Direct measurements of vapor pressures of chlorinated paraffin congeners from technical mixtures

3

Jort Hammer^{*}, Hidenori Matsukami, Hidetoshi Kuramochi, Satoshi Endo^{*}
National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, Japan
E-mail contact: <u>hammer.jort@nies.go.jp</u>, <u>endo.satoshi@nies.go.jp</u>

7

8 ABSTRACT

9 Chlorinated Paraffins (CPs) are a complex group of manmade chemicals detected widely in the environment. To predict their environmental fate and effects, it is important to 10 11 understand their physical-chemical properties including vapor pressure. In this study, the first direct measurements of the vapor pressure for CP congener groups ($C_{10-16}Cl_{4-11}$) are 12 presented. Vapor pressure was measured above three industrial CP mixtures with different 13 congener distributions between 20 and 50°C using a gas saturation method. The measured 14 saturated vapor pressure (P^*) decreased with increasing carbon chain length and Cl content. 15 ΔH_{vap} ranged between 73 and 122 kJ mol⁻¹, consistent with data from the literature and 16 model prediction. The experimental $\log P^*$ at 25°C agreed well with predictions from an 17 empirical regression model in the literature ($R^2 = 0.97$; RSME = 0.25) and with those 18 predicted from the COSMO-RS-trained fragment contribution model ($R^2 = 0.95$; RSME = 19 0.35). A new empirical model was calibrated with the P^* data for 35 congener groups 20 measured in this study. Predicted $\log P^*$ values correlate well with field-measured 21

- 22 gas/particle partition coefficients and may therefore be used for estimating the
- environmental fate and pathways of a broad range of CPs in the environment.
- 24
- 25 Keywords: Gas Saturation, Congener groups, Enthalpy of vaporization, SCCP, MCCP,
- 26 COSMO-RS

27 INTRODUCTION

Chlorinated Paraffins (CPs) are a group of high-volume production chemicals and are 28 widely used for their thermal and chemical stability. CPs are applied in various products as, 29 e.g., plasticizers, coolants, and flame retardants. Because of their widespread use, CPs are 30 31 regularly released into the environment during production, transportation, and recycling processes and through leaching and volatilization from landfills (Tomy et al. 1998; Sverko 32 et al. 2012; Brandsma et al. 2019). In 2017, short-chain chlorinated paraffins (SCCPs; C₁₀-33 34 C_{13}) were classified as persistent organic pollutants (POPs) under the Stockholm Convention (United Nations Environment Programme (UNEP) 2017). The production of 35 SCCPs has therefore stopped in, e.g., Europe, the US and Japan. However, SCCPs are still 36 ubiquitous in waste (Matsukami and Kajiwara 2019; Matsukami et al. 2020) and have been 37 detected in most environmental compartments including ambient air (Fridén et al. 2011; 38 Huang et al. 2017; van Mourik et al. 2020). Moreover, other CPs (i.e., medium-chain CPs 39 (MCCPs, C₁₄-C₁₇) and long-chain CPs (LCCPs, C₁₈ and longer)) are still being produced 40 and used (Brandsma et al. 2017). It is therefore imperative to conduct environmental risk 41 42 assessments of CPs based on sound scientific understanding of their environmental behavior. 43 Physicochemical properties such as partition coefficients and vapor pressure are used to 44

understand transport and environmental fate of pollutants. Congener-specific data for such
properties would be desirable to capture the varying occurrence of CP congeners, although
there is little experimental data available now. In the literature, indirect measurements of

48 the octanol/water partition coefficient and the saturated vapor pressure using

49	chromatographic retention approaches have been reported (Drouillard et al. 1998; Hilger et
50	al. 2011). Additionally, various computational methods have been explored to estimate the
51	properties of CP congeners (Glüge et al. 2013). In previous studies, we also have
52	investigated congener-specific partition properties of CPs using GC retention indices and
53	quantum chemically based calculations (Endo and Hammer 2020; Hammer et al. 2020).
54	While such experimental and computational estimations are useful and may be best
55	attainable for a majority of components in a complex mixture, there also is a strong need
56	for direct experimental data to back up the reliability of such estimations.
57	The objective of this work was to determine vapor pressures of CPs on a homologue
58	basis (i.e., a group of congeners with the same molecular formula). Vapor pressure of a
59	chemical is considered a surrogate property for chemical's volatility in the environment. A
60	gas saturation method with a generator column was used to measure the partial vapor
61	pressure (<i>P</i>) of each congener group above CP technical mixture between 20 and 50° C.
62	Three technical mixtures were selected based on differing congener distributions so that the
63	vapor pressures of a range of CP congeners could be investigated. The measured P was
64	used to obtain the saturated vapor pressure (P^*) for each congener group, assuming an ideal
65	mixture. This study provides the first direct measurements of the congener group-specific
66	vapor pressures for CPs, which allows development and evaluation of P and P^* prediction
67	methods.
68	
69	

71 MATERIALS AND METHODS

72 Chemicals and CP mixtures

Acetone (pesticide and polychlorinated biphenyl analysis grade 5000), methanol 73 74 (LC/MS grade) and ammonium acetate (Japan Industrial Standard special grade) were 75 purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Two commercial technical CP mixtures, Paroil 179-HV and Chlorowax 500C were provided by 76 AccuStandard Inc. (New Haven, CT, USA). Another technical mixture was provided by 77 78 Shandong Yousuo Chemical Technology Co., Ltd. (China) (Nishida et al. 2019), and is hereby referred to as the SYCT-wax mixture. The distributions of CP congeners in these 79 mixtures were determined by liquid chromatography-electrospray ionization-tandem mass 80 spectrometry (LC-ESI-MSMS) (Matsukami et al. 2020; McGrath et al. 2021), as described 81 below. 82

83

84 *Gas saturation method*

The gas saturation method used in this study is similar to the methods presented by Widegren and Bruno (2010) and Kuramochi et al. (2014). Briefly, nitrogen carrier gas was passed through a generator column containing CP mixture. The equilibrated vapor was trapped at the outlet of column and analyzed for concentrations of CP congener groups. More details are explained in the following.

