
Tethered Silanoxyiodination of Alkenes 

Ranjeet A. Dhokale,[a] Frederick J. Seidl,[b] Anand H. Shinde,[a] Joel T. Mague,[c] and Shyam Sathyamoorthi*[a] 

aDepartment of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States 
bIndependent Researcher, San Bruno, CA, United States  

cDepartment of Chemistry, Tulane University, New Orleans, Louisiana, United States

 

Supporting Information Placeholder 

 

                                     

ABSTRACT: We present the first examples of tethered silanoxyiodination reactions of allylic alcohols. The products are useful 
silanediol organoiodide synthons and are formed with high regioselectivity and diastereocontrol. The reaction is scalable 
greater than 10-fold without loss of yield or selectivity. Furthermore, the products are starting materials for further 
transformations, including de-iodination, C–N bond installation, epoxide synthesis, and de-silylation. DFT calculations 
provide a basis for understanding the exquisite 6-endo selectivity of this silanoxyiodination reaction and show that the 
observed products are both kinetically and thermodynamically preferred.

Tethered alkene functionalization reactions allow the 
synthetic chemist to transform olefins with unusual preci-
sion.1-7 Because of the predisposition for six- and seven-
membered cyclic transition states, one can simply count the 
number of atoms from the nucleophilic auxiliary (“the 
tether”) where the functionalization event is likely to take 
place; due to geometric constraints, these reactions generally 
proceed with high regio- and diastereoselectivity. Our labor-
atory is deeply invested in developing tethered olefin func-
tionalization reactions, and we have disclosed such reactions 
using sulfamate,8, 9 phosphoramidate,10 and di-tert-butyl-si-
lanoxy tethers.11, 12  

 
 
Iodofunctionalization of olefins is a particularly pow-

erful method for the synthesis of organoiodides, which are 
versatile precursors for C–O,13 C–N,14 and C–C bonds15 
(Scheme 1). Two particularly well-known classes within 
this large area are iodolactonization16-20 and 
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iodoetherification21-24 of olefins (Scheme 2), and examples 
of both are found in complex molecule syntheses. Building 
on this precedent, we imagined a silanoxyiodination reac-
tion, which would yield protected diol iodides in a single 
step and with high regio- and diastereoselectivity. We rea-
soned that the di-tert-butyl silyl group could be facilely re-
moved to reveal useful iodo-diol synthons. Here, we de-
scribe our efforts to reduce this idea to practice. 

 

          

Optimization of this tethered silanoxyiodination reac-

tion began with (E)-di-tert-butyl(hex-2-en-1-yloxy)silanol, 

conveniently prepared in one step from commercially avail-

able di-tert-butylsilyl bis(trifluoromethanesulfonate) and 

trans-2-hexen-1-ol.11 With I2 (3 equivalents) and NaHCO3 

(6 equivalents) in acetonitrile at 0 °C, we were pleased to 

observe 65% of desired product (Table 1, Entry 1). How-

ever, we soon discovered that these conditions were much 

too corrosive with other allylic silanols and led to markedly 

reduced product yields. The use of Ag (I) in conjunction 

with I2 is well known for the mild generation of I+.21, 23, 25 

With AgNO3/I2 (Table 1, Entry 2) and with Ag(TFA)/I2 

(Table 1, Entry 3), we did not observe any cyclized product 

formation. In both cases, we isolated linear alkyl iodide 

products, which we presume result from intermolecular 

opening of the transient iodonium intermediate by NO3
- and 

CF3CO2
-. We hypothesized that switching to a silver salt 

with a non-nucleophilic counterion would eliminate inter-

molecular ring-opening. With AgBF4 in acetonitrile, tetrahy-

drofuran, or ethyl acetate (Table 1, Entries 4-6) at 0°C, we 

observed ~60% cyclized product formation. Using CH2Cl2 

as a solvent was markedly deleterious (Table 1, Entry 7). 

In THF, when the temperature was reduced from 0 °C to -15 

°C, the yield of cyclized product increased slightly (Table 

1, Entry 8); however, dropping the temperature further to -

45 °C led to a dramatic decrease in product formation (Table 

1, Entry 9). We found that Ag(OTf)/I2 in THF, Ag(OTf)/I2 

in DME, and AgBF4/I2 in DME at -15 °C (Table 1, Entries 

10-12) all gave comparable, good yields of cyclized product. 

Overall, we chose three protocols (A: AgBF4/I2/THF, B: 

AgBF4/I2/DME, C: AgOTf/I2/DME) for further exploration 

of scope.    

Table 1. Optimization of a tethered silanoxyiodination reac-

tion.      

          

 

areaction times were between 1 and 2 hours in all cases. bYield es-

timated from 1H NMR integration with methyl phenyl sulfone as 

an internal standard. cWith 6 equivalents of NaHCO3.dTwo non-

cyclized products, which we presume result from NO3
- opening of 

the iodonium intermediate. eTwo non-cyclized products, which we 

presume result from CF3CO2
- opening of the iodonium intermedi-

ate. 

