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Abstract

Recent advances in convolutional neural networks have inspired the application of

deep learning to other disciplines. Even though image processing and natural language

processing have turned out to be the most successful, there are many other areas that

have benefited, like computational chemistry in general and drug design in particular.

From 2018 the scientific community has seen a surge of methodologies related to the

generation of diverse molecular libraries using machine learning. However, no algorithm

used an attention mechanisms for de novo molecular generation. Here we employ a

variant of transformers, a recent NLP architecture, for this purpose. We have achieved

a statistically significant increase in some of the core metrics of the MOSES benchmark.

Furthermore, a novel way of generating libraries fusing two molecules as seeds has been

described.

Introduction

Chemistry is frequently referred to as a “central science” for its key role in advancing tech-

nological progress and human well-being through the design and synthesis of novel molecules

1

{rustam.zhumagambetov, vsevold.peshkov, siamac.fazli}@nu.edu.kz


and materials for energy, environmental, and biomedical applications.

Medicinal chemistry is a highly interdisciplinary field of science that deals with the design,

chemical synthesis, and mechanism of action of biologically active molecules as well as their

development into marketed pharmaceutical agents (i.e. drugs). The creation of new drugs is

an incredibly hard and arduous process. One of the key reasons for that comes from the fact

that the ’chemical space’ of all possible molecules is extremely large and intractable. Even

though it is estimated that the chemical space of molecules with pharmacological properties

is of the range of 1023− 1060 compounds,1 this order of magnitude leaves the work of finding

new drugs out of reach of manual labor.

In general, medicinal chemists need to determine molecules that are active and selective

towards specific biological targets to cure a particular disease while keeping the risks of

negative side effects at a minimal level. As the number of molecules that require testing to

identify an ideal drug candidate constantly increases, it raises the overall cost of the drug

discovery process. Therefore, the need for algorithms that are able to narrow down and

optimize these efforts has recently emerged. Specifically, the computer algorithms can assist

with creating new virtual molecules as well as with performing conformational analysis and

molecular docking to determine the affinity of novel and known molecules towards specific

biological targets.

With respect to molecular generation, the conventional non-neural algorithms heavily

rely on external expert knowledge to construct candidate molecules. In this context, ex-

pert knowledge may consist of molecular compounds/fragments that could be ”mixed and

matched” together to produce a set of potential molecules.2 However, the resulting molecules

might be difficult to synthesize. Another type of expert knowledge can be then added: known

chemical reactions.3,4 It is possible to constrain this ”mix and match” procedure using a

known system of rules to ensure that any molecule that was produced can be synthesized.

However, it is known that such systems can have some limitations.5 Besides, relying on

external knowledge may result in restricting access to unknown and/or not yet populated
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regions of chemical space.

An alternative approach to this problem would be neural algorithms that are inherently

data-driven. This means that such algorithms do not rely on expert knowledge and hence

derive insights from the data itself. Such approaches can be applied in supervised and

unsupervised fashions. Supervised algorithms use artificial neural networks for the prediction

of molecular properties6 or reaction outputs.7 Most unsupervised algorithms are aimed at

molecular generation and drug design.8–21

Researchers have used a number of techniques for a molecular generation: generative

adversarial networks, variational autoencoders, and recurrent neural networks. However,

currently, the use of attention mechanisms for de novo drug design, to our knowledge, is

unexplored. One of our goals is to fill this gap and investigate the applicability of attention

to molecular generation.

We set a goal to develop the algorithm that would allow the generation of the diverse

focused libraries utilizing one, or two seed molecules that will guide the generation of de novo

molecules. It outperforms existing artificial neural network algorithms in some core MOSES

metrics, a benchmark introduced for the comparison of generative algorithms:22 internal

diversity (IntDiv1), and similarity to a nearest neighbor (SNN). The resulting algorithm is

incorporated into the cheml.io23 website and available for the generation of molecules on

demand.

Dataset

In this paper, we have used a MOSES benchmark and the dataset it provided. It consists

of three datasets: training, testing, and testing scaffolds, containing 1.6M, 176k, and 176k

respectively.

The first dataset is recommended for use for the training of the model. The model will

learn to interpolate between each molecule and construct a latent space. The latent space
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further will act as a proxy distribution for molecules. So it would be possible to sample new

molecules from it.

The testing dataset consists of molecules that are not present in the training dataset. It

is used to assess how effectively the model is generalizable: whether the architecture of the

model can be applied to other datasets.