90 The generator column consisted of 2 m polytetrafluoroethylene (PTFE) tubing (6.35

91 mm o.d., 4.35 mm i.d., GL Sciences, Japan) filled with solvent-cleaned borosilicate glass

92 beads (3 mm in diameter, AS ONE, Japan). Approximately 150–400 mg of CP mixture was

93	diluted with 5 mL of acetone and was pipetted into the glass beads-filled PTFE tube.
94	Acetone was then slowly evaporated under a nitrogen flow, leaving the beads coated with
95	CP mixture. During evaporation, the column was moved occasionally so that the remaining
96	solution of CP mixture was re-distributed within the column to achieve even distribution. A
97	1/8" stainless-steel tube (2.2 mm i.d. × 3.0 m in length, GL Sciences) was connected to the
98	inlet of the generator column as a pre-heating column. The generator column was placed in
99	a temperature-controlled oven (GC4000, GL Sciences). The outlet of the generator column
100	was connected to a 1/8" stainless-steel trap column (2.2 mm i.d. \times 0.4 m in length, GL
101	Sciences) and a Sep-Pak Plus PS-2 cartridge (Waters). The run times were 8–120 h,
102	depending on the oven temperature and the CP mixture composition. The nitrogen gas flow
103	was controlled at 1 mL min ⁻¹ with a mass flow controller (SEC-E40MK3 10SCCM, Horiba,
104	Kyoto, Japan) and the outflow was monitored using a mass flow meter to ensure no leak.
105	At a later time in the project, the flow was increased to 2 or 4 mL min ⁻¹ to measure low P
106	values. There was no significant influence of flow on the measured P values. The
107	temperature inside the oven was monitored using a quartz thermometer (DMT-600B,
108	Tokyo Dempa, Japan). The atmospheric pressure was measured using an MHB-382SD
109	portable barometer (MotherTool, Nagano, Japan). The trapped vapor sample was extracted
110	from the stainless-steel trap column using 10-20 mL acetone and from the Sep-pak
111	cartridge using 10 mL acetone. The extracts were evaporated to near dryness under a
112	nitrogen stream, after which 1 mL of methanol was added. The final extracts were
113	transferred to 1.5 mL HPLC vials for further analysis, as explained below. The extracts

from the Sep-pak cartridge did not contain an appreciable amount of CPs, confirming thatno breakthrough occurred in the stainless-steel trap column.

116 Vapor pressure measurements for Paroil 179-HV and Chlorowax 500C were performed at 30, 40 and 50°C, and for SYCT-wax at 20, 30, 40 and 50°C. Experiments at 20°C were 117 only performed with the SYCT-wax mixture because of the low expected vapor pressures 118 that require an extensive time. For experiments performed at 20°C, the generator column 119 and the pre-heating column were submerged in a cooled water-bath instead of using the 120 121 temperature regulated oven. In some instances, experiments showed leaching of liquid CP 122 mixture from the generator column to the trap column. Leaching was identified from the congener distribution pattern in the vapor sample that was similar to that of the original 123 124 mixture rather than would be expected in a vapor sample (i.e., high concentrations for most abundant congeners in the mixture instead of most volatile congener groups). Results from 125 such experiments were not considered further. 126

127

128 *Quantification of CP congener groups in vapor samples*

129 An electrospray ionization-tandem mass spectrometer equipped with a liquid

130 chromatographic system (ACQUITY UPLC H-Class/Xevo TQ-S micro system; Waters

131 Corp., Milford, MA, USA) was used for the analysis. A ZORBAX SB-CN column (100

 $132 \text{ mm} \times 2.1 \text{ mm i.d.}, 1.8 \mu\text{m};$ Agilent Technologies Inc.) was used for the separation of CP

133 congeners. A water solution containing 5 mM ammonium acetate was used as mobile phase

134 A and 100% methanol containing 5 mM ammonium acetate as mobile phase B. The

135 following gradient was used with minor modifications from the original parameters in our

136	earlier reports (Matsukami et al. 2020; McGrath et al. 2021): 0 min (60% B), 5 min (73%
137	B), 20 min (99% B), 22 min (99% B), and 22.1 min (60% B). For Chlorowax 500C and
138	SYCT-wax experiments, 25 SCCP congeners (C ₁₀ Cl ₄₋₈ , C ₁₁ Cl ₄₋₉ , C ₁₂ Cl ₄₋₁₀ , C ₁₃ Cl ₄₋₁₀) and
139	28 MCCP congeners ($C_{14}Cl_{4-10}$, $C_{15}Cl_{4-10}$, $C_{16}Cl_{4-10}$, and $C_{17}Cl_{4-10}$) were quantified as
140	described previously (Matsukami et al. 2020; McGrath et al. 2021). For Paroil 179-HV,
141	peak areas of 22 SCCP congeners, $C_{10}Cl_{7-11}$, $C_{11}Cl_{8-12}$, $C_{12}Cl_{8-13}$, and $C_{13}Cl_{9-14}$ were
142	acquired by the LC-ESI-MSMS method with optimization of multiple-reaction-monitoring
143	(MRM) transition parameters. Additional information with respect to MRM transitions for
144	the measurement of CP congeners is given in Tables S1–S3 of the Supplementary
145	Materials. The LOQ value was defined as a signal-to-noise ratio of 5 for the CP congeners
146	(Tables S4 and S5 of Supplementary Materials).
147	

