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ABSTRACT: The pH dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property
which is difficult to study. Computational methods, particularly constant pH molecular dynamics (CpHMD), are the best situated
tools for this. However, these often struggle with affordable sampling of sufficiently long timescales, accuracy of pKa prediction,
and verification of the structures they generate. We introduce Titr-DMD, an affordable CpHMD method with a protonation state
sampler that can be systematically improved, to circumvent these issues. We benchmark the method on a set of proteins with exper-
imentally attested  pKa and on the  pH triggered conformational change in a staphylococcal nuclease mutant, a rare experimental
study of such behavior. Our results show Titr-DMD to be an effective method to study pH coupled protein dynamics.

Introduction
Solution pH is a chemical property with an immense effect

on protein behaviors that are difficult to study at the atomic
scale. Peak protein fold stability and catalytic activity are both
dependent on an often narrow range of pH. Understanding the
sequential  and  structural  underpinning  of  these  preferences
contributes to the design and application of enzymes, particu-
larly extremophile enzymes – which would allow for their use
in harsher reaction conditions in industrial catalysis,1–4 and an-
swers a wide range of questions of medical interest as precise
pH regulation is critical for cellular homeostatis.5–7 However,
this  understanding  demands  atomistic  information of  funda-
mentally  dynamic  phenomena.  pH-dependent  dynamics  is
challenging to study experimentally, requiring a combination
of  techniques  like  NMR  monitored  pH-titration,  circular
dichroism  spectroscopy,  and  X-ray  crystallography  none  of
which alone provide the complete picture. This experimental
complexity  leaves  computational  investigation8 as  a  critical
tool to fill in the gaps.

Successful computational methods that assess pH dependent
protein behavior must accurately couple amino acid protona-
tion  state  change  with  conformational  dynamics.  Typically,
continuum  electrostatic  methods  describe  the  protonation
states of amino acids, assessing the free energy of protonation
and deprotonation events or pKa. Various solutions to the Pois-
son-Boltzmann equation can provide this,9 especially the gen-
eralized Born model.10,11 Tools such as UHBD,12 H++,13 and
Propka14,15 predict the  pKa of amino acid residues in proteins

based on static structures, but can not fully capture pH-depen-
dent dynamic behavior. Molecular dynamics can provide the
missing conformational sampling. The combinations of these
tools  are  known  as  constant  pH molecular  dynamics
(CpHMD);  these  methods  generally  use  continuum  electro-
static  methods  to  model  the  protonation  state  changes  of
amino acids over the course of a molecular dynamics simula-
tion.

The appropriate sampling of pH coupled dynamics is diffi-
cult  to  achieve for  all  CpHMD methods and challenging to
verify. The choice of solvation model is central to sampling
and broadly breaks CpHMD methods into two categories. Im-
plicit  solvent-based  methods  offer  rapid  sampling  with  the
treatment  of  the  surrounding  solution  as  a  simple  dielectric
medium.16–19 Explicit  solvent  based  methods  can  provide
greater accuracy through atomistic solvent treatment, but suffi-
cient sampling is difficult to achieve, as both conformational
and protonation states need to be sampled. Furthermore, proto-
nation sampling is affected by poor overlap between solvent
configurations  such that  protonation state  changes  are  often
immediately rejected. To counter this, many groups have ap-
plied λ-dynamics, based off pioneering work by Brooks et al.20

(in turn based on earlier work with other thermodynamic prop-
erties in mind),21,22 which treats the protonation state of indi-
vidual  amino  acid  sites  as  continuous  degrees  of  freedom
rather than discrete ones sampled distinctly.23–25 Other efforts
focus  on  enhancing/accelerating  conformational  sampling
through GPU processing26 or replica exchange.27,28 Ultimately,



regardless of solvation, one struggle for all CpHMD methods
is verification of the ensemble of conformational and protona-
tion states they generate, due to paucity of complementary ex-
perimental results. Most methods instead benchmark through
more  plentiful  indirect  evidence,  such  as  reconstruction  of
titration curves or estimation of experimental pKa values. It is
unclear if  the generated ensemble of structures is physically
meaningful by comparison to those metrics alone.