The scaffold testing dataset consists of scaffolds that are not present in the training

and testing datasets. Scaffolds are small fragments of molecules that can describe a set

of compounds, where it is present. The scaffold testing is used to check if the model can

generate new scaffolds, unique molecular features, or whether the model just reuses the parts

of the previously seen molecules to generate new ones. It is more desirable for the model to

generate new scaffolds as it would mean that it has learning capabilities.

Molecular representation

When beginning discussion of automating molecular search a natural question is how molecules,

a physical collection of atoms that are arranged in 3D space, can be represented.

In the 1980s simplified molecular input line-entry system (SMILES) specification had

emerged, aimed to create a molecular encoding that is computationally efficient to use and

is human readable.24 The original encoding is based on the 2D molecular graphs. Intended

application areas are fast and compact information retrieval and storage. With the rise of

machine learning algorithms in chemistry, SMILES have been widely adopted by researchers

for chemical space modeling tasks.

Data augmentation

To improve the validity of the algorithm we have used data augmentation through SMILES

enumeration as was used in work Arús-Pous et al. 25 A molecule can be mapped to the

unique canonical SMILES string, however non-unique SMILES strings can be also produced

depending on the starting point where the algorithm will begin translation. Such data

4



augmentation has been reported to improve the generalization of the latent space (increase

the diversity of the output molecules).

Method

For this work, we have employed a vanilla transformer model from the work by Vaswani et

al.26 A vanilla transformer consists of two parts: encoder and decoder. An encoder (see left

dashed block of Figure 1) maps input to the latent representation z. A decoder (see right

dashed block of Figure 1), accepts z as input and produces one symbol at a time. The model

is auto-regressive, i.e to produce a new symbol it requires previous output as an additional

input.

The notable attribute of this architecture is the use of attention mechanisms throughout

the whole model. While models before transformers have been using attention only as an

auxiliary layer, having some kind of recurrent neural networks (RNN) like gated recurrent

unit (GRU) or long short-term memory (LSTM), or convolutional neural network (CNN),

the transformer consists primarily of attention layers.

Attention mechanism can looked at as function of query Q, key K and value V , where

output is a matrix product of Q,K, V using function:

Scaled dot-product Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

is used to identify the relevant parts of the input in respect to the input, self-attention.

It allows disregarding less important parts of the query and filter noise. The most impor-

tant part is that attention mechanisms are differentiable, hence can be learned from data.

See Figure 2 for the illustration of the scaled dot-product attention layer. The multi-head

attention layer consists of h instances of scaled dot-product attention layers that are then

concatenated and passed to the dense layer.

Parameters of the original paper have been used, such as number of stacked encoder and
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Figure 1: A vanilla transformer architecture
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decoder layers N = 6, all sublayers produce output of dmodel = 512, with dimensionality of

inner feed-forward layer being dff, number of attention heads h = 6, and dropout d = 0.1.
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Figure 2: Multi-head attention layer

Sampling from the latent space

To sample the model, a seed SMILES string is needed to provide a context for the decoder.

Then the decoding process is started by supplying a special starting symbol. After that

the decoder provides an output and a first symbol is generated. To get the next symbol

the previous characters are provided to the decoder. The decoding process stops when the

decoder either outputs a special terminal symbol or exceeds the maximum length. There are

several techniques available that specify how the output of the decoder is converted to the

SMILES character such as a simple greedy search or a beam search.

Greedy search

As the decoder provides output probabilities the naive approach would be using a greedy

algorithm and picking the symbol with the highest probability. However, it is not optimal

as picking the most probable symbol on each step does not guarantee that the final resulting
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string would have the highest conditional probability. Moreover, unless stochastic sampling

is used (when probability vector is used as a basis for the distribution and then sampled), the

result of the greedy search is deterministic and corresponds to the ”reconstruction accuracy”

based on our training procedure.

Beam search

To improve upon the greedy search a beam search has been used. The beam search is an

improved greedy search. While the greedy search picks only one symbol at a time, the beam

search picks N most probable. Figure 3 illustrates the beam search with beam width N = 3;

the stroke width indicates the probability. To guide the selection process of beam search we

have used the following reward function:

∑
char ∈ vocab P (s|previous output)

(1 + |previous output|)α

where char is a possible symbol for beam search to pick, vocab is a set of all possible

characters, the previous output is an ordered list of symbols picked by beam search prior to

picking current one, α is a parameter of beam search that regulates the length of the string,

low α discourages long strings, high α encourages.
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Figure 3: Overview of the beam search with a beam width of N=3
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Injecting variability into model

To explore the molecules that are located near the seed molecule in the latent space, we have

used two techniques that allow sample from the seed cluster: addition of Gaussian noise to

the z and use of temperature.