Calculation of Vapor Pressure of CPs 148

The partial vapor pressure (P in Pa) of each CP congener group was calculated from the 149 measured concentration using the ideal gas law: 150

152
$$P = \frac{m}{MV_g} RT$$
(1)

153

where *m* is the mass of the CP congener group measured in the vapor sample (g), *M* the 154 molar mass of the CP congener group (g mol⁻¹), R the gas constant, T the temperature (K) 155 inside the column oven and V_g the total volume of the carrier gas (L). V_g was obtained by 156

correcting the nominal gas volume, which is referenced to the standard condition, for the 157 actual pressure and temperature. 158 Raoult's law with the activity coefficient assumed to be 1 (eq 2) was used to convert the 159 measured P to the saturation vapor pressure (P^*) : 160 161 $P^* = P/x$ 162 (2)163 where *x* is the mole fraction of the congener group of concern in the CP mixture. *x* was 164 derived as, 165 166 $x = w \frac{\overline{M_{mix}}}{M}$ 167 (3) 168

169 *w* is the measured mass fraction of the congener group in the mixture. $\overline{M_{mix}}$ is the average 170 molar mass of the mixture (g mol⁻¹) and was estimated from the measured compositions of 171 the CP mixture. Here we consider each congener group as a pseudo-compound, bearing in 172 mind that actual P^* values differ across individual congeners.

173 Currently, there is no calibration standard available for the major congeners in the

- highly chlorinated Paroil 179-HV mixture (e.g., C₁₀Cl₉, C₁₁Cl₁₀₋₁₁, C₁₂Cl₁₁₋₁₂ and C₁₃Cl₁₁₋
- 175 12). Therefore, we determined P^* by using the peak areas of the CP congeners in the Paroil
- 176 179-HV mixture and vapor samples, as following. First, the mole fraction x of a CP
- 177 congener group in the Paroil 179-HV mixture can be expressed as,
- 178

179
$$x = \frac{\alpha P A_{mix}}{C_{mix,dilution}} \frac{\overline{M_{mix}}}{M}$$
(4)

181 where α is the response factor of the LC-ESI-MSMS analysis (g L⁻¹ area counts⁻¹), *PA*_{mix} 182 the peak area from the analysis of diluted mixture solution (area counts), and $C_{\text{mix,dilution}}$ the 183 concentration of the mixture in the diluted solution that is injected to the LC (g L⁻¹). $\overline{M_{mix}}$ 184 of Paroil 179-HV was estimated as 520 g mol⁻¹, based on the sum of molar masses of 185 congener groups weighted by their peak areas. *P* can be expressed as

186

187
$$P = \frac{\alpha P A_g V_{sol}}{M V_g} RT$$
(5)

188

189 where PA_g is the peak area from the analysis of the vapor sample (area counts), V_{sol} (L) the 190 final solution volume of the vapor sample that is subjected to the LC analysis (in our case 1 191 mL, see section *gas saturation method*) and V_g (L) is the volume of nitrogen carrier gas. By 192 inserting eqs 4 and 5 in eq 2, we can remove the unknown response factor (α) from the 193 equations and calculate P^* of the congener group:

194

195
$$P^* = \frac{P}{x} = \frac{PA_g}{PA_{mix}} \frac{V_{sol}}{V_g} \frac{C_{mix,dilution}}{\overline{M_{mix}}} RT$$
(6)

196

197 The assumption here is the activity coefficient being 1, as for eq 2.

198 The enthalpy of vaporization (ΔH_{vap}) was determined using the Clausius-Clapeyron equation. Thus, ΔH_{vap} is derived from the slope of the logarithmic vapor pressure versus the 199 200 reciprocal temperature (eq 7). 201 $\ln P^* = -\frac{\Delta H_{\text{vap}}}{R}\frac{1}{T} + c$ 202 (7) 203 where *c* is the regression constant. 204 205 206 Prediction of Saturated Vapor Pressure by COSMO-RS-trained Fragment Contribution Models (FCMs) 207 208 COSMO-RS is a quantum chemically based prediction theory that can calculate 209 partition properties from molecular structure alone without the need for any empirical data. In a recent publication, we presented a fragment contribution model (FCM) trained with the 210 211 COSMO-RS predictions as a tool to provide quantum chemically based COSMO-RS predictions for partition coefficients of thousands of CP congeners within a short time 212 (Endo and Hammer 2020). In the continuation article (Endo 2021), the FCM was trained 213 for predicting $\log P^*$ and was used to calculate $\log P^*$ for thousands of congeners that likely 214 exist in CP technical mixtures. The median values of log P^* and ΔH_{vap} for each congener 215 group were taken from the article and compared to the experimental values from this work. 216 217 218 219

RESULTS AND DISCUSSION

Compositions of CP mixtures

222	Analysis of the CP technical mixtures showed that the SYCT-wax mixture consists of
223	both SCCPs and MCCPs (C_{10} – C_{17}) with 4–10 Cl atoms per molecule, the Chlorowax 500C
224	consists of SCCPs (C ₁₀ –C ₁₃) with 4–10 Cl atoms per molecule, and the Paroil 179-HV
225	mixture contains more chlorinated congeners and consists of SCCPs with 7-14 Cl per
226	molecule, as shown in Figure S1A. Note that only the relative peak areas of measured
227	congeners are presented for Paroil 179-HV.
228	
229	Measured vapor pressures
230	Due to the low volatility at the applied temperatures, detected peak areas of congeners
231	were comparatively small, particularly for the Paroil 179-HV mixture. The measured values
232	of log P and log P^* are presented in Tables S6 to S10 and Figure S1. Obviously,
233	distribution of the congeners in the vapor samples differed from that in the liquid mixture,
234	as shorter and lower chlorinated congeners were more abundant in the vapor phase (see log
235	P in Tables S6 and S7). Note, however, that $\log P$ values (thus, the amounts in the gas
236	phase) of congener groups do not always decrease with increasing number of Cl atoms, as
237	the abundance of low chlorinated congeners (e.g., Cl ₄ congeners) can be low in the mixture
238	(e.g., see $C_{11}Cl_4$ vs $C_{11}Cl_5$, Tables S6 and S7).
239	Log P^* values at each temperature decreased with carbon chain length and with the
240	number of Cl atoms (Figure 1). The widest variety of congener groups were measured at
241	50°C because of relatively high P and the data at this temperature are thus useful to