We present here Titr-DMD as an undemanding method for
the  investigation  of  pH  dependent  protein  behavior.  Our
method dynamically updates the protonation states of a dis-
crete  molecular  dynamics  (DMD)  simulation29–31 using  pKa

predicted for  instantaneous  structures  along  its  trajectory as
probabilities.  In  the  current  implementation  Titr-DMD  uses
pKa values generated  through the  semi-empirical  continuum
electrostatics method Propka, but is not restricted to this tool.
DMD’s square-well potentials (reducing the number of neces-
sary calculations) and implicit solvation provide rapid confor-
mational sampling on limited resources, while a Monte Carlo
algorithm confers  extensive protonation state  sampling.  Our
program is highly modular for easy modification as better ap-
proaches for instantaneous pKa prediction develop. We bench-
mark Titr-DMD on both its ability to calculate ensemble  pKa

compared to experiment and on its ability to capture the  pH
dependent  conformational  change  found  experimentally  in
staphylococcal  nuclease  (SNase).32 While  other  CpHMD
methods  have  studied  pH-coupled  protein  dynamics,33,34 in-
cluding in the SNase system,35 recapturing protein dynamics is
not a common benchmark for method development.

Theory and Methods
Titr-DMD  method. This  method  combines  rapid

DMD29 conformational sampling with a custom algorithm  to
resolve  protonation  based  on  Propka3.114 pKa predictions.
Simulations  are  performed iteratively,  alternating  between a
short DMD simulation and a titration (Titr)-feature  that  dis-
cretely assigns protonation states.  The algorithm for the Titr-
feature itself comprises five steps:  (1) titratable residues are
identified,  (2)  contact  networks  are  constructed  from  these

residues, (3) the solvent accessibility of each network is deter-
mined, (4) the probability of protonation state change is deter-
mined  for  each  network  or  residue,  (5)  protonation  state
changes are determined by a Monte Carlo scheme (Figure 1).

The intervals  between  protonation  state  reassessment  are
run just long enough so that protonation and deprotonation are
equilibrated over the DMD simulation timescale. As isolated
proton transfer events, like  many individual reaction steps in
proteins,36 generally occur on the  femtosecond to picosecond
timescale,37 200 DMD steps (which is ~10 ps) suffices, a com-
fortable separation of 1-3 orders of magnitude. This allows for
both the consistent and meaningful application of theory, dis-
cussed more thoroughly throughout this section, and extensive
sampling of a system’s potential protonation states.  A higher
reassessment frequency is therefore unnecessary and computa-
tionally expensive; while additional time spent on the Titr-fea-
ture  itself  is  minimal,  a  higher  frequency  requires  more,
shorter DMD simulations and thus more time overhead during
the program initialization.

Selection of titratable residues is based on their solution pKa

values. The amino acids aspartate,  glutamate,  histidine, cys-
teine, tyrosine, lysine, and arginine  are the only ones to have
side-chain solution  pKa values in the physiological range of
pH 1-13 and so are the only ones considered. While significant
shifts in pKa often occur when an amino acid is part of a pro-
tein, all other residues have side-chain pKa that fall far enough
out of this range to be largely irrelevant in the vast majority of
systems. For the same reason, only the first protonation/depro-
tonation  event  is  considered  for  the  included  amino  acids;
states  like  doubly  deprotonated  lysine  or  doubly  protonated
glutamine are inaccessible. The C-terminal carboxylate and N-
terminal amine could be titrated as well, but are not currently
implemented due to missing DMD potentials for their less pre-
ferred states.

Contact networks are constructed on the basis of the prox-
imity of titratable residues. First, interacting pairs of residues
are identified based on their (de)protonatable heteroatoms that
are within a certain cutoff distance, rp, of each other. This pro-

Figure 1: Schematic of the Titr-feature algorithm. This runs between short DMD (or any molecular mechanics) simulations to as -
sign discrete protonation states.



tonation contact distance rp is selected as 3.5 Å to be consistent
with the DMD definition of a long hydrogen bond. Each thus
defined  network represents a series of residues close enough
that in the timeframe of the DMD phase of the Titr-DMD sim-
ulation the proton exchange is equilibrated between them and
lies firmly under thermodynamic control.

Solvent accessibility of each residue contact network is de-
termined in a manner consistent with Propka, which defines a
specific residue as buried or exposed based on its contact num-
ber, w(N). w(N) is determined by the number of heavy atoms,
N, within 15 Å of the residue’s charge center according to

w (N)={ 0
N−Nmin

Nmax−Nmin

1

if N≤Nmin

if Nmin<N<N max

if N≥Nmax

The  residue is  thus 0% buried if  N ≤ 280  (Nmin) and 100%
buried  if  N ≥ 560  (Nmax).14 In  the  Titr-feature,  a  network is
considered solvent accessible if  any residue in it  is below a
certain cutoff. As proton exchange is equilibrated within a net-
work, so long as one residue is solvent accessible the rest of
the  network  can  freely  exchange protons  with  solvent.  The
best value of this  solvent access cutoff is  a parameter in the
model and in general might be system dependent. We find that
the most appropriate value for the solvent access cutoff could
range from 45% to 75% and matters most in systems with im-
portant, frequently buried residues.  Alternative approaches to
the  solvent  access  cutoff  are  also  possible.  We discuss  this
fully  in  the  future  development  of  Titr-DMD  section and
within our test system simulations.