Gaussian noise

To increase the variability of the model we are adding the Gaussian noise with a mean of µ

and standard deviation σ to latent vector z before it is fed to the decoder.

Temperature

Another technique to improve variability is to apply temperature to the output vector right

before applying the softmax function. Temperature T is a value from 0 to ∞. As T → ∞

all characters have the same probability of being the next symbol. For T → 0 the most

probable symbol has a higher probability of being selected. Figure 4 demonstrates how

the application of temperature smoothes the original distribution. The resulting smoothed

distribution increases the variability of sampling.

Results

In this section, we describe major results that were obtained during the experiments. It

starts with the generation of a focused library with a single seed molecule which is followed

by the description of the generation of a focused library using two seed molecule. See Figure 5

for the graphical overview of the process. The top figure illustrates sampling from the latent

space using only one seed molecule; bottom figure illustrates the similar process for two seed

molecules.
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Figure 4: Impact of temperature on distribution
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Creating focused library with seed molecule

In this subsection, we discuss the optimization procedure for the sampling hyperparameters

as well as present the results of the MOSES benchmark22 in relation to our method and

previous ones.

MOSES metrics

Several metrics are provided by the MOSES benchmark. Uniqueness, validity, and internal

diversity are among the most important ones.

Uniqueness shows the proportion of generated molecules that are within the training

dataset. Validity describes the proportion of generated molecules that are chemically sound.

Internal diversity measures whether the model samples from the same region of chemical

space, producing molecules that are valid and unique but differ in a single atom; hence, are

useless.

Table 1 demonstrates that Transmol has demonstrated the greatest diversity across all

baselines. It can be also observed that among neural algorithms Transmol demonstrates

the greatest proportion of novel molecules, that are not present in the training dataset.

Table 2 demonstrates performance metrics: Fréchet ChemNet Distance (FCD), Similarity

to a nearest neighbor (SNN), Fragment similarity (Frag), and Scaffold similarity (Scaff). In

the SNN metric Transmol demonstrates the advantage over the baselines models.

Figure 6 demonstrates the Wasserstein-1 distance between generated molecules and the

test set (in brackets). It shows that the Transmol is not as close to the testing set distribution

as other neural algorithms, but it is not as far from it as simpler, combinatorial baselines.

Kernel density estimation is visualized using a distribution plot.

Adjusting beam search

To find the optimal parameters for the beam search a grid search has been conducted. Fig-

ure 7 shows the dependency between beam width and topk(number of generated molecules).
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Table 1: Performance metrics for baseline models: fraction of valid molecules, fraction of
unique molecules from 1,000 and 10,000 molecules, internal diversity, fraction of molecules
passing filters (MCF, PAINS, ring sizes, charge, atom types), and novelty. Reported (mean
± std) over three independent model initializations.

Model Valid (↑) Unique@1k (↑) Unique@10k (↑) IntDiv (↑) IntDiv2 (↑) Filters (↑) Novelty (↑)

Train 1 1 1 0.8567 0.8508 1 1
HMM 0.076±0.0322 0.623±0.1224 0.5671±0.1424 0.8466±0.0403 0.8104±0.0507 0.9024±0.0489 0.9994±0.001
NGram 0.2376±0.0025 0.974±0.0108 0.9217±0.0019 0.8738±0.0002 0.8644±0.0002 0.9582±0.001 0.9694±0.001
Combinatorial 1.0±0.0 0.9983±0.0015 0.9909±0.0009 0.8732±0.0002 0.8666±0.0002 0.9557±0.0018 0.9878±0.0008
CharRNN 0.9748±0.0264 1.0±0.0 0.9994±0.0003 0.8562±0.0005 0.8503±0.0005 0.9943±0.0034 0.8419±0.0509
AAE 0.9368±0.0341 1.0±0.0 0.9973±0.002 0.8557±0.0031 0.8499±0.003 0.996±0.0006 0.7931±0.0285
VAE 0.9767±0.0012 1.0±0.0 0.9984±0.0005 0.8558±0.0004 0.8498±0.0004 0.997±0.0002 0.6949±0.0069
JTN-VAE 1.0±0.0 1.0±0.0 0.9996±0.0003 0.8551±0.0034 0.8493±0.0035 0.976±0.0016 0.9143±0.0058
LatentGAN 0.8966±0.0029 1.0±0.0 0.9968±0.0002 0.8565±0.0007 0.8505±0.0006 0.9735±0.0006 0.9498±0.0006
Transmol 0.0682±0.0022 0.9420±0.0026 0.8779±0.0016 0.8651±0.0017 0.8504±0.0098 0.9821±0.0020