- compare across the three mixtures. At 50°C, $\log P^*$ values of congener groups in SYCT-
- 243 wax and Chlorowax 500C were generally similar (see $\log P^*$ in Tables S8 to S10). Paroil
- 244 179-HV contains higher chlorinated congeners and their $\log P^*$ data were lower, in line
- with the trend of the other two mixtures. Log P^* values of congener groups that were found
- in all mixtures (i.e., $C_{10}Cl_7$ and $C_{11}Cl_8$) were within 0.5 log units between the three
- 247 mixtures (Figure 1). These results suggest that $\log P^*$ of a given congener group is largely
- 248 independent of the mixtures.

Figure 1. Log P^* values measured at 50°C for C₁₀₋₁₃ congeners in the SYCT-wax,

251 Chlorowax 500C and Paroil 179-HV mixtures versus the number of Cl atoms (A–D), and 252 $\log P^*$ values at 50°C of all C_{10–16} congeners measured in the SYCT-wax mixture versus 253 number of Cl atoms (E) and the number of C atoms (F). Error bars indicate minimum and 254 maximum values.

255 *Temperature dependence of* P^*

256

257 unavailable because of too low P. The temperature dependence thus has to be considered to extrapolate P^* values at reference temperature of 25°C ($P^*_{25°C}$) or at environmental 258 temperature which can be even lower. 259 As expected, a linear relationship was found between $\log P^*$ and the reciprocal 260 temperature (Figure S2-4). The enthalpy of vaporization (ΔH_{vap}) was calculated using eq 7 261 (Table 1). ΔH_{vap} values were between 73 and 122 kJ mol⁻¹ for C₁₀₋₁₄Cl₄₋₈ and are similar to 262 those found for polychlorinated biphenyls (PCBs) with similar degree of chlorination (Puri 263 et al. 2001; Nakajoh et al. 2006). The ΔH_{vap} values are somewhat higher than the values 264 265 estimated for CPs by Drouillard et al. using a GC retention method (67.3–92.5 kJ mol⁻¹ for $C_{10-12}Cl_{2-6}$ (Drouillard et al. 1998). The difference may be due to the different experimental 266 267 methods and/or different congener groups considered in the two studies. The ΔH_{vap} values 268 measured in this work seem to be similar between congener groups and there is no trend with respect to the number of C or Cl atoms. Drouillard's data showed a slight increase in 269 ΔH_{vap} with increasing number of C atoms (~3 kJ mol-1) and Cl atoms (~5 kJ mol⁻¹ per Cl). 270 The lack of a relationship in the current study may have resulted from the experimental 271 accuracy that was not high enough to detect such subtle differece in ΔH_{vap} between 272 273 congener groups (see the standard errors for the ΔH_{vap} data in Table 1). Particularly, P at 274 low temperatures were close to the limit of quantification but do affect the slope of the ln P 275 versus 1/T plot.

While we conducted the measurement of P from 20 to 50°C, data for 20°C are often

276	The ΔH_{vap} values predicted by the COSMO-RS-trained FCM were 80–120 kJ mol ⁻¹ for
277	$C_{10-14}Cl_{4-8}$ and in agreement with our experimental data (Table S11). In contrast to the
278	experimental data, the calculated ΔH_{vap} values from the COSMO-RS FCM show a positive
279	relationship between ΔH_{vap} and the number of C or Cl atoms. Predicted values of ΔH_{vap}
280	increase by ~5.5 kJ mol ⁻¹ per C atom and ~4.5 kJ mol ⁻¹ per Cl atom. All in all, the available
281	data suggest that ΔH_{vap} of C ₁₀₋₁₄ Cl ₄₋₈ congener groups are ca 100 ± 20 kJ mol ⁻¹ . There may
282	be some positive dependence on the numbers of C and Cl atoms, which however needs to
283	be investigated further.
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	

Table 1. Log $P^*_{25^{\circ}C}$ values from inter- or extrapolation of experimental data for SYCT-wax,

- 297 log P^*_{MLR} values for 25°C using eq 8, and ΔH_{vap} values from experimental data for SYCT-
- 298 wax. P^* is in Pa.

Congener	$\log P^*_{25^{\circ}\mathrm{C}}$	$\log P^*_{\rm MLR}$	$\Delta H_{\rm vap}$ (kJ mol ⁻¹)
group	\pm standard error		\pm standard error
$C_{10}Cl_4$	-2.14 ±0.21	-1.94	79 ±12
$C_{10}Cl_5$	-2.53 ±0.12	-2.44	99 ±5
$C_{10}Cl_6$	-3.01 ±0.07	-2.93	104 ±3
$C_{10}Cl_7$	-3.45 ±0.07	-3.43	101 ±4
$C_{11}Cl_4$	-2.33 ±0.15	-2.34	92 ±8
$C_{11}Cl_5$	-2.83 ± 0.08	-2.83	102 ±3
$C_{11}Cl_6$	-3.40 ±0.07	-3.33	104 ±3
$C_{11}Cl_7$	-3.84 ±0.09	-3.82	101 ±4
$C_{11}Cl_8$	-4.20 ± 0.12	-4.32	95 ±12
$C_{12}Cl_4$	-2.89 ±0.06	-2.73	122 ±6
$C_{12}Cl_5$	-3.23 ±0.07	-3.23	107 ±3
$C_{12}Cl_6$	-3.73 ±0.08	-3.73	102 ±3
$C_{12}Cl_7$	-4.18 ±0.09	-4.22	96 ±4
$C_{12}Cl_8$	-4.52 ± 0.12	-4.72	84 ±9
$C_{13}Cl_5$	-3.54 ±0.08	-3.63	100 ±5
$C_{13}Cl_6$	-4.11 ±0.08	-4.12	98 ±4
$C_{13}Cl_7$	-4.52 ±0.1	-4.62	89 ±5
$C_{14}Cl_5$	-3.70 ±0.15	-4.02	73 ±9
$C_{14}Cl_6$	-4.43 ±0.14	-4.52	84 ±12
$C_{14}Cl_7$	-5.02 ±0.19	-5.02	94 ±17