The probability of a protonation state change is assessed for
each  titratable  residue  based  on  instantaneous  pKa and  the
residue  network  information.  In  this implementation  Prop-
ka3.1 is used for  pKa prediction, based on the latest structure
from  the  preceding DMD  trajectory.  The  protonation  state
change probability is then assessed for each residue. It is cal-
culated differently depending on whether the residue is  in a
solvent accessible or inaccessible network. For a solvent ac-
cessible network the probability is based on the pH of the so-
lution  with  which  the  residue  can  freely  exchange  protons
(solvent  is  treated  implicitly  in  DMD).  This  probability  is
based off the Henderson-Hasselbash equation

pH= pK a+log(
[D ]
[ P]

)

where [D] is the concentration of the deprotonated state and
[P] is the concentration of the protonated state. From this, the
probability of adopting the protonated state, PP, can be defined
as

PP=
[ P]

[P ]+[D ]
= 10pKa −pH

1+10 pK a−pH

In the solvent inaccessible case, only the titratable protons al-
ready present in the network can be exchanged. The probabili-
ties of protonation state changes for the residues in this contact
network are thus coupled;  protonation state changes must be
determined for the whole network at once, rather than residue
by residue. This requires full enumeration of all proton config-
urations across the network. The preference of a proton to lo-
calize on any individual residue is determined by its  pKa, but
with  comparison  to  the  competing  residues  in  the  network
rather than the solution pH. To calculate this, let R be the set of

all residues in a network and n be the number of titratable pro-
tons in that network. Let T|n(R) be the set of all possible pro-
ton configurations S, Q, ... such that T|n(R) = {S ∈ T(R) : |S| =
n}. Then for every S ∈ T|n(R) the probability of adopting that
proton configuration is

PC (R , S)=
∏
s∈S

10pK a (s)

∑
Q∈T∣n(R )

∏
q∈Q

10pKa ,T(q)

The weighting term for each proton configuration is the prod-
uct of 10 raised to the pKa of each residue that holds a proton
in that state (s ∈ S, q ∈ Q, ...). This equation is used to calcu-
late the probability of each possible configuration.

Finally, protonation state changes are decided discretely by
a Monte-Carlo approach based on the probabilities generated
for each network. As with the probabilities, this differs slightly
between solvent exposed and buried networks. For solvent ac-
cessible  networks,  a  decimal  between  0  and  1  is  randomly
generated for each residue and compared to its decimal proba-
bility.  If  it  is  above that  probability  the  residue is  unproto-
nated, and if below it is protonated. This approach holds re-
gardless of what the previous protonation state was. For sol-
vent inaccessible networks, the decimal probabilities of all po-
tential protonation configurations are put in a sequential order.
A probability range for each configuration,  S, is then defined
as from PL up to PL + PC(R,S), where PL is the sum of all con-
figuration probabilities already considered and PC(R,S) is that
of the current configuration. A decimal between 0 and 1 is then
randomly generated, and the configuration is decided based on
which range this number falls within. Any changes from the
previous  structure  are  then  made,  with  hydrogen  removed
when necessary and DMD placing any new hydrogen on the
appropriate  heteroatoms.  The structure is  then ready for  the
next DMD simulation.

As the Titr-feature may add and remove hydrogen by ex-
change with implicit solvent, the energies of the structures be-
fore and after protonation state changes may not be directly
comparable. Therefore, a correction to the DMD energy may
be needed at the start of each DMD phase of the simulation.
One approach would be to use a value for the solvation energy
of a proton, but that can not be obtained directly from experi-
ment and can only be determined by extrapolation.38 Values
that can be obtained for this (-264.339 and -265.9 kcal/mol38,40)
are  large  compared  to  the  DMD energy  changes  associated
with  structural  fluctuations  (ca.  100  kcal/mol).  Unmodified
use of this proton solvation free energy would result in un-
physical behavior – Titr-DMD would always deprotonate any
residue. Appropriate scaling of the solvation energy is one so-
lution. For this implementation of Titr-DMD an energy correc-
tion for each iteration is obtained instead based on the Propka
pKa of all residues with protonation states that deviate from the
original structure. For each protonation state, take the follow-
ing acid dissociation reaction

