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Abstract:  

There is renewed interest in docking campaigns for ligand-discovery since the advent of ultra-large 

scale virtual libraries. Using brute-force search, the scale of the libraries suggests highly parallelized 

compute should be used to avoid years-long computations. This paper reports a re-analysis of 

docking data from an ultra-large docking campaign at the D4 receptor and AmpC beta lactamase, 

and demonstrates large reductions in computation time to identify the top-ranked ligands. A search 

of ‘baseline’ featurizations shows that logistic regression on Morgan fingerprints with 

pharmacophoric atom invariants can match the reported performance on the same task using 

message-passing networks. With this approach, an ultra-large docking campaign could be performed 

in a matter of weeks using consumer-grade CPUs with RDKit and scikit-learn. All code and figures 

are available at https://github.com/ljmartin/dockop  

 

1. Introduction: 

Molecular docking, and the related technique of molecular shape-matching, are virtual screening 

techniques that use the charge and 3D shape of molecules to identify new ligands for a target protein 

(1). Shape matching requires only a known ligand as a starting point and scores query molecules 

based on their overlapping volume and charge similarity. Docking requires a crystal structure of a 

protein, and scores molecules using some model of interaction with the binding site. Compared to 

shape-matching, docking is less biased to the structure of existing ligands, and can potentially 

identify interactions outside the known ligand binding mode (2). On the other hand, shape-matching 

is relatively faster (3) and showed good performance in early comparisons (4). The advent of “ultra-

large” scale molecule libraries, defined loosely as ~108 ligands, and some high-profile successes have 

driven renewed interest in docking for novel scaffold discovery (5-7).  

 

Practically, a docking campaign might begin by identifying a virtual library of synthesizable 

molecules. The larger and more diverse the library is, the more likely it contains novel active ligands 

for the target under investigation. Published ultra-large scale campaigns have taken a brute-force 

approach, docking ~108 - 109 ligands to identify the highest-ranking molecules for in vitro validation. 

https://github.com/ljmartin/dockop


 

Since the chance of success increases with library size, and docking is typically slower than shape-

matching, the time required to dock a full ultra-large scale library is a barrier to progress. As an 

example, the ZINC20 browser lists nearly 700 million protomers for the UCSF DOCK software 

(8, 9). At 1s per ligand, as estimated by Lyu et al. (6) , docking calculations would require 

approximately 20 years of compute. This is a lower bound – at the 15s estimated by Gorgulla et al. 

(7), this requires >300 years of compute.  Clearly, then, docking campaigns require high-

performance computing to parallelize, slowing iteration time and reducing the pool of researchers 

able to participate. Faster docking campaigns will broaden participation in virtual screening and 

novel ligand discovery. 

 

One way to improve speed, without requiring additional resources, is to avoid brute-force search 

by use of a statistical model that acts as a surrogate for the docking algorithm. Known as ‘iterative 

screening’ in virtual screening research (10), or ‘active learning’ in machine learning research (11), 

surrogate models can steer the search toward molecules that are more likely to be high-scoring. 

Substantial reductions in total docking time have been achieved using either classical machine 

learning (12) or artificial neural networks (13, 14). 

 

One recent example of active learning for docking is Graff et al, who used simulated analyses to 

show over an order of magnitude reduction in the number of docking calculations using a dataset 

of ligands docked to AmpC beta lactamase (13).  This work is notable not just due to the reduction 

in docking time, but because they used state of the art technology as the surrogate model – namely, 

a message-passing network that applies deep learning procedures directly to molecular graphs 

without featurization, which improved performance compared to classical machine learning. In 

addition, they were the first to apply this to an ultra-large scale dataset, which was made available 

by Lyu et al. (6), and which may be one of the drivers for renewed interest in molecular docking.  