300 P^* of CP congeners at 25°C and evaluation of prediction models

Measured log P^* values were used to inter- or extrapolate the values of log $P^*_{25^{\circ}C}$. This calculation was only performed for congener groups with measured vapor pressures at three or more temperatures (Table 1). These experimentally based log $P^*_{25^{\circ}C}$ values of CPs are

304	comparable to measured $\log P^*$ values of other semi-volatile persistent organic chemicals
305	such as PCBs at the same temperature and with the same number of Cl (-4.02 to -1.89 for
306	PCBs with Cl ₄₋₇) (Lei et al. 2004; Nakajoh et al. 2006). Values of log $P^*_{25^{\circ}C}$ are
307	furthermore well in line with experimental values from Drouillard et al. (Figure S5). Note
308	that experimental log P^* values from Drouillard et al. were derived from GC retention
309	measurements using reference compounds for which $\log P^*$ at 25°C was known. When
310	plotting both experimentally derived datasets against the number of Cl atoms, a nonlinear
311	relationship was observed. Thus, the vapor pressure seems to decrease more from 2 to 4 Cl
312	atoms than from 6 to 8 Cl atoms (Figure S5).
313	Using the vapor pressure data from the current study, a multiple linear regression
314	(MLR) model was developed to predict $\log P^* (\log P^*_{MLR})$. The model was set up with the
315	number of C atoms (#C), the number of Cl atoms (#Cl) and the reciprocal temperature $(1/T)$
316	in K ⁻¹ as independent variables. Using measured $\log P^*$ values for the SYCT-wax mixture
317	from 20 to 50°C as training data, we obtained:
318	
319	$\log P_{MLR}^* = -0.397(\pm 0.005) \ \text{\#C} - 0.496(\pm 0.005) \ \text{\#Cl} - 5200(\pm 72) \ (1/T) + 21.46(\pm 0.26) $ (8)
320	$R^2 = 0.98$, SD = 0.12, $n = 312$
321	
322	Here, we considered all replicate measurements as individual data. The congener
323	groups covered are C ₁₀ Cl ₅₋₈ , C ₁₁₋₁₃ Cl ₄₋₉ , C ₁₄ Cl ₅₋₉ , C ₁₅ Cl ₅₋₈ , and C ₁₆ Cl ₆₋₇ . This approach
324	assumes the same temperature dependence for all congener groups, following the
325	observations of ΔH_{vap} as presented above. In the calibration of the model, congeners C ₁₀ Cl ₄

326	and $C_{14}Cl_4$ were excluded from the model input as these were clear outliers. This might be
327	related to the low sensitivity of the mass spectrometer for Cl ₄ congeners, although the data
328	used were above an S/N ratio of 5. The measured log P^* values and the fitted values are
329	shown in Figure 2. The model fits the experimental vapor pressures for CP congeners well
330	with an R^2 of 0.98. The model predicts a 2.5-fold decrease in P^* with the addition of a C
331	atom and a 3.1-fold decrease in P^* with the addition of a Cl atom. The coefficient for $1/T$ (–
332	5200) corresponds to ΔH_{vap} of 101 kJ mol ⁻¹ , agreeing with the discussion in the previous
333	section.
334	The regression model from the current study (eq 8) shows a similar decrease in $\log P^*$
335	with carbon chain length as compared to the regression model by Drouillard et al. (1998) (-
336	0.397 vs –0.353) for CP congener groups. In contrast, the decrease in log P^* with a Cl atom
337	is smaller in eq 8 than in Drouillard's model (-0.496 vs -0.645). This difference comes
338	from the fact that the dependence of $\log P^*$ on #Cl is not fully linear over a wide range of
339	#Cl, as previously discussed and shown in Figure S5. The training data of the current study
340	consisted of CP congeners with Cl ₄₋₉ whereas the Drouillard's study included <i>n</i> -alkanes
341	and CP congeners with Cl ₂₋₆ . Thus, the current study considered higher chlorinated
342	congeners, for which $\log P^*$ is slightly less sensitive to #Cl, than in the literature study.
343	Both models can predict the experimentally derived log P^*_{25C} data well (Figure 3).
344	Predictions by Drouillard's model appear to be less accurate for higher chlorinated
345	congeners (i.e., Cl ₈), consistent with the expectation from the model calibration set. The
346	new model (eq 8) is expected to have a larger domain of applicability than the literature