PRTN⇌ PRTN -+H+

where PRTN is the original protein and PRTN- is the new state.
The free energy of this reaction can be written as

ΔGdeprot=G(PRTN -)+G(H+)−G(PRTN )
Additionally, the Ka of this reaction is defined as

K a=10− ΔGdeprot /RT

Hence



G(PRTN-)+G(H+)=G(PRTN )−RTln(10−pK a)
where G(PRTN) is the uncorrected DMD energy and the left-
hand side of the reaction is a corrected energy for a compara-
ble system with the same chemical composition. For the proto-
nation reaction, casting PRTN as PRTN+ and PRTN- as PRTN
in the original reaction gives the equation

G(PRTN+)−G(H+)=G(PRTN )+RTln(10−pK a)
The energy associated with each protonation state change from
the reference structure can therefore be written as  ±RTln(10-

pKa),  positive for protonation and negative for deprotonation.
These are on the scale of 5-50 kcal/mol, consistent with DMD
energy fluctuations. These terms are calculated for each itera-
tion and summed with its DMD energy for the corrected en-
ergy.

Future  development of  Titr-DMD. The modularity  of
Titr-DMD allows for easy adaptation and refinement. Changes
to the method do not require reparameterization of the force-
field. Future developments of Propka or any other tool to cal-
culate the instantaneous pKa of a protein conformer can be ex-
changed  to  generate  the  probabilities  of  protonation  state
change and improve the quantitative accuracy of the feature.
The Titr-feature could even be paired with another molecular
mechanics method besides DMD, so long as it is in implicit
solvent to retain simulation speed. Alternatives to the system-
dependent solvent access cutoff are also of interest. One is to
use the Propka buried percentage as a scalar probability of sol-
vent accessibility rather than assign a sharp cutoff, while an-
other  is  based on the solvent-excluded surface (SES) deter-
mined by reduced surface. This method defines the contour of
the protein that can not be accessed by solvent by rolling a
sphere  with  the  van  der  Waals  radius  of  the  solvent  (the
‘probe’) across the protein, avoiding the van der Waals radii of
the other atoms.41 The solvent accessibility of any residue can
be determined by measuring the distance of its titratable group
to the nearest vertex of the water SES. If the vertex is within
the van der Waals radius of the titratable group, it is solvent
accessible. We are currently investigating these approaches for
future developments.

Benchmark  Systems. The  systems  considered  for  pKa

prediction have been studied extensively both experimentally
and  with  other  computational  methods  (Figure  2A-C).  Hen
egg-white lysozyme (HEWL) was used as it is a prototypical
system for CpHMD benchmarking. The input structure of the
protein  was  taken  from  the  Protein  Data  Bank  (PDB  ID
1LZN).42 All solvent molecules were removed for the simula-
tion – water, nitrogen trioxide, and the sodium ion. As HEWL
only reports experimental pKa for GLU, ASP, LYS, TYR, and
a single HIS residue, both human thioredoxin (HTRX) and hu-
man muscle creatine kinase (HMCK) were simulated as well.
HTRX brought in CYS and another HIS residue to the dataset
alongside many more GLU and ASP. HMCK only added one
CYS residue to the dataset, but was included as it is one of the
largest proteins with an experimentally identified amino acid
pKa at 381 residues (compared to 105 residues for HTRX and
129 for HEWL). The initial structure used for HTRX was PDB
ID 1ERT,43 with all water molecules removed and the rotamers
labeled ‘A’ used when more than one was recorded. As it is un-
clear whether the 320-331 loop of HMCK is unstructured or
an  alpha  helix,  two  structures  were  used.  The  unstructured
case was based on the A chain of PDB ID 1U6R,44 mutated
back to the WT sequence with the substrate ADP, inhibitor (di-
aminomethyl-methyl-amino)-acetic  acid,  all  water,  nitrogen
trioxide, and magnesium ions removed. The alpha loop struc-

ture was the same except the 320-331 loop was replaced with
the 321-332 loop of the A-chain from PDB ID 3B6R.45 All ex-
perimental  reference  pKa were drawn from the PKAD data-
base.46 The  pKa values used ultimately come from Bartik et
al.47 and  Webb  et  al.48 for  HEWL,  from  Forman-Kay  et
al.49 and Qin et al.50 for HTRX, and Wang et al.51 for HMCK.
The  pKa predictions from our simulations measure error and
deviations to  the  average of  these  datasets  for  each  residue
with more than one reported value.