 

This manuscript reports the performance of iterative screening using logistic regression on both the 

AmpC beta lactamase and D4 receptor data from Lyu et al.(6). The model relating docking score to 

hit-rate is re-framed to use percentiles, rather than absolute docking scores, making it amenable to 

classification. This framing is used to perform optimization of ‘baseline’ featurizations such as the 

Morgan fingerprint, showing larger fingerprint sizes and pharmacophoric atom invariants achieve 

substantial gains over the de facto standard of the 2,048 bit Morgan fingerprint. Comparing directly 

with the results in Graff et al., this simple approach can achieve better performance than a message-

passing network. The AmpC and D4 datasets are also compared, showing performance is target-



dependent. These analyses show that ultra-large docking campaigns can be performed in 1-2 weeks 

using consumer-grade CPUs, scikit-learn and rdkit. All analyses are reproducible, and code is available 

at https://github.com/ljmartin/dockop 

 

2. Results: 

2.1 D4: Binarizing docking scores by percentile 

Classifiers require a threshold, a.k.a. cut-off, score to binarize the ligands into ‘high-scoring’ and 

‘low-scoring’ classes. The experimental validation data from Lyu et al. can be used to estimate a 

threshold score (6). These validation data consist of in vitro assays of D4 receptor inhibition by 549 

compounds over a wide range of docking scores. They indicate hit-rate varies approximately 

monotonically with score. In their model, hit-rate was binned over docking scores. Binning can lead 

to artefacts that depend on the bin size (15). Similarly, the distribution of ligands over the range of 

docking scores is irregular, and may distort the relationship with hit rate. In addition, the range of 

scores output by UCSF DOCK can vary depending on the shape of the binding site and the 

chemistry of the exposed residues, which would require a new model is fit for each new protein.  

 

Figure 1 shows a generalized additive model fit to the validation data with a logit link function, 

without binning, and using ligand ranks instead of raw docking scores. The ligand ranks were 

calculated by sorting all 116 million docking scores and, when normalized to the range (0,100), are 

equivalent to a percentile that is uniformly distributed. This is in line with the intended use-case for 

docking in ligand discovery as a ranking tool, rather than estimating the distribution of binding 

affinities directly.  

 

https://github.com/ljmartin/dockop


 

Figure 1. Estimate of in vitro hit-rate with percentile docking score for the D4 receptor using data 

from Lyu et al. (6). A generalized additive model was fit to the inhibition data (blue line, with 95% 

CIs in shaded area). The hit rates and 95% CIs for the binned data is also shown for visualization 

purposes (black, scatter points) but only the un-binned data was used in model fitting. This model 

can be used to determine a cut-off that binarizes docking scores into high- and low-scoring classes. 

This cut-off was set to the 0.3rd percentile for all experiments.  

 

The use of a generalized additive model grants the flexibility to model the reduction in hit-rate 

observed at the ~0.0001th percentile and below, which corresponds to the best-scoring 11,600 

ligands in the D4 receptor screen. It also helps define a cut-off for binarizing docking scores into 

‘high-scoring’ and ‘low-scoring’ classes. For the remainder of this work, all logistic regression 

classifiers have been trained on binarized docking scores with cut-off set to the 0.3rd percentile score 

in the training data. This level has a half-maximal in vitro hit rate, in an attempt to maximize data in 

the high-scoring class while excluding low-scoring ligands.   

 

2.2 AmpC: Binary fingerprints have a wide range of performance 

Multiple fingerprints and fingerprint sizes were analysed to evaluated their performance as surrogate 

models. Simple, accessible, and fast approaches that handle sparse representation were favoured. 

To that end, Figure 2 shows a comparison of fingerprints available in the RDKit library (Atom pair 

(16), Morgan(17), Morgan with pharmacophoric atom invariants (18), Pattern (19), RDK (19), and 

Topological torsion (20)). Classifiers were trained on the binarized docking scores, using 0.3% as 



the percentile cut-off, and compared with average precision, a ranking metric, over 5 Monte Carlo 

cross-validation repeats using the AmpC dataset (see methods for details).  

 

 

Figure 2. Performance of logistic regression from scikit-learn on 5-fold Monte-Carlo cross-validated 

test sets using the AmpC dataset and molecular fingerprints available in RDKit. In general, larger 

fingerprints perform better, indicating bit-collisions hurt performance. The best-performing 

fingerprint is the Morgan fingerprint, and the use of pharmacophoric atom-invariants improves 

performance at lower dimensionality (compare morgan and morgan_feat). The dotted line indicates 

performance expected from a random classifier, and the unbroken line indicates best mean 

performance.  