347 model, as eq 8 has been calibrated with directly measured data for more congener groups and more temperatures, yet this expectation remains to be evaluated with external data. 348 349 Earlier than the development of COSMO-RS-trained FCMs, Glüge et al. (2013) calculated log P^* values at 25°C using COSMO-RS for a selection of four structural 350 isomers per congener group, providing the maximum and minimum out of the four $\log P^*$ 351 values. In Figure 3B, the ranges of Glüge's predicted $\log P^*$ values are compared with the 352 experimentally based log $P^*_{25^{\circ}C}$. While experimental data are within the ranges provided by 353 Glüge et al., $\log P^*_{25^{\circ}C}$ data for CPs with C₁₀ and C₁₁ tended to be at the lower limit and log 354 $P_{25^{\circ}C}^{*}$ for CPs with C₁₂ to C₁₄ at the upper limit of predictions. Note that the ranges in 355 predicted log P^* values are large (e.g., more than 3 log units for C₁₃Cl₇) and increase with 356 357 the addition of C and Cl atoms to the CP congener groups. A comparison of the experimentally based log $P^*_{25^{\circ}C}$ data with the COSMO-RS-trained 358 FCM predictions is shown in Figure 3C. The median value of FCM predictions for a given 359 congener group agrees well with the experimental log $P^*_{25^{\circ}C}$ ($R^2 = 0.96$; RSME = 0.25), 360

361 indicating high accuracy of FCM predictions.

Equation 8 was applied to predict the measured log P^* values from the Paroil 179-HV mixture, which includes higher chlorinated congeners (Figure S6). Due to the low vapor pressure of CP congeners in this mixture, most of the data were measured at 40 or 50°C (Table S10). Generally, the model predictions for different temperatures agreed (RMSE = 0.25 log units) and correlated ($R^2 = 0.98$) well with the measured log P^* . However, the calculated log P^*_{MLR} values are consistently lower than the measured data for these CPs, which likely resulted from the model extrapolation and the inherent nonlinearity of log P^* to #Cl. The COSMO-RS-trained FCM model predicted log P^* values that also agreed well with the experimental log P^* values for the Paroil 179-HV mixture ($R^2 = 0.94$; RSME = 0.30) (Figures S6). For now, quantum-chemically based predictions may be used to fill further data gaps, as they do not depend on the empirical calibration and can capture nonlinear relationships between log P^* and structural features (see Figure S5).

375

Figure 2. Calculated $\log P^*$ values with eq 8 versus measured data.

Figure 3. Comparison of experimentally-based log P^{*}_{25°C} values with calculated vapor
pressure data from the regression model by Drouillard et al. (1998) (A), from COSMO-RS
calculations by Glüge et al. (2013) (B), from the COSMO-RS-trained FCM by Endo (2021)
(C), and from eq 8 in the current study (D).

383

384 *Comparing log* P^* *with gas/particle partitioning*

385 The gas/particle partition coefficient (K_p) is a key parameter in determining the

- atmospheric transport and environmental fate of semi-volatile organic compounds
- 387 (SVOCs), and the saturated vapor pressure has been used to model K_p of SVOCs (Pankow
- 1994; Lei et al. 2004). There are a few studies that presented environmental vapor

389	partitioning data for CPs: Ma et al. (2014) and Jiang et al. (2021) presented gas/particle
390	coefficients (K_p) derived from measured gas and particulate concentrations of CP congeners
391	in the Arctic region. Wang et al. (2012) measured concentrations of CPs in the atmosphere
392	of the Beijing area in summer and winter. Some of these published articles made only the
393	data for particulate fractions ϕ instead of K_p available. In those cases, we calculated
394	$\phi/(1-\phi)$, which is proportional to K_p . Moreover, Wang et al. (2015) measured vegetation/air
395	partitioning coefficients (C_v/C_p) by measuring CP concentrations in conifer needles. These
396	data are also related to volatility and are thus considered here. All literature data considered
397	are summarized in Table S12. We compared $\log P^*$ from the current and other studies to the
398	environmental partitioning data from the field studies cited above. Octanol/air partition
399	coefficients (K_{oa}) predicted by COSMO-RS-trained FCMs and EPISuite were also included
400	in the comparison. The comparison shows that R^2 is similar no matter which predictive
401	models are used and which of $\log P^*$ or $\log K_{oa}$ is considered. The new model (eq 8) shows
402	comparable results with existing models for CPs in terms of correlations with the field
403	partitioning data available in the literature. Note that only a few data points related to
404	volatility of MCCPs are available in the literature (e.g., only 2 MCCP congeners in Jiang's
405	data set and 5 in Ma's data set, see Table S4), and no data can be found for congeners with
406	more than 10 Cl atoms. Suitability of the models needs to be re-evaluated when data for
407	more congeners become available.

Sampling location (year)	Parameter	Current study	Drouillard et al., ^e	Endo, ^f	Endo, ^f	EPIsuite, ^g
		$\log P^*_{\rm MLR}$	$\log P^*$	$\log P^*$	$\log K_{\mathrm{oa}}$	$\log K_{\mathrm{oa}}$
Antarctic region (2013) ^a	$\log \left(\phi / (1 - \phi) \right)$	0.48	0.51	0.39	0.44	0.51
Antarctic region (2014) ^b	$\log K_{\rm p}$	0.81	0.78	0.82	0.82	0.79
Antarctic region (2015) ^b	$\log K_{\rm p}$	0.43	0.44	0.41	0.42	0.44
Antarctic region (2016) ^b	$\log K_{\rm p}$	0.71	0.73	0.64	0.68	0.73
Antarctic region (2017) ^b	$\log K_{\rm p}$	0.78	0.82	0.70	0.74	0.81
Antarctic region (2018) ^b	$\log K_{\rm p}$	0.91	0.91	0.86	0.89	0.91
Beijing area in winter ^c	$\log \left(\phi / (1 - \phi) \right)$	0.84	0.83	0.78	0.81	0.83
Beijing area in summer ^c	$\log \left(\phi / (1 - \phi) \right)$	0.24	0.14	0.33	0.28	0.16
Beijing area ^d	$\log (C_v/C_g)$	0.77	0.77	0.79	0.82	0.70

410 Table 2. Correlations (R^2) between the log of field-measured partition coefficients and 411 model-predicted log P^* or log K_{oa} values.