Examination of a variety of allylic silanol substrates 
(Scheme 3) with these protocols revealed that this transfor-
mation is quite general, tolerant of diverse functional groups, 
and in most cases, proceeds with high regio- and diastere-
oselectivity. We have determined the relative configuration 
of one of these products through x-ray diffraction analysis, 
which establishes that the iodine and the pendant alkyl chain 
are trans to each other (Scheme 3, Entry 11, CCDC: 
2062814). While protocol A (AgBF4/I2/THF) gave good 
product yields with several substrates (Scheme 3, Entries 1 

and 7), a curious side product complicated crude NMR anal-
ysis and purification. Amazingly, this side product has been 
previously characterized and arises from a ring-opening 
polymerization of THF by I2!26 We thus abandoned THF in 
favor of DME, and we recommend that for substrates not 
shown here, both protocol B (AgBF4/I2/DME) and protocol 
C (AgOTf/I2/DME) should be empirically tested for best re-
sults. We were pleased to find that a variety of alkyl chains 
(Scheme 3, Entries 1, 2, & 6), rings (Scheme 3, Entries 3-

4), alkyl ethers (Scheme 3, Entry 3), ketals (Scheme 3, En-

try 5), esters (Scheme 3, Entry 10), aromatic rings (Scheme 

3, Entries 8 & 11), and heteroaromatic rings (Scheme 3, 
Entries 9 & 12) were all tolerated by our optimized proto-
cols. Furthermore, we were not limited to disubstituted ole-
fins. A variety of tri-substituted olefins (Scheme 3, Entries 

13-15) reacted smoothly as well. 

 
Ag (I) (equiv.) I2 equiv. Solvent Temp.a B/Ab 

1 None 3c MeCN 0 °C 65/0 

2 AgNO3 (1) 1 MeCN 0 °C 0/0d 

3 Ag(TFA) (1) 1 MeCN 0 °C 0/0e 

4 AgBF4 (1) 1 MeCN 0 °C 58/0 

5 AgBF4 (1) 1 THF 0 °C 60/0 

6 AgBF4 (1) 1 EtOAc 0 °C 62/11 

7 AgBF4 (1) 1 CH2Cl2 0 °C 22/0 

8 AgBF4 (1) 1 THF -15 °C 65/0 

9 AgBF4 (1) 1 THF -45 °C 45/0 

10 AgOTf (1) 1 THF -15 °C 70/0 

11 AgBF4 (1) 1 DME -15 °C 75/0 

12 AgOTf (1) 1 DME -15 °C 80/0 
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We were pleased to see that the reaction scaled greater 

than ten-fold without loss of yield or selectivity (Scheme 4).  

 

        
 

Furthermore, the cyclic silanediol organoiodide prod-

ucts were amenable to a variety of further transformations, 

including, de-iodination, nucleophilic azide displacement, 

epoxide formation, and silicon removal (Scheme 5). 
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In all cases, we exclusively observed products of 6-
endo-trig cyclization reactions. In order to rationalize such 
exquisite selectivity for the 6-endo product over the 5-exo 
isomer, we turned to DFT calculations using the ORCA soft-
ware package.27, 28 All calculations were performed using the 
B3LYP functional29, 30 with D3BJ dispersion correction31, 32 
using the RIJCOSX approximation.33 The def2-TZVP basis 
set34 was used, and implicit THF solvation was applied using 
the SMD model.35 When iodine was present, the def2-ECP36 
was applied automatically. Counterions were not modelled 
for ionic species. Further details and atomic coordinates are 
reported in the Supporting Information. 

Upon exposing substrate alkene 1 to molecular iodine, 

the immediate product is an intermediate iodonium 61. 

Intramolecular ring closure can proceed either via a 5-exo 

(62) or a 6-endo (63) transition state, leading to isomeric 

protonated products 64 and 65. For the 5-exo pathway, both 

the transition state and the cationic product are more than 4 

kcal/mol higher in energy than their 6-endo counterparts 

(Figure 1). This overwhelming preference for the 6-endo 

pathway agrees with the experimental absence of any 5-exo 

product, even in trace amounts.  The origin of the 6-endo 

selectivity is most likely due to ring strain. For acyclic io-

donium 61, the O-Si-O angle is 102.6°, which is 6.9° lower 

than the ideal tetrahedral angle of 109.5°. This initial acyclic 

perturbation is likely due to the presence of the tert-butyl 

groups on the silicon, a manifestation of the Thorpe-Ingold 

effect.37 The 6-endo transition state 63 has an O-Si-O angle 

of 101.3°, and the 6-endo product 65 has an O-Si-O angle of 

97.6°, the latter of which is only 5° smaller than the acyclic 

angle on iodonium 61. By contrast, the 5-exo transition state 

62 has an O-Si-O angle of 96.7°, and the 5-exo product 64 

has an O-Si-O angle of 89.8°, the latter of which is now ge-

ometrically acute and 12.8° smaller than the acyclic angle 

on iodonium 61. Thus, the tert-butyl groups on silicon pro-

mote a Si-O-Si angle close to that required for 6-endo ring 

closure, while 5-exo ring closure requires a much more 

strained and energetically unfavorable Si-O-Si angle.  

 
Figure 1. DFT energies for cationic iodonium rearrange-
ments of substrate 1.  
 

 
 

In summary, we present the first examples of tethered 

silanoxyiodination reactions of allylic alcohols. The prod-

ucts are useful silanediol organoiodide synthons and are 

formed with high regioselectivity and diastereocontrol. The 

reaction is scalable greater than 10-fold without loss of yield 

or selectivity. Furthermore, the products are starting materi-

als for further transformations, including de-iodination, C–

N bond installation, epoxide synthesis, and de-silylation. 

DFT calculations provide a basis for understanding the ex-

quisite 6-endo selectivity of this silanoxyiodination reaction. 

We expect this reaction to find much use in the construction 

of complex molecules containing functional group stereo-

chemical arrays.  
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