 

In general, larger fingerprint sizes perform better with performance improving beyond 2,048 bits. 

Based on these results, whichever fingerprint is used for machine learning of protein-ligand binding 

it is suggested the size be at least 8,192 rather than the de facto standard of 2,048. Using sparse 

representation, the increase in required storage space for size 8,192 fingerprints is less than 1% over 

2,048 fingerprints. Likewise, for logistic regression the additional training time at larger sizes is 

negligible. The choice of larger fingerprint size thus has substantial benefit but inconsequential 

downside.  

 

The best-performing featurization was the Morgan fingerprint. Interestingly, including 

pharmacophoric featurization improved performance at smaller sizes. Since this effect disappears 



at higher sizes, it may be a result of bit-collisions affecting the performance of atomic-identity 

invariants, while pharmacophoric invariants are less affected. 

 

Based on these results, going forward all experiments used Morgan fingerprints with 

pharmacophoric invariants of size 8,192. Several classifiers and regressors in sklearn were 

investigated (data not shown), but they performed worse than logistic regression with default 

parameters (inverse shrinkage parameter C=1). 

 

2.3 AmpC: Proper sampling requires at least 400,000 ligands 

Iterative docking relies on an initial random sample as a training set. Ideally, the training set 

completely samples the chemical diversity in the high-scoring class such that it resembles the test 

set. In addition, for classifiers, the training set should have a good estimate of the cut-off percentile. 

In practice these only occur with large sample sizes - the top 0.3% ligands are in the minority class 

by definition, making chemical diversity difficult to sample, and the skew of docking scores in this 

region makes it difficult to estimate the percentile cut-off. Testing the relationship between 

predictive performance and training set size might gauge the range of best performance and 

determine the best size for the initial sample in practice. 

 

Figure 3, upper panel, shows that average precision increases with increasing training sample size 

up to at least 1,500,000 randomly-sampled ligands, although most of the gains were achieved by 

~400,000 ligands. This provides a reasonable starting point for the random sample size in iterative 

docking. At 400,000 ligands, there will be 1,200 ligands in the ‘high-scoring’ class based on the 0.3rd 

percentile cut-off, suggesting at least 1,000 ligands are required to widely sample the chemical 

diversity of the minority class. Figure 3, lower panel, shows the estimated cut-off values calculated 

from the training sets of different size. While lower training set sizes have widely varying estimates, 

from 400,000 ligands and above the estimated 0.3rd percentile closely tracks the true value.  

 



 

Figure 3. Performance improves with increasing training set size. Since the ‘high-scoring’ and ‘low-

scoring’ classes are, by definition, imbalanced, complete sampling of chemical diversity requires at 

least ~400,000 training set sizes, at which point the chemical diversity and estimated cut-off are 

approximately the same between the training and testing sets.  

 

2.3 AmpC and D4: Single-iteration performance  

While larger training sets lead to better classifiers, in practice the training set also takes time to dock. 

The enrichment (i.e. fold reduction in time compared to random search), and the total time spent 

docking, are thus a function of model performance and training set size. Calculating enrichment and 

total docking time for a range of training set sizes and goal numbers of high-scoring hits can estimate 

performance when using just a single iteration of iterative docking. In this case, “high-scoring” is 

all ligands in the top 0.3rd percentile. 

 

Figure 4 shows the enrichment for the full AmpC (left panel) and D4 (right panel) datasets. In 

general, enrichment is much better for the AmpC dataset, indicating performance is target-

dependent. For both datasets, there is a maximum in the enrichment for any number of desired hits. 



After this point, improving the classifier leads to overall worse performance, since the trade-off 

between time spent docking the training set vs. time saved not docking the test set diminishes. In 

addition, for increasing number of desired hits, the achievable enrichment gets smaller. For even 

the largest number of desired high-scorers identified, though, single-iteration docking improves 

over the brute-force approach by at least an order of magnitude. 

 

 

Figure 4 Hit discovery enrichment compared to brute-force search, using a single iteration of 

iterative docking for the AmpC and D4 datasets. A hit is defined as a ligand in the top 0.3rd percentile 

of docking scores. In general, the D4 dataset performs worse than the AmpC dataset, indicating 

performance is target-dependent.  

