-dynamics simulations or target MD simulations. In this work, we use 

the first strategy as an example.  

(4) Evaluate the performance of the trained DP models. 

As discussed above, the error indicator ct for each pattern Rt were calculated on the 

fly to estimate the reliability of predictions and find the questionable and unknown patterns.  

(5) If there are no unknown patterns detected from MD simulations in the current round 

of concurrent learning, extend the simulation time T until the target length (Ttarget) is 

reached. Then go to step 8. Otherwise, go to step 6. 

(6) Remove the redundancy in the sampled unknown patterns. 



In ESOINN-DP, there are two strategies to reduce the redundancy in the sampled 

unknown patterns.  

First, the unknown and questionable structures encountered in the MD simulation will 

be collected and sent to ESOINN layer to determine which pattern should be added to the 

training set. In this way, ESOINN-DP avoid the redundancy in the reference dataset. 

Second, the ESOINN layer can focus more on inter-class patterns to increase the diversity 

of reference dataset. In ESOINN-DP, a new input signal 𝜀 will be labeled as “normal”, 

“candidate” and “unimportant” according to the distance to its winner node 𝑠/ and second 

winner node 𝑠#. 

1) If the distance between e and s1 or s2 is greater than two times of the corresponding 

similarity threshold Ti, e will be labeled as a “unimportant” signal. 

2) If s1	and s2 are belonging to the same classification and the distance between input 

s1	and s2 is smaller than the similarity threshold Ti, e is labeled as a “normal” signal. 

3) Otherwise,	is labeled as an “candidate” signal. 

Usually, the “unimportant” patterns are very different from the patterns in the current 

reference dataset and “normal” structures are similar structures in low density area in 

ESOINN layer. A perfect reference dataset should have enough samples at the position of 

the transition states which are critical for non-equilibrium simulations. And these structures 

usually located at the inter-class area in ESOINN layer. So, we select the unknown 

structures in the ration of 1:3:1 for “normal” “candidate” and “unimportant” structure if the 

unknown structures from step 4 are more than the predefined maximum number of 

structures added per round. 

(7) Select the best structural hyper-parameters for meta-NNs in the DP layer and go to 

step 2 

(8) Get the final ESOINN-DP potential model. 

 

2.6 The ESOINN-DP package 

The ESOINN-DP method developed in this work has been released as an open-source 

package (https://github.com/tongzhugroup/ESOINN-DP). The software is totally implemented 

with Python and consisted of 4 modules: sampling engine, training module, task scheduling 

module and a web-based monitor module. 

The sampling engine supports multi-scale MD simulation methods such as MM, QM/MM, 

full QM, NN/MM and full NN. The MM calculation was performed by calling the AmberTools 

18 package, while the QM calculation is mainly achieved by calling the Gaussian 16 or DFTB+ 

software. Other QM packages can also be easily implemented. The task scheduling module 

uses the producer-consumer model to coordinate task allocation. The program supports the 



remote invocation of the Linux computing cluster deployed with PBS and LSF task operating 

system for parallel DFT calculations and GPU accelerated training of neural networks. And a 

user-friendly monitoring module helps users analyze the diversity of datasets, visualize the 

structure of ESOINN layer (by projection on a 2D plane), monitor the training process and 

evaluate the reliability of MD simulations.  

The main process of ESOINN-DP can be started via a single line of command: 

esoinn-dp -i parm  

where the argument parm is the name of input parameter files in json format that specify 

the user’s demands. Details of parameters used in ESOINN-DP can be found in the 

supplementary material.  

 

3 Results and Discussion 

3.1 Automatic construction of NNPES for water clusters  

To illustrate the performance of ESOINN-DP, we first used it to construct NNPES for water 

clusters containing different numbers of water molecules, and performed MD simulations. To 

save the computational cost, the reference dataset was labeled at the PM6 level and the training 

of each meta-NN stops when the root means square error (RMSE) of predicted and labeled 

atomic forces is less than 0.13	𝑒𝑉/Å (3 𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙 ∙ Å)) in each round of concurrent learning. 