Table 2: Performance metrics for baseline models: Fréchet ChemNet Distance (FCD), Sim-
ilarity to a nearest neighbor (SNN), Fragment similarity (Frag), and Scaffold similarity
(Scaff); Reported (mean ± std) over three independent model initializations. Results for
random test set (Test) and scaffold split test set (TestSF)

Model
FCD (↓) SNN (↑) Frag (↑) Scaf (↑)

Test TestSF Test TestSF Test TestSF Test TestSF
Train 0.008 0.4755 0.6419 0.5859 1 0.9986 0.9907 0
HMM 24.4661±2.5251 25.4312±2.5599 0.3876±0.0107 0.3795±0.0107 0.5754±0.1224 0.5681±0.1218 0.2065±0.0481 0.049±0.018
NGram 5.5069±0.1027 6.2306±0.0966 0.5209±0.001 0.4997±0.0005 0.9846±0.0012 0.9815±0.0012 0.5302±0.0163 0.0977±0.0142
Combinatorial 4.2375±0.037 4.5113±0.0274 0.4514±0.0003 0.4388±0.0002 0.9912±0.0004 0.9904±0.0003 0.4445±0.0056 0.0865±0.0027
CharRNN 0.0732±0.0247 0.5204±0.0379 0.6015±0.0206 0.5649±0.0142 0.9998±0.0002 0.9983±0.0003 0.9242±0.0058 0.1101±0.0081
AAE 0.5555±0.2033 1.0572±0.2375 0.6081±0.0043 0.5677±0.0045 0.991±0.0051 0.9905±0.0039 0.9022±0.0375 0.0789±0.009
VAE 0.099±0.0125 0.567±0.0338 0.6257±0.0005 0.5783±0.0008 0.9994±0.0001 0.9984±0.0003 0.9386±0.0021 0.0588±0.0095
JTN-VAE 0.3954±0.0234 0.9382±0.0531 0.5477±0.0076 0.5194±0.007 0.9965±0.0003 0.9947±0.0002 0.8964±0.0039 0.1009±0.0105
LatentGAN 0.2968±0.0087 0.8281±0.0117 0.5371±0.0004 0.5132±0.0002 0.9986±0.0004 0.9972±0.0007 0.8867±0.0009 0.1072±0.0098
Transmol 6.3070±0.04197 7.1923±0.0833 0.6290±0.0048 0.4662±0.0038 0.9432±0.0034 0.9374±0.0033 0.5224±0.0471 0.0095±0.0064
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Figure 6: Plots of Wasserstein-1 distance between distributions of molecules in the generated
and test sets
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The chart shows that for small numbers of topk the fraction of valid molecules is high.

Figure 7: The scatter plot of the grid search with the following parameters: beam width,
number of generation requests, actual number of generated smiles, number of valid molecules,
and fraction of valid molecules

Exploring chemical space using two seed molecules

Since no known benchmark involves multiseed sampling in this subsection we describe a

procedure of the encoder verification, and the procedure of adjusting the weights. Figure 8
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illustrates molecular sampling from the latent distribution using two seed molecules. The

resulting generated library demonstrates a diversity of structural features that would be

unattainable through simple fragment substitution.

Seed molecule 1

Seed molecule 2

Figure 8: Example sampling of two molecules

Verification of encoder

Table 3: Exploring representation learning of transformer

No Description Test name P Value Reject H0

1 Test of independence between molecular set 1 and molecular set 2 Mann-Whitney U Test p=0.000 Yes
2 Test of independence between halfs of molecular set 1 Mann-Whitney U Test p=0.432 No
3 Test of independence between halfs of molecular set 2 Mann-Whitney U Test p=0.393 No

To verify the encoder we have set up the following experiment:

1. Selected 2 molecules

2. Generated a set of enumerated SMILES for each molecule
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3. Encoded them into latent representations

4. Computed 2-norm on these vectors

5. Conducted statistical tests to verify the independence of distributions

Statistical tests have shown that latent representations of molecule 1 generated from

enumerated SMILES have an independent distribution from the latent representations of

molecule 2. See Table 3 for the details.

Adjusting weights

After verification of the encoder, the natural way of proceeding would be trying to generate

intermediate representations of the molecules, and decode molecules that resemble both

seed one and seed two. See Figure 5 for the illustration of intermediate representation in the

context of latent space.

Conclusion

In summary, we have successfully applied a recent deep learning framework to the task

of molecular generation using attention mechanisms. We have benchmarked the resulting

Transmol method utilizing the MOSES benchmark. The results demonstrate a number of

the advantages when using this attention-based methodology in comparison with earlier

approaches.
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