 

Enrichment is a useful metric in algorithm comparison. In practice, the main concern in a docking 

campaign is the total computation time (apart from in vitro hit-rate).  Figure 5 shows the single-

iteration performance in terms of the total number of days spent docking both the training and 

testing sets, assuming only a single-core CPU is available and docking 1s/ligand as in Lyu et al. (6). 

As with enrichment, single-iteration docking performs better for AmpC than D4. These results 

indicate that, for 100,000 docking hits, a docking campaign could be completed in approximately 8 

days for AmpC or 17 days for D4 using just a single CPU. Since most modern workstations come 

with multiple CPUs, and docking is trivially parallelized, this number is an upper range.  

 



 

Figure 5 Estimated docking time to discover ‘N’ hits, where hit is defined as being in the top 0.3th 

percentile of docking scores. Using brute force search, docking times would be 192 days (50,000 

hits), 385 days (100,000 hits), 579 days (150,000 hits), 772 days (200,000 hits). 

 

2.4 Comparison to previous work 

An alternative to the single iteration is active learning. Graff et al. demonstrated large performance 

gains on the AmpC lactamase data with this approach using a random forest, neural network, or a 

message-passing graph neural network to regress molecule structure against docking score (13). In 

their approach, a single random sample is taken as an initial training batch, followed by five iterations 

of batch selection guided by the model (i.e. greedy acquisition) and retraining on the growing 

batches. The advantage of this approach is that the class imbalance becomes less as the model adds 

more “hits” to the training set. Replicating this approach exactly can demonstrate a comparison of 

artificial neural networks and a logistic regression classifier.  

 

To facilitate this comparison, Figure 6 shows the same metric used in Graff et al., which is the 

percentage top-k docking scores identified, with k set to 0.05% out of the approximately 100 million 

ligands in the AmpC lactamase dataset (13). For convenience, k is set to exactly 50,000, as was 

reported in Graff et al. (13), but to 58,121 for the D4 receptor dataset which has more total ligands. 

Also shown are the %-top-k ligands reported in Graff et al. (13). Our approach, a combination of 

logistic regression with Morgan fingerprints and pharmacophoric atom invariants, achieves better 

performance than the message-passing network when using a greedy acquisition strategy. Similarly 

to the single-iteration data, performance on the AmpC dataset is better than on the D4 dataset but, 

since the D4 dataset was not used in Graff et al, we cannot show a direct comparison.   

 



 

Figure 6 Percentage of the top-k docking scores from the AmpC (k=50,000) or D4 (k=58,121) 

datasets identified using iterative docking. These data replicate an experiment from Graff et al. (13), 

whose data are reproduced here, but using logistic regression and Morgan fingerprints instead of 

graph neural networks. In general, performance on the AmpC dataset is better than on D4. Overall 

the performance of logistic regression improves on the message-passing network (MPN).  

 

These results are also presented in terms of computation time in Figure 7. Based on these 

calculations, an active learning docking campaign on AmpC would identify over 90% of the top-

50,000 ligands in under 28 computation days using just a single-core CPU. Like the single-iteration 

approach, the docking is trivially parallelized and this is an upper range. In addition, since the 

LBFGS solver using a single CPU fits a scikit-learn logistic regression classifier in ~10s for 400,000 

ligands, the contribution from model training is negligible. 

 

 



 

Figure 7 Time spent to identify the top-50,000 ligands from the AmpC and D4 datasets, assuming 

a single-core CPU and 1/s per ligand. These data are the same as in Figure 6, but the x-axis is 

transformed into docking time.   

 

3. Discussion: 

Large-scale docking campaigns have consistently demonstrated the ability to identify in vitro hits 

with novel scaffolds (21-26). Nevertheless, the computation demands for ultra-large campaigns are 

substantial, typically being associated with high-performance computing clusters(5-7). An 

alternative to brute-force search is iterative docking, whereby a surrogate model is trained on a 

random sample to steer the search towards high-scoring ligands. Re-analysing the dataset of Lyu et 

al.(6) allowed an assessment of how quickly and simply iterative docking could be performed. We 

compared several featurizations available in the RDKit combined with logistic regression from scikit-

learn. Using the Morgan fingerprint with pharmacophoric features and logistic regression shows an 

at-least 10-fold enrichment over brute-force search for the most difficult dataset with a single 

iteration. For active learning, consisting of multiple iterations, this compares favourably against the 

results previously achieved using a message-passing neural network.   