The system used to assess pH-conformational coupling was
Staphylococcal  nuclease  mutant  V66K, a  well  characterized
system (Figure 2D). Experimental information about protein
conformational  dynamics,  including  in  the  context  of  pH
change, is difficult to obtain. As discussed in the introduction,
the study of SNase mutants is  a  rare example of  this  being
done. A combination of NMR, CD, and titration suggests that
the protonation of LYS66 is concurrent with and may be cou-
pled to the unraveling of the first loop of the alpha helix on
which it is located.32,52–54 The V66K mutant was selected as it
demonstrates an extreme pKa shift of 10.5 down to 5.7 – which
alongside the conformational coupling is a real challenge for
any CpHMD method. The structure used was PDB ID 2SNM55

with  thymidine-3’,5’-diphosphate,  water  molecules,  and  the
calcium ion removed.

Titr-DMD  settings. Benchmarking  simulations  differ
slightly between those done to estimate  pKa values and those
that  assess  pH-conformational  coupling.  The  pH-conforma-
tional coupling simulations were longer and hotter to achieve
the necessary  sampling.  DMD simulations  without  the  Titr-
feature were also run for the  pH-conformation coupling sys-
tem as a control – to make sure conformational changes are
pH dependent.  The  pKa estimating simulations were run for
2,000,000 DMD timesteps (roughly 100 ns) at 50 K (note that
temperature in DMD is defined specifically, and does not di-

Figure 2: Ribbon diagrams of protein test systems for Titr-
DMD benchmarking: HEWL (A), HTRX (B), HMCK (C), and
SNase mutant V66K (D). The residues whose pKa's are con-
sidered and compared to experiment are highlighted in yel-
low. In the case of the SNase mutant, this is the buried LYS66
residue. The alpha helical loop to which it belongs and that
unravels is shown in red.



rectly correspond to the physical temperature).29 A high heat
exchange of 10.0 was used for thermal stability because Titr-
DMD consists of many short DMD simulations – a more typi-
cal, low value has a destabilizing effect. As discussed with the
description of the method, a standard protonation contact dis-
tance of 3.5  Å was used, as well as the standard protonation
state reassessment frequency of 200 steps. The solvent access
cutoff was 75%, which will be discussed in more detail in the
next  paragraph.  The  pH-conformation  coupling  simulations
were run for a longer 4,000,000 DMD timesteps (roughly 200
ns) with solvent access cutoff values of 65% and 45% ulti-
mately selected and a temperature of 150K for increased mo-
bility. The other settings were the same as for the pKa predic-
tion.  The  DMD control  simulations  without  the  Titr-feature
were run for the same time and temperature as the pH-confor-
mational coupling simulations.

The exact value of the solvent access cutoff is system de-
pendent and requires special attention/calibration. A cutoff of
75% was originally  selected  for  all  of  the  simulations  con-
ducted here. A Propka calculation on the initial structure for
each system yielded buried values above ~75% for only the
entirely  buried  residues  and  those  nestled  in  internal  folds,
while the external surface residues were all  well  below this
percentage. Over the course of the Titr-DMD simulations, only
2 of the 40 residues with experimentally available  pKa in the
benchmark set  stayed consistently  buried (ASP26 in HTRX
and CYS282 in HMCK), so these simulations were ultimately
not too sensitive to the choice of solvent buried cutoff. This
choice was, however, very critical for simulations of pH-con-
formational coupling, as they involved a study of whether the
protonation  state  of  a  deeply  buried  residue  (LYS66  in  a
staphylococcal nuclease mutant V66K) is coupled to the dy-
namics of the protein. In this case, we ran full simulations at a
series  of  different  solvent  access  cutoff  (25%,  35%,  45%,
55%, and 65%) and determined the most physical cutoff based
on a comparison to the reduced surface SES. LYS66 was then
defined as solvent accessible if its amine group is within its
van der Waals radius of three vertices (one face) of the SES.
The comparison to the solvent access cutoff was done for a 20

ns test Titr-DMD simulation of SNase V66K with a solvent ac-
cess cutoff of 75%. The solvent accessibility was then calcu-
lated for each iteration with a SES generated by Chimera (v
1.13.1).56 The iterations  were  binned  based  on  their  Propka
predicted percent buried, and the percent of states deemed to
be solvent accessible was calculated for each bin (Figure 3).
The results  show that  for  SNase V66K there is  a threshold
around 65-75% buried where LYS66 is generally buried above
that point and not buried below that point. Structures do not,
however, become entirely solvent accessible until below 55%.
It is important to note that such a low Propka buried % is rare
for LYS66 in our short test simulation. We therefore selected
for analysis the SNase simulations with solvent access cutoffs
of 65% and 45%, one around the inflection point (in Figure 2)
and one where LYS66 is only solvent accessible when it is as-
sured based on our SES test. The results of the other cutoffs
are reported in the supporting information (Figure S1, Tables
S1-S3).