The size of water clusters in this test is up to 9 water molecules. 2 meta-NNs were used to 

learn each pattern labeled by ESOINN. After 6 rounds of concurrent learning, the construction 

of the NNPES was completed. During each round of active learning, 9 parallel gas phase MD 

simulation with NNPES for water clusters with 1~9 water molecules were performed to sample 

structures respectively. The MD simulation was performed in a cavity with a radius of 8 Å to 

avoid the water molecules escaping from each other and the temperature was maintained at 300 

K with the Anderson thermostat method. The MD simulation is extended round by round until 

the simulation time extended to 80ps and the error indicator 𝜒@ of all structures is less than 

2δDEF-?. In each round of sampling, up to 1000 structures were extracted to update the reference 

dataset.  



 
Figure. 5. (a), The distribution of structures in the reference dataset projected on the 2D plane with 

TSNE method and Sorted-EGCM descriptor in each concurrent learning process. (b), Representative 
structures. 

 

    As shown in Figure 5 and Table 1, starting from the initial dataset which contains only 9 

structures corresponding to water cluster with 1~9 molecules, after the six rounds of sampling 

and updating progressed, different water structures were gradually added to the dataset. It can 

be seen that the systems with more water molecules have a larger proportion in the final 

reference dataset. The main reason is that the neural network potential model for systems with 

small degrees of freedom could be trained well with little reference data. It is clear that the 

redundancy of the dataset can be effectively reduced in ESOINN-DP. 

The δDEF-? is set to 0.18 𝑒𝑉/Å, which is calculated from the target accuracy of three meta-

NNs: 

𝛿DEF-? = �(∑𝑇𝑎𝑟𝑔𝑒𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑚𝑒𝑡𝑎 − 𝑁𝑁(0.13	𝑒𝑉/Å))#																											(19)  

In the process of constructing the ESOINN-DP model, the distribution of error indicators 

in each round are shown in Figure 6. It can be seen that the distribution of error indicator 𝜒@ is 

gradually narrowing and smaller in the concurrent learning process. After the fourth round of 

active learning, the distribution of error indicator gradually converged. The time of MD 

simulation based on ESOINN-DP reached 80ps after 6 rounds and the error indicators of all 

structures were less than 2𝛿DEF-?. 



 
Figure. 6. Distribution of error indicator χ! in 6 rounds of ESOINN-DP MD simulations for 1~9 

waters in gas phase in active learning process. 𝛿DEF-? was set to 0.18	𝑒𝑉/Å. 
 

 

 

 
Table 1. The composition of reference dataset and the performance of ESOINN-DP model on 

training set and test set.  
   

 

 

 

 

 

 

 

 

 

 

 

 

Number of 
water 

molecules  

Training Set/Test Set 

Structure 
Number 

RMSE of E 
(eV) 

RMSE of F 
(eV/Å)) 

1 78/20 0.02/0.02 0.02/0.03 
2 78/20 0.04/0.04 0.05/0.05 
3 110/27 0.05/0.04 0.05/0.05 
4 263/66 0.06/0.07 0.12/0.12 
5 264/66 0.08/0.08 0.12/0.12 
6 366/91 0.13/0.14 0.15/0.15 
7 589/145 0.12/0.13 0.14/0.16 
8 1447/362 0.09/0.10 0.11/0.13 
9 1734/433 0.11/0.12 0.11/0.12 

Total 4929/1230 0.11/0.11 0.13/0.13 



In addition, to further verify the reliability of NNPES, we extracted a series of frames from 

MD trajectories and then calculated their atomic forces using the PM6 method and compared 

them with the predicted values of NNPES. The results are shown in Figure 7. As can be seen, 

the root mean square error of atomic forces for all 4000 structures are smaller than 0.2	𝑒𝑉/Å. 

At the same time, it can be found that the error indicator 𝜒@ is always greater than the RMSE 

between NNPES predictions and QM calculations, it means that the accuracy can be guaranteed 

with the constrains of error indicator. Thus, the error indicator 𝜒@ can be used to evaluate the 

correctness of MD trajectories.   

 
Figure 7. Time evolution of error indicator 𝜒! and root mean square error between ESOINN-DP 

predictions and PM6 calculations in 9 parallel MD simulations.  
 

In each round of concurrent learning, the genetic algorithm discussed above was used to 

optimize of the structure of meta-NNs. Starts from the initial size of [200, 200, 200], the size 

of the smallest meta-NN was reduced to [71, 189, 218] after 6 rounds of concurrent learning. 

Which slightly improves the efficiency of prediction.  