 

The best-performing featurization overall was the Morgan fingerprints with pharmacophoric atom 

invariants. Previous work showed that fingerprints motivated by bioactivity outperform the Morgan 

fingerprint in a ligand-based virtual screening task after unbiasing (27). The default atom invariants 

in RDKit, used to calculate graph substructures, differentiate atoms by proton number. Bioisosteric 



atom replacement, such as hydrogen-donor oxygen to hydrogen-donor nitrogen, would thus map 

to different features despite making the same interactions in the binding site. Pharmacophoric 

invariants may show better performance by avoiding this feature stratification at lower fingerprint 

sizes. It may also be useful to test other bioactivity-based fingerprints like CATS(28).  

 

The improved performance at high-dimensionality was a surprising result. Since the fingerprinting 

algorithm does not change across dimensionality this must arise due to reducing the number of bit-

collisions, which become substantial below ~4,096 bits. Accordingly, the best performance was 

found above this size. This result suggests virtual screening researchers should verify that 2,048-bit 

fingerprints is an appropriate benchmark, since benchmark performance might be improved by 

increasing the dimensionality at negligible cost in storage and training time.  

 

Logistic regression requires choosing a cut-off parameter to separate classes, which may seem like 

a disadvantage compared to non-linear regressors like neural networks or random forests. On the 

other hand, the USCF DOCK software does not produce docking scores in the same range for 

every binding site, and it is not clear a regressor will perform equally well across different proteins 

when the score distribution changes. Indeed, Graff et al. showed how regressors can perform worse 

when docking scores have lower standard deviation, although it’s unclear if different docking 

algorithms confounded that result (13). Logistic regression, however, applies to the top-ranked 

scores from any score distribution.  

 

We also re-analysed the in vitro data from Lyu et al. Transforming the docking scores to normalized 

ranks is a natural choice given the expected use-case for docking, in which the magnitude of the raw 

scores are primarily used to rank molecules. Another advantage of this approach is that a cut-off 

can be chosen once and used to threshold the docking scores on any desired protein target, whereas 

the distribution of raw scores will change in each case. Using the 0.3rd percentile as the cut-off yields 

good performance on these data. Nevertheless, the performance of iterative docking is target-

dependent, as shown on the AmpC and D4 datasets, so other targets may perform worse. 

 

These results come at a time when graph-based neural networks are increasingly popular for 

computational chemistry, although their benefits have also come into question (29). The 

performance of the de facto standard 2,048 bit Morgan fingerprint can be improved simply by using 

pharmacophoric atom invariants and/or larger fingerprint sizes. For iterative docking, this 

improvement is more than enough to match the performance of a message-passing network. While 

not prohibitive, the training time and implementation cost of graph neural networks make it 



worthwhile to use faster and simpler alternatives. With logistic regression, the aggregate training and 

inference time for the surrogate model in a docking campaign would be less than approximately 1 

minute.  

 

No statistical tests were used to compare the performance of logistic regression with message-

passing networks because the difference in docking computation time is small enough to be 

functionally equivalent in practical use-cases. The main advance of our work is the simplicity and 

speed of the implementation while maintaining state-of-the-art performance. As virtual libraries 

approach 109 - 1010 ligands, ease of implementation will be a crucial differentiator. These results 

also suggest that the signal in bioactivity data might not require advanced algorithms to identify, 

meaning other virtual screening results might be improved simply by a fingerprint search. 

 

Finally, some speculation on why surrogate models work so well to model docking scores. The use 

of machine learning to model in vitro bioactivity has been criticised for poor performance on out-

of-distribution data, returning predictions equivalent to a 1-NN classifier (30, 31). Typical pipelines 

in bioactivity modelling use data from medicinal-chemistry articles via e.g. ChEMBL (32). These 

data are not randomly sampled, with redundant instances that heavily weight the learning algorithms 

towards existing scaffolds. In addition, the data may represent multiple binding sites, confusing the 

labelling. Iterative docking, on the other hand, uses true random sampling from the available library 

in the first step, and is performed at a single binding site. These two properties mean iterative 

docking uses training sets with the same distribution in chemical space as the test set, which may 

account for the superior performance. It will be interesting to determine whether such models can 

predict bioactivity directly. 