412 ^a (Ma et al. 2014); ^b (Jiang et al. 2021); ^c (Wang et al. 2012); ^d (Wang et al. 2015); ^e(Drouillard et al. 1998);
 413 ^f(Endo 2021); ^g(EPA 2009)

414

415 Conclusions

In this work, for the first time, direct measurements of $\log P$ and $\log P^*$ for a broad 416 range of CP congener groups were performed using a gas saturation method. Log P^* of CPs 417 is found to be comparable to other POPs such as PCBs. A new model was calibrated and 418 validated with the newly measured data and can be used to estimate $\log P^*$ for a broad 419 range of CP congener groups. Note, however, that data for CP congener groups with more 420 than 10 Cl atoms are still limited. While the current study was able to measure $\log P^*$ 421 values for CP congener groups in the highly chlorinated Paroil 179-HV mixture at 40 and 422 50°C, P^* for congeners in this mixture was too low to measure at ambient temperature by 423 the method used. Moreover, the absence of available calibration standards for such highly 424 chlorinated congeners did not allow us to determine the absolute values of P even at high 425

426	temperature. Extrapolation of the linear regression models presented here or elsewhere to
427	highly chlorinated congeners may cause additional errors, because of the nonlinear
428	relationship between $\log P^*$ and the number of Cl atoms. As a future work, vapor pressures
429	of these highly chlorinated CP congener groups should be investigated. Experimental data
430	are also limited for MCCPs and are totally absent for LCCPs, which also warrants further
431	studies.
432	
433	Acknowledgements
434	This research was supported by the Environment Research and Technology Development
435	Fund SII-3-1 (JPMEERF18S20300) of the Environmental Restoration and Conservation
436	Agency, Japan. The SYCT mixture was shared by Takashi Fujimori and Masaki Takaoka,
437	University of Kyoto within the Environment Research and Technology Development Fund
438	SII-3 project. We gratefully acknowledge the technical support from Humiaki Kato for the
439	LC-ESI-MSMS analysis.
440	
441	Disclaimer
442	The authors declare no competing financial interest.
443	
444	Data availability
445	The authors declare that all data supporting the findings of this study are available within
446	the article and its supplementary information file.
447	

- *Author Contributions statement*
- 449 Study design: JH, SE, HK. Gas saturation experiments: JH. LC/MS measurements: HM.
- 450 COSMO-RS calculations: SE. Data evaluation: JH, SE. Drafting of manuscript: JH.
- 451 Revising of manuscript: JH, SE, HM, HK.

455 **REFERENCES**

- 456 Brandsma SH, Brits M, Groenewoud QR, van Velzen MJM, Leonards PEG, de Boer J.
- 457 2019. Chlorinated Paraffins in Car Tires Recycled to Rubber Granulates and Playground
- 458 Tiles. Environ Sci Technol. 53(13):7595–7603. doi:10.1021/acs.est.9b01835.
- 459 Brandsma SH, van Mourik L, O'Brien JW, Eaglesham G, Leonards PEG, de Boer J, Gallen
- 460 C, Mueller J, Gaus C, Bogdal C. 2017. Medium-Chain Chlorinated Paraffins (CPs)
- 461 Dominate in Australian Sewage Sludge. Environ Sci Technol. 51(6):3364–3372.
- 462 doi:10.1021/acs.est.6b05318.
- 463 Drouillard KG, Tomy GT, Muir DCG, Friesen KJ. 1998. Volatility of chlorinated n-alkanes
- 464 (C10-C12): Vapor pressures and Henry's law constants. Environ Toxicol Chem.
- 465 17(7):1252–1260. doi:10.1002/etc.5620170709.
- 466 Endo S. 2021. Refinement and extension of COSMO-RS-trained fragment contribution
- 467 models for predicting partition properties of C10–20 chlorinated paraffin congeners.
- 468 doi:Submitted, in review. Preprint available at
- 469 https://doi.org/10.26434/chemrxiv.14256599.v1.
- 470 Endo S, Hammer J. 2020. Predicting partition coefficients of short-chain chlorinated
- 471 paraffin congeners by COSMO-RS-trained fragment contribution models. Environ Sci
- 472 Technol. 54(23):15162–15169. doi:10.1021/acs.est.0c06506.
- 473 Fridén UE, McLachlan MS, Berger U. 2011. Chlorinated paraffins in indoor air and dust:
- 474 Concentrations, congener patterns, and human exposure. Environ Int. 37(7):1169–1174.
- 475 doi:10.1016/j.envint.2011.04.002.
- 476 Glüge J, Bogdal C, Scheringer M, Buser AM, Hungerbühler K. 2013. Calculation of
- 477 Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins. J Phys
- 478 Chem Ref Data. 42(2):023103. doi:10.1063/1.4802693.