 

3.2 De-redundancy for a subset of the ANI-1 database 

The performance of the NNPESs highly depends on the quality of the reference dataset. As 

mentioned above, this quality lies in two aspects. Firstly, the dataset must cover the target 

chemical space. Secondly, the dataset must be as small as possible so that the user can label it 



at a higher QM level. To further test the performance of the ESOINN-DP method, we used it 

to remove the redundant data in a subset of the ANI-1 database. The ANI-1 dataset is one of 

the most famous open-source datasets for construct machine learning models for drug-like 

molecules, it contains the potential energy of more than 20M off equilibrium conformations for 

57462 organic molecules.  

To reduce the computational cost, we selected the first 6 million structures in the ANI-1 

dataset and calculate their potential energy and atomic forces at the PM6 level. 20,000 

structures were selected randomly from the 6 million structures as initial training set. In the first 

round of concurrent learning, an ESOINN-DP model was trained and used to predict the atomic 

forces of 800,000 randomly selected structures from the remaining data. The training of each 

meta-NN in the DP layer stops when the RMSE of atomic forces between predictions and 

labeled data are less than 0.2 𝑒𝑉/Å. In each round of the following concurrent learning process, 

100,000 questionable and unknown structures were added to the reference dataset. And the test 

set was also keep increasing (Details can be found in Table 2). After 7 rounds of concurrent 

learning, the reference set consists of 60,0000 structures. At this point, no more than 1% of the 

data is considered as “unknown” by ESOINN-DP. This means that with the help of ESOINN-

DP, we only need one tenth of the data (60,000) to cover the chemical space that was previously 

covered by 6 million data. This allows us to label these data at a much higher quantitative level. 

It should be further noted that we are here only to demonstrate the capabilities of the 

ESOINN-DP method. The size of the final dataset can be further reduced if the number of 

rounds of concurrent learning is increased and the “questionable” and “unknown” data selected 

into the dataset in each round is reduced. 

 
Table 2. The performance of the ESOINN-DP model in the de-redundancy process of a subset of ANI-
1 databasea.  
 

Iterations 
Size of 

reference 
dataset 

Size of the 
test set 

𝛿	 	
(𝑒𝑉/Å) 𝜒! < 𝛿 𝛿 < 𝜒! < 2𝛿 2𝛿 < 𝜒! < 3𝛿 

RMSEb  
(𝑒𝑉/Å) 

1 20,000 800000 0.13 39.87% 50.75% 7.98% 0.82 

2 100,000 2,000,000 0.21 58.83% 28.81% 7.74% 0.55 

3 200,000 2,000,000 0.24 71.82% 24.10% 3.20% 0.33 

4 300,000 2,000,000 0.25 89.93% 9.79% 0.24% 0.25 

5 400,000 4,000,000 0.27 84.63% 12.62% 1.96% 0.24 

6 500,000 5,500,000 0.25 73.43% 21.27% 3.57% 0.28 

7 600,000 5,400,000 0.26 91.86% 7.28% 0.55% 0.20 
a The QM calculations are performed at PM6 level. 
b the RMSE is between predicted and labeled values in the dataset. 

 

 



4 Conclusions  

In this work, an automated neural network potential training method named enhanced self-

organizing incremental neural network deep potential (ESOINN-DP) is proposed. With the help 

of ESOINN-DP, one can construct the reference datasets with little human intervention. More 

importantly, by the combination of ESOINN and the new proposed error indicator, this method 

ensures that the constructed dataset covers the target chemical space with minimum redundancy. 

In addition, ESOINN-DP can also optimize the hyper-parameters of neural networks 

automatically. The performance of the ESOINN-DP method has been well validated by develop 

neural network potential energy surfaces for water clusters and by de-redundancy of the ANI-

1 database. The algorithms developed in this work have been integrated into an open-source 

software called ESOINN-DP (https://github.com/tongzhugroup/ESOINN-DP). It worth to 

mention that ESOINN defines not only the classification but also the boundaries of known data 

in an incremental learning manner, which means that we can further improve the efficiency of 

data sampling by using enhanced sampling algorithms such as metadynamics or deep molecular 

generation models under its guidance. This is the next step in the development of the method. 

We believe that the ESOINN-DP method provides a new idea for the construction of NNPES 

and especially, the reference datasets, and it can be used for MD simulations of various gas-

phase and condensed-phase chemical systems. 
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