 

Ultra-large scale virtual libraries are a recent advance that have renewed interest in molecular 

docking for discovery of novel chemotypes. This accessible chemical space is enticing, but the 

practicalities of docking 107 - 109 molecules requires highly parallelized computer clusters. Iterative 

docking, a.k.a. active learning, uses a surrogate model to reduce computation by prioritizing the 

library based on one or more training samples of docked ligands. This work approached iterative 

docking with the goal of minimizing implementation cost by using fast featurization and learning 

algorithms. The approach, which uses logistic regression and Morgan fingerprints, is at least on par 

with state of the art graph neural networks. This approach can identify over 90% of the top-50,000 

ligands in a 108-scale virtual library using only a consumer-grade CPU in 1-2 weeks.  

 

4. Methods 



All code is available at https://github.com/ljmartin/dockop  

 

4.1 Data 

SMILES codes and docking scores were from Lyu et al.(6). Results comparison with a message-

passing network used data in tables S6, S7, and S8 of reference (13) 

 

4.1. Software 

Molecules were featurized into molecular fingerprints using RDKit (19). The model relating hit-rate 

and docking-rank used PyGAM (33). Machine learning algorithms were implemented using scikit-

learn (34). Fingerprints were stored and processed as sparse arrays, using numpy (35) and scipy data 

structures (36). All visualization was performed with altair (37), a python API for vega-lite(38).  

 

4.2 Analysis 

The model relating hit-rate and docking ranks used a generalized additive model. While this 

approach may be less interpretable than the sigmoid curve used in Lyu et al.(6), it allowed us to 

successfully model the reduced hit-rate observed at higher (better) ranks. To resolve the changes 

occurring between the 0th and 1st percentiles, the normalized ranks were first logit-transformed, and 

the model fit to the transformed percentiles. The GAM used a binomial distribution to model hits 

with a logit-link to squash output into the range (0,1) and n_splines=8. 

 

The surrogate model, logistic regression, was implemented using scikit-learn. The fingerprint 

comparison was performed on a subset of size 1,000,000 ligands from the AmpC dataset of Lyu et 

al. (6). Five repeats of Monte-Carlo cross-validation were performed, in which successive test-sets 

are chosen at random with replacement (39). In each round of cross-validation, 50,000 ligands were 

selected as training data, with the remaining 950,000 ligands as test data. Evaluation used the average 

precision metric, which approximates the area under the precision-recall curve (40). 

 

The single-iteration and iterative-docking analyses used the full AmpC and D4 datasets. Error bars 

are the 95% confidence interval of three repeats, calculated by altair.  

 

Supplementary Data 

Supplementary Table 1: Raw data for percentage of the top-50,000 docking scores from the AmpC 

or D4 datasets identified using iterative docking 

https://github.com/ljmartin/dockop


Training set size Number of ligands 

sampled 

% top-50,000 ligands 

identified (mean, %) 

95% confidence 

interval 

100,000 

100,000 0.1 0.0 – 0.2 

200,000 11.1 9.7 – 12.5 

300,000 27.3 25.4 – 29.2 

400,000 40.1 35.3 – 44.9 

500,000 49.1 44.1 – 54.1 

600,000 55.8 51.4 – 60.1 

200,000 

200,000 0.2 0.1 – 0.3 

400,000 22.6 21.6 – 23.6 

600,000 47.4 47.1 – 47.7 

800,00 61.1 60.1 – 62.1 

1,000,000 69.6 68.1 – 71.1 

1,200,000 75.8 73.6 – 77.9 

400,000 

400,000 0.4 0.3 – 0.5 

800,000 41.0 38.1 – 43.8 

1,200,00 68.9 68.6 – 69.3 

1,600,00 81.4 81.3 – 81.4 

2,000,000 87.9 87.7 – 88.2 

2,400,000 91.6 91.4 – 91.8 
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