A total of 45 Titr-DMD and 4 DMD simulations were per-
formed for benchmarking. Simulations were done for HEWL
at  pH 3,  5,  7,  and 9, for HTRX at  pH 3,  5,  and 7, and for
HMCK both with the unstructured and alpha helical 320-331
loop at pH 9. The pH values were selected to straddle the pKa

of residues with experimentally reported values. Simulations
were run for SNase at pH 4.6, 5.7, and 7. These values are be-
low, at, and above the experimental pKa of the LYS66 residue
and its coupled dynamic behavior. All are above the denatur-
ing point of the protein. Three replicates were performed for
each system and pH. The four DMD simulations were run for
SNase to provide a point of comparison. Two were run with
LYS66 permanently deprotonated and two with it permanently
protonated.

Convergence of the Titr-DMD simulations was attained ac-
cording to a pair of metrics. This is comprised of the backbone
RMSD and the  corrected Titr-DMD energy  (Figure  4).  The
RMSD was calculated with the initial structure as the refer-
ence and with respect to the alpha carbon and amide nitrogen,
carbon, and oxygen of each amino acid. All trajectories come
to oscillate around fixed values, indicating convergence.

Figure 3: Comparison of the Propka buried percentage to solvent accessibility according the reduced surface SES. The dark
blue line is the fraction of states that are solvent inaccessible according to the SES, where 1 is totally inaccessible and 0 is en -
tirely accessible (left axis). The light blue histogram is the number of states in that bin (right axis). States are binned in units of 5
buried percentage points. Note that most states below 65-70% buried are solvent inaccessible according to the SES and that
those below 55-60% buried are entirely inaccessible according to the SES.



Results and Discussion
Titr-DMD offers rapid sampling on limited resources. The

combination of DMD and Propka in an implicit solvent makes
it  a  fast  and affordable method.  We assessed the scaling of
Titr-DMD  through  1000  step  (5  protonation  assessments,
about 50 ps) simulations of HEWL, HTRX, and HMCK exe-
cuted with 1, 2, 4, 8, and 16 processors both with and without
the Titr-feature. All simulations were run on the same node se-
quentially during a single submission to reduce the impact of
the variability of other demands on the supercomputing clus-
ter. Simulations were performed on AMD Opteron 2380 (2.5
GHz) cores on Hoffman2 at UCLA IDRE. This process was
replicated five times, with the average of these results taken
(Figure 5). Titr-DMD scales roughly linearly with the number
of residues, and scales favorably out to four processors, with
additional resources giving diminished returns. The Titr-fea-
ture  does  modestly  increase  the  computational  expense  of
DMD simulations, with the increase in relative runtime over
base DMD growing some with the number of processors used.

This  largely  derives  from the  need  to  initialize  many  short
DMD simulations. However, Titr-DMD still runs quite well on
limited resources; the CPU time for the four processor tests
scales up to 500-1300 CPU hours (or 3-5.5 CPU hours per
residue) to reach a 1 ms simulation.

With a couple exceptions, our Titr-DMD method success-
fully  recaptured  the  experimental  pKa of  the  test  system
residues. We calculated the average RMSE between the pre-
dicted and experimental values both by type of amino acid and
by protein test system (Tables 1-2). The pKa can be calculated
two ways from Titr-DMD,  therefore we calculated two aver-
age RMSE for each case. Propka pKa is simply the average of
the  Propka predicted values  from each  timestep.  The DMD
pKa for a residue is  the natural  logarithm of the fraction of
timesteps in which the residue is protonated. That fraction is
analogous to the  Ka:  the relative concentration of the proto-
nated form of the residue. For solvent exposed residues (those
that can freely change protonation state just based on their in-
stantaneous pKa) these two pKa predictions should converge to
the same values with appropriate Monte-Carlo sampling.  The

Figure 4: Convergence of Titr-DMD simulations tracked by (A) the backbone RMSD and (B) corrected DMD free energy. Note
that by both metrics the results come to oscillate around fixed values by the end of the simulations.



results show that indeed the average RMSE are in good agree-
ment between the two methods for each system, with generally
small values around or below 1. The only exceptions are for
aspartate and cysteine residues. In the case of aspartate it  ap-
pears that Propka does poorly specifically with residues that
have  especially  depressed  values  below 2.  Cysteine,  on  the
other hand, is handled uniformly poorly by Propka. This may
have to do with the fact that both residues are partially buried
and one participates in a disulfide bond (which could compli-
cate the Propka prediction and is handled in an ad-hoc manner
by DMD). Furthermore, our test set only includes two cysteine
residues as experimentally obtained values for this amino acid
are rare; the pKa predictions for these particular residues could
simply  be  anomalously  poor.  A different  instantaneous  pKa

prediction  method  than  Propka  may  improve  accuracy  for
these specific residues when necessary for a simulation.