- 479 Hammer J, Matsukami H, Endo S. 2020. Congener-specific partition properties of
- 480 chlorinated paraffins evaluated with COSMOtherm and GC-retention indices. Sci Rep.
- 481 11(1):4426. doi:10.1038/s41598-021-84040-z.
- 482 Hilger B, Fromme H, Völkel W, Coelhan M. 2011. Effects of chain length, chlorination
- 483 degree, and structure on the octanol-water partition coefficients of polychlorinated n-
- 484 alkanes. Environ Sci Technol. 45(7):2842–2849. doi:10.1021/es103098b.
- Huang H, Gao L, Xia D, Qiao L, Wang R, Su G, Liu W, Liu G, Zheng M. 2017.
- 486 Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM 10
- 487 /PM 2.5 /PM 1.0 in Beijing, China. Environ Pollut. 225:674–680.
- 488 doi:10.1016/j.envpol.2017.03.054.
- Jiang L, Gao W, Ma X, Wang Yingjun, Wang C, Li Y, Yang R, Fu J, Shi J, Zhang Q, et al.
- 490 2021. Long-Term Investigation of the Temporal Trends and Gas/Particle Partitioning of
- 491 Short- and Medium-Chain Chlorinated Paraffins in Ambient Air of King George Island,
- 492 Antarctica. Environ Sci Technol. 55(1):230–239. doi:10.1021/acs.est.0c05964.
- 493 Kuramochi H, Takigami H, Scheringer M, Sakai SI. 2014. Measurement of vapor pressures
- 494 of selected PBDEs, hexabromobenzene, and 1,2-bis(2,4,6-tribromophenoxy)ethane at
- elevated temperatures. J Chem Eng Data. 59(1):8–15. doi:10.1021/je400520e.
- 496 Lei YD, Wania F, Mathers D, Mabury SA. 2004. Determination of Vapor Pressures,
- 497 Octanol-Air, and Water-Air Partition Coefficients for Polyfluorinated Sulfonamide,
- 498 Sulfonamidoethanols, and Telomer Alcohols. J Chem Eng Data. 49(4):1013–1022.
- doi:10.1021/je049949h.
- 500 Ma X, Zhang H, Zhou H, Na G, Wang Z, Chen C, Chen Jingwen, Chen Jiping. 2014.
- 501 Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins
- in the atmosphere of Fildes Peninsula of Antarctica. Atmos Environ. 90:10–15.
- 503 doi:10.1016/j.atmosenv.2014.03.021.

504 Matsukami H, Kajiwara N. 2019. Destruction behavior of short- and medium-chain

505 chlorinated paraffins in solid waste at a pilot-scale incinerator. Chemosphere. 230:164–172.

- 506 doi:10.1016/j.chemosphere.2019.05.048.
- 507 Matsukami H, Takemori H, Takasuga T, Kuramochi H, Kajiwara N. 2020. Liquid
- 508 chromatography–electrospray ionization-tandem mass spectrometry for the determination
- of short-chain chlorinated paraffins in mixed plastic wastes. Chemosphere. 244:125531.
- 510 doi:10.1016/j.chemosphere.2019.125531.
- 511 McGrath TJ, Poma G, Matsukami H, Malarvannan G, Kajiwara N, Covaci A. 2021. Short-
- and Medium-Chain Chlorinated Paraffins in Polyvinylchloride and Rubber Consumer
- 513 Products and Toys Purchased on the Belgian Market. Int J Environ Res Public Health.
- 514 18(3):1069. doi:10.3390/ijerph18031069.
- van Mourik LM, Wang X, Paxman C, Leonards PEG, Wania F, de Boer J, Mueller JF.
- 516 2020. Spatial variation of short- and medium-chain chlorinated paraffins in ambient air
- 517 across Australia. Environ Pollut. 261:114141. doi:10.1016/j.envpol.2020.114141.
- 518 Nakajoh K, Shibata E, Todoroki T, Ohara A, Nishizawa K, Nakamura T. 2006.
- 519 Measurement of temperature dependence for the vapor pressures of twenty-six
- 520 polychlorinated biphenyl congeners in commercial Kanechlor mixtures by the Knudsen
- 521 effusion method. Environ Toxicol Chem. 25(2):327–336. doi:10.1897/05-215R.1.
- 522 Nishida T, Fujimori T, Eguchi A, Takaoka M. 2019. Characteristics of high-temperature-
- 523 induced destruction of short-chain chlorinated paraffins in wax. 39th Int Symp Halogenated
- 524 Persistent Org Pollut. 81:383–386.
- 525 Pankow JF. 1994. An absorption model of the gas/aerosol partitioning involved in the
- formation of secondary organic aerosol. Athmospheric Environ. 28(2):189–193.
- 527 doi:10.1016/1352-2310(94)90094-9.

- 528 Puri S, Chickos JS, Welsh WJ. 2001. Determination of Vaporization Enthalpies of
- 529 Polychlorinated Biphenyls by Correlation Gas Chromatography. Anal Chem. 73(7):1480–
- 530 1484. doi:10.1021/ac001246p.
- 531 Sverko E, Tomy GT, Märvin CH, Muir DCG. 2012. Improving the quality of
- 532 environmental measurements on short chain chlorinated paraffins to support global
- regulatory efforts. Environ Sci Technol. 46(9):4697–4698. doi:10.1021/es301390v.
- Tomy GT, Fisk AT, Westmore JB, Muir DCG. 1998. Environmental chemistry and
- toxicology of polychlorinated n-alkanes. Rev Environ Contam Toxicol. 158:53–128.
- 536 doi:10.1007/978-1-4612-1708-4_2.
- 537 United Nations Environment Programme (UNEP). 2017. UNEP/POPS/COP.8/SC-8/11.
- 538 Listing of short-chain chlorinated paraffins.
- 539 Wang T, Han S, Yuan B, Zeng L, Li Y, Wang Y, Jiang G. 2012. Summer-winter
- 540 concentrations and gas-particle partitioning of short chain chlorinated paraffins in the
- atmosphere of an urban setting. Environ Pollut.(171):38–45.
- 542 doi:10.1016/j.envpol.2012.07.025.
- 543 Wang T, Yu J, Han S, Wang Y, Jiang G. 2015. Levels of short chain chlorinated paraffins
- 544 in pine needles and bark and their vegetation-air partitioning in urban areas. Environ Pollut.
- 545 196:309–312. doi:10.1016/j.envpol.2014.10.025.
- 546 Widegren JA, Bruno TJ. 2010. Gas saturation vapor pressure measurements of
- 547 mononitrotoluene isomers from (283.15 to 313.15) K. J Chem Eng Data. 55(1):159–164.
- 548 doi:10.1021/je900293j.