Table 1: Titr-DMD pKa RMSE by amino acid compared to ex-
perimental values. Each is calculated relative to an aggregate
dataset  compiled  from  all  considered  experimental  studies.
HEWL, HTRX, and HMCK are all included.

Amino Acid DMD RMSE Propka RMSE

ASP 1.49 1.44

GLU 0.47 0.63

HIS 0.53 0.47

LYS 0.76 0.81

TYR 0.67 0.52

CYS 2.28 3.87

Titr-DMD predictions of  pKa values  are  competitive  with
more expensive CpHMD methods. We compare our method
on a truncated set of residues that was also assessed by the ex-
plicit solvent Vila-Viçosa et al.28 and the Goh et al.23 replica
exchange CpHMD methods, and the implicit  solvent imple-
mentation  of  the  Wallace  et  al.27 replica  exchange CpHMD
method.  This  set  includes  mostly  asparatate  and  glutamate
residues as well as one histidine residue. For this set the Wal-
lace method obtains an RMSE of 0.89 while the Goh method
obtains 0.83 and  the  Vila-Viçosa method  obtains 0.83.  Our
RMSE of 1.47 or 1.45 (for the DMD and Propka pKa respec-
tively) is reasonable, as the truncated set of HEWL residues
heavily features low-pKa aspartate  residues,  with  which our
method does worse, and entirely excludes lysine and tyrosine.
The RMSE for other residues besides aspartate and cysteine
are on par with the more expensive methods.

Table 2: Titr-DMD pKa RMSE by protein system compared to
experimental  values.  HEWL* consists  of  the  ASP and GLU
residues that are considered in other CpHMD method bench-
marks and is comparable to them, while HEWL includes LYS,
TYR, and HIS residues as well.

System DMD RMSE Propka RMSE

HEWL

HEWL*

1.30

1.47

1.27

1.45

HTRX 1.07 0.93

HMCK 5.66

Figure 5: Computational resource scaling benchmark of Titr-DMD, plotted by (A) the number of processors and (B) the number
of residues. Note the linear scaling with number of residues and that good performance is reached with four processors. (C) The
percent increase of time for Titr-DMD over unmodified DMD. Note that the increase is relatively small and only becomes signifi-
cant with many processors as the time DMD takes shortens.



Titr-DMD holds promise for the study of the effect of solu-
tion pH on protein structure. Simulations of SNase V66K are
qualitatively consistent with rare, experimentally studied dy-
namics. With the Titr-feature, we observe partial unraveling of
the first turn of the alpha helix on which K66 is localized on
(residues 65-69), which is not apparent in DMD without titra-
tion (Table  3). Unraveling is only observed in 0.002-0.015%
of structures in base DMD, while Titr-DMD simulations show
it occurs in 3-8% of structures. We define an unraveled state as
one where the ALA69-LYS66 and ASN68-MET65 hydrogen
bonds are broken or breaking and the backbone RMSD of the
loop  is large relative to that of the full protein, indicative of
significant,  localized structural change (Figure 6). The crite-
rion is

SRMSD RMSDT /RMSDL

((R1−RHB)+(R2−RHB))/SHB

≤2

where  RMSDT is for the total  protein and  RMSDL is  for the
loop (residues 65-69), R1 and R2 are the backbone amide H to
carbonyl  O  distances  in  Å of  ALA69-LYS66  and  ASN68-
MET65 respectively, SRMSD is 2, RHB is 2.5 Å (for a long hydro-
gen bond length), and SHB is 2 Å. We only consider structures
where the ALA69-LYS66 and ASN68-MET65 backbone hy-
drogen bond distances are both at least 3 Å. While unraveling
according to our criterion occurs in 3-8% of all states at the
appropriate  pH,  it is  not typically  sustained  for  longer  than
about 1 ns at any one time. We surmise that our simulations do
not have enough sampling  to capture sustained loop unravel-
ing, but do show the rare events that could lead to it.

Table 3: Frequency of SNase mutant V66K alpha helical loop
65-69 unraveling over the course of  Titr-DMD (upper)  and
DMD (lower)  simulations.  Note  that  the  frequency  is  much
higher  in  the  Titr-DMD simulations.  The  highest  frequency
that occurs at the experimental pKa of LYS66 (5.7) is when the
solvent access cutoff is 45%.

Simulation pH 4.6 pH 5.7 pH 7

45% cutoff 5.68% 7.06% 4.68%

65% cutoff 3.84% 5.64% 7.93%

Prot Deprot

Base DMD 0.002% 0.015%

Protonation  and  deprotonation  of  LYS66  is  coupled  with
loop unraveling according to Titr-DMD.  At  pH 5.7, the per-
centage  of  unraveled  states  is  significantly  higher  around
LYS66 protonation state changes than the total simulation av-
erage (Table 4). Moreover, few events at pH 5.7 occur without
contemporaneous unraveling. The coupling we observe in our
simulations is thus consistent with the experimental hypothe-
sis.32

Table  4: Frequency of unraveling of the SNase mutant 65-69
loop  around  LYS66  protonation  and  deprotonation  events.
‘Near event’ refers to the percentage of structures within 25
timesteps (before and after)  of an event that are unraveled.
This value is roughly on par with the total simulation average
except  at  pH 5.7,  particularly  during the  simulation  with  a
45% solvent access cutoff. ‘By event’ refers to the percent of
events  that  have at  least  one unraveled  structure within  25
timesteps. Again, note that the pH 5.7 simulations show high
coupling where protonation state changes nearly always occur
alongside some contemporaneous unraveling.

Near Event pH 4.6 pH 5.7 pH 7

45% cutoff 1.11% 30.43% 0.54%

65% cutoff 3.20% 9.45% 10.97%

By Event

45% cutoff 25% 85% 20%

65% cutoff 20% 80% 29%

Titr-DMD dynamics can predict the  pH at which loop un-
raveling occurs. The Propka predicted pKa value of LYS66 is
uniformly higher than the experimental 5.7, at an average of 7-
8, but still shows a qualitatively correct large drop from the so-
lution value of 10.5 (Table 5). However, the DMD pKa is gen-

Figure  6: (A) Criterion for an unraveled 65-69 loop struc-
ture in our SNase simulations. This compares the RMSD of
the loop (RMSDL) to the RMSD of the full protein (RMSDT)
and compares the distances of important hydrogen bonding
contacts  (R1,  R2)  to  standard  values  (RHB)  to  determine
structures where the conformation of the loop varies signifi-
cantly from the original structure. We give the values of the
other variables  in  the main text.  (B)  Example  of  a  SNase
conformation with an unraveled 65-69 loop by our criterion
(light blue) overlaid on a structure where it is not unraveled
(tan). LYS66 is colored yellow here.



erally lower, representing the frequent solvent inaccessibility
of the residue. With the solvent access cutoff tuned to 45% it
even comes close to the experimental finding. At this cutoff,
unraveling  is  most  common  in  the  pH 5.7  simulations  and
nearly all protonation state changes occur alongside some un-
raveling. Titr-DMD can qualitatively model coupling between
pH and protein structure, and when well calibrated can do so
with more quantitative accuracy.

Table 5: Titr-DMD predicted pKa for LYS66 in the SNase mu-
tant.  These values are averages across all replicate simula-
tions. All of these are above the experimental value, though
still significantly shifted down from the solution value of 10.5,
except the DMD pKa value for the 45% solvent access cutoff
simulation. This reflects the typically solvent shielded environ-
ment of LYS66 modeled through DMD dynamics that Propka
underestimates on its own.

Simulation DMD Propka

45% cutoff 5.79 7.80

65% cutoff 7.04 7.96

Conclusions
In this paper we demonstrate Titr-DMD as an effective new

method to study pH coupled protein dynamics. The challenges
that face any CpHMD method are appropriate conformational
and protonation state sampling, accuracy of protonation state
changes, and whether the generated conformational ensemble
is physically meaningful. Titr-DMD offers great sampling on
just a few processors through atomic collision event calcula-
tions,  implicit  solvation,  and  semi-empirical  pKa prediction
with Propka. Our method obtains reasonably accurate pKa pre-
dictions for its computational expense. Titr-DMD was success-
fully benchmarked on the partial unraveling of SNase mutant
V66K: one of the few experimentally studied pH coupled con-
formational  changes.  Titr-DMD  generates  a  conformational
ensemble consistent with experiment, and this ensemble even
reflects  the  experimental  pH value  of  the  conformational
change. Our method is also modular to further improve sam-
pling and accurate assignment of protonation states. Titr-DMD
stands as a promising method to address questions of  pH dy-
namics in industrial catalysis and medicine.
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